Tag Archives: design

#433901 The SpiNNaker Supercomputer, Modeled ...

We’ve long used the brain as inspiration for computers, but the SpiNNaker supercomputer, switched on this month, is probably the closest we’ve come to recreating it in silicon. Now scientists hope to use the supercomputer to model the very thing that inspired its design.

The brain is the most complex machine in the known universe, but that complexity comes primarily from its architecture rather than the individual components that make it up. Its highly interconnected structure means that relatively simple messages exchanged between billions of individual neurons add up to carry out highly complex computations.

That’s the paradigm that has inspired the ‘Spiking Neural Network Architecture” (SpiNNaker) supercomputer at the University of Manchester in the UK. The project is the brainchild of Steve Furber, the designer of the original ARM processor. After a decade of development, a million-core version of the machine that will eventually be able to simulate up to a billion neurons was switched on earlier this month.

The idea of splitting computation into very small chunks and spreading them over many processors is already the leading approach to supercomputing. But even the most parallel systems require a lot of communication, and messages may have to pack in a lot of information, such as the task that needs to be completed or the data that needs to be processed.

In contrast, messages in the brain consist of simple electrochemical impulses, or spikes, passed between neurons, with information encoded primarily in the timing or rate of those spikes (which is more important is a topic of debate among neuroscientists). Each neuron is connected to thousands of others via synapses, and complex computation relies on how spikes cascade through these highly-connected networks.

The SpiNNaker machine attempts to replicate this using a model called Address Event Representation. Each of the million cores can simulate roughly a million synapses, so depending on the model, 1,000 neurons with 1,000 connections or 100 neurons with 10,000 connections. Information is encoded in the timing of spikes and the identity of the neuron sending them. When a neuron is activated it broadcasts a tiny packet of data that contains its address, and spike timing is implicitly conveyed.

By modeling their machine on the architecture of the brain, the researchers hope to be able to simulate more biological neurons in real time than any other machine on the planet. The project is funded by the European Human Brain Project, a ten-year science mega-project aimed at bringing together neuroscientists and computer scientists to understand the brain, and researchers will be able to apply for time on the machine to run their simulations.

Importantly, it’s possible to implement various different neuronal models on the machine. The operation of neurons involves a variety of complex biological processes, and it’s still unclear whether this complexity is an artefact of evolution or central to the brain’s ability to process information. The ability to simulate up to a billion simple neurons or millions of more complex ones on the same machine should help to slowly tease out the answer.

Even at a billion neurons, that still only represents about one percent of the human brain, so it’s still going to be limited to investigating isolated networks of neurons. But the previous 500,000-core machine has already been used to do useful simulations of the Basal Ganglia—an area affected in Parkinson’s disease—and an outer layer of the brain that processes sensory information.

The full-scale supercomputer will make it possible to study even larger networks previously out of reach, which could lead to breakthroughs in our understanding of both the healthy and unhealthy functioning of the brain.

And while neurological simulation is the main goal for the machine, it could also provide a useful research tool for roboticists. Previous research has already shown a small board of SpiNNaker chips can be used to control a simple wheeled robot, but Furber thinks the SpiNNaker supercomputer could also be used to run large-scale networks that can process sensory input and generate motor output in real time and at low power.

That low power operation is of particular promise for robotics. The brain is dramatically more power-efficient than conventional supercomputers, and by borrowing from its principles SpiNNaker has managed to capture some of that efficiency. That could be important for running mobile robotic platforms that need to carry their own juice around.

This ability to run complex neural networks at low power has been one of the main commercial drivers for so-called neuromorphic computing devices that are physically modeled on the brain, such as IBM’s TrueNorth chip and Intel’s Loihi. The hope is that complex artificial intelligence applications normally run in massive data centers could be run on edge devices like smartphones, cars, and robots.

But these devices, including SpiNNaker, operate very differently from the leading AI approaches, and its not clear how easy it would be to transfer between the two. The need to adopt an entirely new programming paradigm is likely to limit widespread adoption, and the lack of commercial traction for the aforementioned devices seems to back that up.

At the same time, though, this new paradigm could potentially lead to dramatic breakthroughs in massively parallel computing. SpiNNaker overturns many of the foundational principles of how supercomputers work that make it much more flexible and error-tolerant.

For now, the machine is likely to be firmly focused on accelerating our understanding of how the brain works. But its designers also hope those findings could in turn point the way to more efficient and powerful approaches to computing.

Image Credit: Adrian Grosu / Shutterstock.com Continue reading

Posted in Human Robots

#433872 Breaking Out of the Corporate Bubble ...

For big companies, success is a blessing and a curse. You don’t get big without doing something (or many things) very right. It might start with an invention or service the world didn’t know it needed. Your product takes off, and growth brings a whole new set of logistical challenges. Delivering consistent quality, hiring the right team, establishing a strong culture, tapping into new markets, satisfying shareholders. The list goes on.

Eventually, however, what made you successful also makes you resistant to change.

You’ve built a machine for one purpose, and it’s running smoothly, but what about retooling that machine to make something new? Not so easy. Leaders of big companies know there is no future for their organizations without change. And yet, they struggle to drive it.

In their new book, Leading Transformation: How to Take Charge of Your Company’s Future, Kyle Nel, Nathan Furr, and Thomas Ramsøy aim to deliver a roadmap for corporate transformation.

The book focuses on practical tools that have worked in big companies to break down behavioral and cognitive biases, envision radical futures, and run experiments. These include using science fiction and narrative to see ahead and adopting better measures of success for new endeavors.

A thread throughout is how to envision a new future and move into that future.

We’re limited by the bubbles in which we spend the most time—the corporate bubble, the startup bubble, the nonprofit bubble. The mutually beneficial convergence of complementary bubbles, then, can be a powerful tool for kickstarting transformation. The views and experiences of one partner can challenge the accepted wisdom of the other; resources can flow into newly co-created visions and projects; and connections can be made that wouldn’t otherwise exist.

The authors call such alliances uncommon partners. In the following excerpt from the book, Made In Space, a startup building 3D printers for space, helps Lowe’s explore an in-store 3D printing system, and Lowe’s helps Made In Space expand its vision and focus.

Uncommon Partners
In a dingy conference room at NASA, five prototypical nerds, smelling of Thai food, laid out the path to printing satellites in space and buildings on distant planets. At the end of their four-day marathon, they emerged with an artifact trail that began with early prototypes for the first 3D printer on the International Space Station and ended in the additive-manufacturing future—a future much bigger than 3D printing.

In the additive-manufacturing future, we will view everything as transient, or capable of being repurposed into new things. Rather than throwing away a soda bottle or a bent nail, we will simply reprocess these things into a new hinge for the fence we are building or a light switch plate for the tool shed. Indeed, we might not even go buy bricks for the tool shed, but instead might print them from impurities pulled from the air and the dirt beneath our feet. Such a process would both capture carbon in the air to make the bricks and avoid all the carbon involved in making and then transporting traditional bricks to your house.

If it all sounds a little too science fiction, think again. Lowe’s has already been honored as a Champion of Change by the US government for its prototype system to recycle plastic (e.g., plastic bags and bottles). The future may be closer than you have imagined. But to get there, Lowe’s didn’t work alone. It had to work with uncommon partners to create the future.

Uncommon partners are the types of organizations you might not normally work with, but which can greatly help you create radical new futures. Increasingly, as new technologies emerge and old industries converge, companies are finding that working independently to create all the necessary capabilities to enter new industries or create new technologies is costly, risky, and even counterproductive. Instead, organizations are finding that they need to collaborate with uncommon partners as an ecosystem to cocreate the future together. Nathan [Furr] and his colleague at INSEAD, Andrew Shipilov, call this arrangement an adaptive ecosystem strategy and described how companies such as Lowe’s, Samsung, Mastercard, and others are learning to work differently with partners and to work with different kinds of partners to more effectively discover new opportunities. For Lowe’s, an adaptive ecosystem strategy working with uncommon partners forms the foundation of capturing new opportunities and transforming the company. Despite its increased agility, Lowe’s can’t be (and shouldn’t become) an independent additive-manufacturing, robotics-using, exosuit-building, AR-promoting, fill-in-the-blank-what’s-next-ing company in addition to being a home improvement company. Instead, Lowe’s applies an adaptive ecosystem strategy to find the uncommon partners with which it can collaborate in new territory.

To apply the adaptive ecosystem strategy with uncommon partners, start by identifying the technical or operational components required for a particular focus area (e.g., exosuits) and then sort these components into three groups. First, there are the components that are emerging organically without any assistance from the orchestrator—the leader who tries to bring together the adaptive ecosystem. Second, there are the elements that might emerge, with encouragement and support. Third are the elements that won’t happen unless you do something about it. In an adaptive ecosystem strategy, you can create regular partnerships for the first two elements—those already emerging or that might emerge—if needed. But you have to create the elements in the final category (those that won’t emerge) either with an uncommon partner or by yourself.

For example, when Lowe’s wanted to explore the additive-manufacturing space, it began a search for an uncommon partner to provide the missing but needed capabilities. Unfortunately, initial discussions with major 3D printing companies proved disappointing. The major manufacturers kept trying to sell Lowe’s 3D printers. But the vision our group had created with science fiction was not for vendors to sell Lowe’s a printer, but for partners to help the company build a system—something that would allow customers to scan, manipulate, print, and eventually recycle additive-manufacturing objects. Every time we discussed 3D printing systems with these major companies, they responded that they could do it and then tried to sell printers. When Carin Watson, one of the leading lights at Singularity University, introduced us to Made In Space (a company being incubated in Singularity University’s futuristic accelerator), we discovered an uncommon partner that understood what it meant to cocreate a system.

Initially, Made In Space had been focused on simply getting 3D printing to work in space, where you can’t rely on gravity, you can’t send up a technician if the machine breaks, and you can’t release noxious fumes into cramped spacecraft quarters. But after the four days in the conference room going over the comic for additive manufacturing, Made In Space and Lowe’s emerged with a bigger vision. The company helped lay out an artifact trail that included not only the first printer on the International Space Station but also printing system services in Lowe’s stores.

Of course, the vision for an additive-manufacturing future didn’t end there. It also reshaped Made In Space’s trajectory, encouraging the startup, during those four days in a NASA conference room, to design a bolder future. Today, some of its bold projects include the Archinaut, a system that enables satellites to build themselves while in space, a direction that emerged partly from the science fiction narrative we created around additive manufacturing.

In summary, uncommon partners help you succeed by providing you with the capabilities you shouldn’t be building yourself, as well as with fresh insights. You also help uncommon partners succeed by creating new opportunities from which they can prosper.

Helping Uncommon Partners Prosper
Working most effectively with uncommon partners can require a shift from more familiar outsourcing or partnership relationships. When working with uncommon partners, you are trying to cocreate the future, which entails a great deal more uncertainty. Because you can’t specify outcomes precisely, agreements are typically less formal than in other types of relationships, and they operate under the provisions of shared vision and trust more than binding agreement clauses. Moreover, your goal isn’t to extract all the value from the relationship. Rather, you need to find a way to share the value.

Ideally, your uncommon partners should be transformed for the better by the work you do. For example, Lowe’s uncommon partner developing the robotics narrative was a small startup called Fellow Robots. Through their work with Lowe’s, Fellow Robots transformed from a small team focused on a narrow application of robotics (which was arguably the wrong problem) to a growing company developing a very different and valuable set of capabilities: putting cutting-edge technology on top of the old legacy systems embedded at the core of most companies. Working with Lowe’s allowed Fellow Robots to discover new opportunities, and today Fellow Robots works with retailers around the world, including BevMo! and Yamada. Ultimately, working with uncommon partners should be transformative for both of you, so focus more on creating a bigger pie than on how you are going to slice up a smaller pie.

The above excerpt appears in the new book Leading Transformation: How to Take Charge of Your Company’s Future by Kyle Nel, Nathan Furr, and Thomas Ramsøy, published by Harvard Business Review Press.

Image Credit: Here / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#433785 DeepMind’s Eerie Reimagination of the ...

If a recent project using Google’s DeepMind were a recipe, you would take a pair of AI systems, images of animals, and a whole lot of computing power. Mix it all together, and you’d get a series of imagined animals dreamed up by one of the AIs. A look through the research paper about the project—or this open Google Folder of images it produced—will likely lead you to agree that the results are a mix of impressive and downright eerie.

But the eerie factor doesn’t mean the project shouldn’t be considered a success and a step forward for future uses of AI.

From GAN To BigGAN
The team behind the project consists of Andrew Brock, a PhD student at Edinburgh Center for Robotics, and DeepMind intern and researcher Jeff Donahue and Karen Simonyan.

They used a so-called Generative Adversarial Network (GAN) to generate the images. In a GAN, two AI systems collaborate in a game-like manner. One AI produces images of an object or creature. The human equivalent would be drawing pictures of, for example, a dog—without necessarily knowing what a dog exactly looks like. Those images are then shown to the second AI, which has already been fed images of dogs. The second AI then tells the first one how far off its efforts were. The first one uses this information to improve its images. The two go back and forth in an iterative process, and the goal is for the first AI to become so good at creating images of dogs that the second can’t tell the difference between its creations and actual pictures of dogs.

The team was able to draw on Google’s vast vaults of computational power to create images of a quality and life-like nature that were beyond almost anything seen before. In part, this was achieved by feeding the GAN with more images than is usually the case. According to IFLScience, the standard is to feed about 64 images per subject into the GAN. In this case, the research team fed about 2,000 images per subject into the system, leading to it being nicknamed BigGAN.

Their results showed that feeding the system with more images and using masses of raw computer power markedly increased the GAN’s precision and ability to create life-like renditions of the subjects it was trained to reproduce.

“The main thing these models need is not algorithmic improvements, but computational ones. […] When you increase model capacity and you increase the number of images you show at every step, you get this twofold combined effect,” Andrew Brock told Fast Company.

The Power Drain
The team used 512 of Google’s AI-focused Tensor Processing Units (TPU) to generate 512-pixel images. Each experiment took between 24 and 48 hours to run.

That kind of computing power needs a lot of electricity. As artist and Innovator-In-Residence at the Library of Congress Jer Thorp tongue-in-cheek put it on Twitter: “The good news is that AI can now give you a more believable image of a plate of spaghetti. The bad news is that it used roughly enough energy to power Cleveland for the afternoon.”

Thorp added that a back-of-the-envelope calculation showed that the computations to produce the images would require about 27,000 square feet of solar panels to have adequate power.

BigGAN’s images have been hailed by researchers, with Oriol Vinyals, research scientist at DeepMind, rhetorically asking if these were the ‘Best GAN samples yet?’

However, they are still not perfect. The number of legs on a given creature is one example of where the BigGAN seemed to struggle. The system was good at recognizing that something like a spider has a lot of legs, but seemed unable to settle on how many ‘a lot’ was supposed to be. The same applied to dogs, especially if the images were supposed to show said dogs in motion.

Those eerie images are contrasted by other renditions that show such lifelike qualities that a human mind has a hard time identifying them as fake. Spaniels with lolling tongues, ocean scenery, and butterflies were all rendered with what looks like perfection. The same goes for an image of a hamburger that was good enough to make me stop writing because I suddenly needed lunch.

The Future Use Cases
GAN networks were first introduced in 2014, and given their relative youth, researchers and companies are still busy trying out possible use cases.

One possible use is image correction—making pixillated images clearer. Not only does this help your future holiday snaps, but it could be applied in industries such as space exploration. A team from the University of Michigan and the Max Planck Institute have developed a method for GAN networks to create images from text descriptions. At Berkeley, a research group has used GAN to create an interface that lets users change the shape, size, and design of objects, including a handbag.

For anyone who has seen a film like Wag the Dog or read 1984, the possibilities are also starkly alarming. GANs could, in other words, make fake news look more real than ever before.

For now, it seems that while not all GANs require the computational and electrical power of the BigGAN, there is still some way to reach these potential use cases. However, if there’s one lesson from Moore’s Law and exponential technology, it is that today’s technical roadblock quickly becomes tomorrow’s minor issue as technology progresses.

Image Credit: Ondrej Prosicky/Shutterstock Continue reading

Posted in Human Robots

#433758 DeepMind’s New Research Plan to Make ...

Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.

AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.

That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.

In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.

A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.

Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.

The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.

Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.

Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.

And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.

The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.

The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.

Image Credit: cono0430 / Shutterstock.com Continue reading

Posted in Human Robots

#433739 No Safety Driver Here—Volvo’s New ...

Each time there’s a headline about driverless trucking technology, another piece is taken out of the old equation. First, an Uber/Otto truck’s safety driver went hands-off once the truck reached the highway (and said truck successfully delivered its valuable cargo of 50,000 beers). Then, Starsky Robotics announced its trucks would start making autonomous deliveries without a human in the vehicle at all.

Now, Volvo has taken the tech one step further. Its new trucks not only won’t have safety drivers, they won’t even have the option of putting safety drivers behind the wheel, because there is no wheel—and no cab, either.

Vera, as the technology’s been dubbed, was unveiled in September, and consists of a sort of flat-Tesla-like electric car with a standard trailer hookup. The vehicles are connected to a cloud service, which also connects them to each other and to a control center. The control center monitors the trucks’ positioning (they’re designed to locate their position to within centimeters), battery charge, load content, service requirements, and other variables. The driveline and battery pack used in the cars are the same as those Volvo uses in its existing electric trucks.

You won’t see these cruising down an interstate highway, though, or even down a local highway. Vera trucks are designed to be used on short, repetitive routes contained within limited areas—think shipping ports, industrial parks, or logistics hubs. They’re limited to slower speeds than normal cars or trucks, and will be able to operate 24/7. “We will see much higher delivery precision, as well as improved flexibility and productivity,” said Mikael Karlsson, VP of Autonomous Solutions at Volvo Trucks. “Today’s operations are often designed according to standard daytime work hours, but a solution like Vera opens up the possibility of continuous round-the-clock operation and a more optimal flow. This in turn can minimize stock piles and increase overall productivity.”

The trucks are sort of like bigger versions of Amazon’s Kiva robots, which scoot around the aisles of warehouses and fulfillment centers moving pallets between shelves and fetching goods to be shipped.

Pairing trucks like Vera with robots like Kiva makes for a fascinating future landscape of logistics and transport; cargo will be moved from docks to warehouses by a large, flat robot-on-wheels, then distributed throughout that warehouse by smaller, flat robots-on-wheels. To really see the automated process through to the end point, even smaller flat robots-on-wheels will be used to deliver peoples’ goods right to their front doors.

Sounds like a lot of robots and not a lot of humans, right? Anticipating its technology’s implication in the ongoing uproar over technological unemployment, Volvo has already made statements about its intentions to continue to employ humans alongside the driverless trucks. “I foresee that there will be an increased level of automation where it makes sense, such as for repetitive tasks. This in turn will drive prosperity and increase the need for truck drivers in other applications,” said Karlsson.

The end-to-end automation concept has already been put into practice in Caofeidian, a northern Chinese city that houses the world’s first fully autonomous harbor, aiming to be operational by the end of this year. Besides replacing human-driven trucks with autonomous ones (made by Chinese startup TuSimple), the port is using automated cranes and a coordinating central control system.

Besides Uber/Otto, Tesla, or Daimler, which are all working on driverless trucks with a more conventional design (meaning they still have a cab and look like you’d expect a truck to look), Volvo also has competition from a company called Einride. The Swedish startup’s electric, cabless T/Pod looks a lot like Vera, but has some fundamental differences. Rather than being tailored to short distances and high capacity, Einride’s trucks are meant for medium distance and capacity, like moving goods from a distribution center to a series of local stores.

Vera trucks are currently still in the development phase. But since their intended use is quite specific and limited (Karlsson noted “Vera is not intended to be a solution for everyone, everywhere”), the technology could likely be rolled out faster than its more general-use counterparts. Having cabless electric trucks take over short routes in closed environments would be one more baby step along the road to a driverless future—and a testament to the fact that self-driving technology will move into our lives and our jobs incrementally, ostensibly giving us the time we’ll need to adapt and adjust.

Image Credit: Volvo Trucks Continue reading

Posted in Human Robots