Tag Archives: DARPA

#437857 Video Friday: Robotic Third Hand Helps ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

We are seeing some exciting advances in the development of supernumerary robotic limbs. But one thing about this technology remains a major challenge: How do you control the extra limb if your own hands are busy—say, if you’re carrying a package? MIT researchers at Professor Harry Asada’s lab have an idea. They are using subtle finger movements in sensorized gloves to control the supernumerary limb. The results are promising, and they’ve demonstrated a waist-mounted arm with a qb SoftHand that can help you with doors, elevators, and even handshakes.

[ Paper ]

ROBOPANDA

Fluid actuated soft robots, or fluidic elastomer actuators, have shown great potential in robotic applications where large compliance and safe interaction are dominant concerns. They have been widely studied in wearable robotics, prosthetics, and rehabilitations in recent years. However, such soft robots and actuators are tethered to a bulky pump and controlled by various valves, limiting their applications to a small confined space. In this study, we report a new and effective approach to fluidic power actuation that is untethered, easy to design, fabricate, control, and allows various modes of actuation. In the proposed approach, a sealed elastic tube filled with fluid (gas or liquid) is segmented by adaptors. When twisting a segment, two major effects could be observed: (1) the twisted segment exhibits a contraction force and (2) other segments inflate or deform according to their constraint patterns.

[ Paper ]

And now: “Magnetic cilia carpets.”

[ ETH Zurich ]

To adhere to government recommendations while maintaining requirements for social distancing during the COVID-19 pandemic, Yaskawa Motoman is now utilizing an HC10DT collaborative robot to take individual employee temperatures. Named “Covie”, the design and fabrication of the robotic solution and its software was a combined effort by Yaskawa Motoman’s Technology Advancement Team (TAT) and Product Solutions Group (PSG), as well as a group of robotics students from the University of Dayton.

They should have programmed it to nod if your temperature was normal, and smacked you upside the head while yelling “GO HOME” if it wasn’t.

[ Yaskawa ]

Driving slowly on pre-defined routes, ZMP’s RakuRo autonomous vehicle helps people with mobility challenges enjoy cherry blossoms in Japan.

RakuRo costs about US $1,000 per month to rent, but ZMP suggests that facilities or groups of ~10 people could get together and share one, which makes the cost much more reasonable.

[ ZMP ]

Jessy Grizzle from the Dynamic Legged Locomotion Lab at the University of Michigan writes:

Our lab closed on March 20, 2020 under the State of Michigan’s “Stay Home, Stay Safe” order. For a 24-hour period, it seemed that our labs would be “sanitized” during our absence. Since we had no idea what that meant, we decided that Cassie Blue needed to “Stay Home, Stay Safe” as well. We loaded up a very expensive robot and took her off campus. On May 26, we were allowed to re-open our laboratory. After thoroughly cleaning the lab, disinfecting tools and surfaces, developing and getting approval for new safe operation procedures, we then re-organized our work areas to respect social distancing requirements and brought Cassie back to the laboratory.

During the roughly two months we were working remotely, the lab’s members got a lot done. Papers were written, dissertation proposals were composed, and plans for a new course, ROB 101, Computational Linear Algebra, were developed with colleagues. In addition, one of us (Yukai Gong) found the lockdown to his liking! He needed the long period of quiet to work through some new ideas for how to control 3D bipedal robots.

[ Michigan Robotics ]

Thanks Jesse and Bruce!

You can tell that this video of how Pepper has been useful during COVID-19 is not focused on the United States, since it refers to the pandemic in past tense.

[ Softbank Robotics ]

NASA’s water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023.

[ NASA ]

This could be the most impressive robotic gripper demo I have ever seen.

[ Soft Robotics ]

Whiz, an autonomous vacuum sweeper, innovates the cleaning industry by automating tedious tasks for your team. Easy to train, easy to use, Whiz works with your staff to deliver a high-quality clean while increasing efficiency and productivity.

[ Softbank Robotics ]

About 40 seconds into this video, a robot briefly chases a goose.

[ Ghost Robotics ]

SwarmRail is a new concept for rail-guided omnidirectional mobile robot systems. It aims for a highly flexible production process in the factory of the future by opening up the available work space from above. This means that transport and manipulation tasks can be carried out by floor- and ceiling-bound robot systems. The special feature of the system is the combination of omnidirectionally mobile units with a grid-shaped rail network, which is characterized by passive crossings and a continuous gap between the running surfaces of the rails. Through this gap, a manipulator operating below the rail can be connected to a mobile unit traveling on the rail.

[ DLRRMC ]

RightHand Robotics (RHR), a leader in providing robotic piece-picking solutions, is partnered with PALTAC Corporation, Japan’s largest wholesaler of consumer packaged goods. The collaboration introduces RightHand’s newest piece-picking solution to the Japanese market, with multiple workstations installed in PALTAC’s newest facility, RDC Saitama, which opened in 2019 in Sugito, Saitama Prefecture, Japan.

[ RightHand Robotics ]

From the ICRA 2020, a debate on the “Future of Robotics Research,” addressing such issues as “robotics research is over-reliant on benchmark datasets and simulation” and “robots designed for personal or household use have failed because of fundamental misunderstandings of Human-Robot Interaction (HRI).”

[ Robotics Debates ]

MassRobotics has a series of interviews where robotics celebrities are interviewed by high school students.The students are perhaps a little awkward (remember being in high school?), but it’s honest and the questions are interesting. The first two interviews are with Laurie Leshin, who worked on space robots at NASA and is now President of Worcester Polytechnic Institute, and Colin Angle, founder and CEO of iRobot.

[ MassRobotics ]

Thanks Andrew!

In this episode of the Voices from DARPA podcast, Dr. Timothy Chung, a program manager since 2016 in the agency’s Tactical Technology Office, delves into his robotics and autonomous technology programs – the Subterranean (SubT) Challenge and OFFensive Swarm-Enabled Tactics (OFFSET). From robot soccer to live-fly experimentation programs involving dozens of unmanned aircraft systems (UASs), he explains how he aims to assist humans heading into unknown environments via advances in collaborative autonomy and robotics.

[ DARPA ] Continue reading

Posted in Human Robots

#437851 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics has been fielding questions about when its robots are going to go on sale and how much they’ll cost for at least a dozen years now. I can say this with confidence, because that’s how long I’ve been a robotics journalist, and I’ve been pestering them about it the entire time. But it’s only relatively recently that the company started to make a concerted push away from developing robots exclusively for the likes of DARPA into platforms with more commercial potential, starting with a compact legged robot called Spot, first introduced in 2016.

Since then, we’ve been following closely as Spot has gone from a research platform to a product, and today, Boston Dynamics is announcing the final step in that process: commercial availability. You can now order a Spot Explorer Kit from the Boston Dynamics online store for US $74,500 (plus tax), shipping included, with delivery in 6 to 8 weeks. FINALLY!

Over the past 10 months or so, Boston Dynamics has leased Spot robots to carefully selected companies, research groups, and even a few individuals as part of their early adopter program—that’s where all of the clips in the video below came from. While there are over 100 Spots out in the world right now, getting one of them has required convincing Boston Dynamics up front that you knew more or less exactly what you wanted to do and how you wanted to do it. If you’re a big construction company or the Jet Propulsion Laboratory or Adam Savage, that’s all well and good, but for other folks who think that a Spot could be useful for them somehow and want to give it a shot, this new availability provides a fewer-strings attached opportunity to do some experimentation with the robot.

There’s a lot of cool stuff going on in that video, but we were told that the one thing that really stood out to the folks at Boston Dynamics was a 2-second clip that you can see on the left-hand side of the screen from 0:19 to 0:21. In it, Spot is somehow managing to walk across a spider web of rebar without getting tripped up, at faster than human speed. This isn’t something that Spot was specifically programmed to do, and in fact the Spot User Guide specifically identifies “rebar mesh” as an unsafe operating environment. But the robot just handles it, and that’s a big part of what makes Spot so useful—its ability to deal with (almost) whatever you can throw at it.

Before you get too excited, Boston Dynamics is fairly explicit that the current license for the robot is intended for commercial use, and the company specifically doesn’t want people to be just using it at home for fun. We know this because we asked (of course we asked), and they told us “we specifically don’t want people to just be using it at home for fun.” Drat. You can still buy one as an individual, but you have to promise that you’ll follow the terms of use and user guidelines, and it sounds like using a robot in your house might be the second-fastest way to invalidate your warranty:

SPOT IS AN AMAZING ROBOT, BUT IS NOT CERTIFIED SAFE FOR IN-HOME USE OR INTENDED FOR USE NEAR CHILDREN OR OTHERS WHO MAY NOT APPRECIATE THE HAZARDS ASSOCIATED WITH ITS OPERATION.

Not being able to get Spot to play with your kids may be disappointing, but for those of you with the sort of kids who are also students, the good news is that Boston Dynamics has carved out a niche for academic institutions, which can buy Spot at a discounted price. And if you want to buy a whole pack of Spots, there’s a bulk discount for Enterprise users as well.

What do you get for $74,500? All this!

Spot robot
Spot battery (2x)
Spot charger
Tablet controller and charger
Robot case for storage and transportation
FREE SHIPPING!

Photo: Boston Dynamics

The basic package includes the robot, two batteries, charger, a tablet controller, and a storage case.

You can view detailed specs here.

So is $75k a lot of money for a robot like Spot, or not all that much? We don’t have many useful points of comparison, partially because it’s not clear to what extent other pre-commercial quadrupedal robots (like ANYmal or Aliengo) share capabilities and features with Spot. For more perspective on Spot’s price tag, we spoke to Michael Perry, vice president of business development at Boston Dynamics.

IEEE Spectrum: Why is Spot so affordable?

Michael Perry: The main goal of selling the robot at this stage is to try to get it into the hands of as many application developers as possible, so that we can learn from the community what the biggest driver of value is for Spot. As a platform, unlocking the value of an ecosystem is our core focus right now.

Spectrum: Why is Spot so expensive?

Perry: Expensive is relative, but compared to the initial prototypes of Spot, we’ve been able to drop down the cost pretty significantly. One key thing has been designing it for robustness—we’ve put hundreds and hundreds of hours on the robot to make sure that it’s able to be successful when it falls, or when it has an electrostatic discharge. We’ve made sure that it’s able to perceive a wide variety of environments that are difficult for traditional vision-based sensors to handle. A lot of that engineering is baked into the core product so that you don’t have to worry about the mobility or robotic side of the equation, you can just focus on application development.

Photos: Boston Dynamics

Accessories for Spot include [clockwise from top left]: Spot GXP with additional ports for payload integration; Spot CAM with panorama camera and advanced comms; Spot CAM+ with pan-tilt-zoom camera for inspections; Spot EAP with lidar to enhance autonomy on large sites; Spot EAP+ with Spot CAM camera plus lidar; and Spot CORE for additional processing power.

The $75k that you’ll pay for the Spot Explorer Kit, it’s important to note, is just the base price for the robot. As with other things that fall into this price range (like a luxury car), there are all kinds of fun ways to drive that cost up with accessories, although for Spot, some of those accessories will be necessary for many (if not most) applications. For example, a couple of expansion ports to make it easier to install your own payloads on Spot will run you $1,275. An additional battery is $4,620. And if you want to really get some work done, the Enhanced Autonomy Package (with 360 cameras, lights, better comms, and a Velodyne VLP-16) will set you back an additional $34,570. If you were hoping for an arm, you’ll have to wait until the end of the year.

Each Spot also includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff” or “I tried to take my robot swimming.” For that sort of thing (user error) to be covered, you’ll need to upgrade to the $12,000 Spot CARE premium service plan to cover your robot for a year as long as you don’t subject it to willful abuse, which both of those examples I just gave probably qualify as.

While we’re on the subject of robot abuse, Boston Dynamics has very sensibly devoted a substantial amount of the Spot User Guide to help new users understand how they should not be using their robot, in order to “lessen the risk of serious injury, death, or robot and other property damage.” According to the guide, some things that could cause Spot to fall include holes, cliffs, slippery surfaces (like ice and wet grass), and cords. Spot’s sensors also get confused by “transparent, mirrored, or very bright obstacles,” and the guide specifically says Spot “may crash into glass doors and windows.” Also this: “Spot cannot predict trajectories of moving objects. Do not operate Spot around moving objects such as vehicles, children, or pets.”

We should emphasize that this is all totally reasonable, and while there are certainly a lot of things to be aware of, it’s frankly astonishing that these are the only things that Boston Dynamics explicitly warns users against. Obviously, not every potentially unsafe situation or thing is described above, but the point is that Boston Dynamics is willing to say to new users, “here’s your robot, go do stuff with it” without feeling the need to hold their hand the entire time.

There’s one more thing to be aware of before you decide to buy a Spot, which is the following:

“All orders will be subject to Boston Dynamics’ Terms and Conditions of Sale which require the beneficial use of its robots.”

Specifically, this appears to mean that you aren’t allowed to (or supposed to) use the robot in a way that could hurt living things, or “as a weapon, or to enable any weapon.” The conditions of sale also prohibit using the robot for “any illegal or ultra-hazardous purpose,” and there’s some stuff in there about it not being cool to use Spot for “nuclear, chemical, or biological weapons proliferation, or development of missile technology,” which seems weirdly specific.

“Once you make a technology more broadly available, the story of it starts slipping out of your hands. Our hope is that ahead of time we’re able to clearly articulate the beneficial uses of the robot in environments where we think the robot has a high potential to reduce the risk to people, rather than potentially causing harm.”
—Michael Perry, Boston Dynamics

I’m very glad that Boston Dynamics is being so upfront about requiring that Spot is used beneficially. However, it does put the company in a somewhat challenging position now that these robots are being sold. Boston Dynamics can (and will) perform some amount of due-diligence before shipping a Spot, but ultimately, once the robots are in someone else’s hands, there’s only so much that BD can do.

Spectrum: Why is beneficial use important to Boston Dynamics?

Perry: One of the key things that we’ve highlighted many times in our license and terms of use is that we don’t want to see the robot being used in any way that inflicts physical harm on people or animals. There are philosophical reasons for that—I think all of us don’t want to see our technology used in a way that would hurt people. But also from a business perspective, robots are really terrible at conveying intention. In order for the robot to be helpful long-term, it has to be trusted as a piece of technology. So rather than looking at a robot and wondering, “is this something that could potentially hurt me,” we want people to think “this is a robot that’s here to help me.” To the extent that people associate Boston Dynamics with cutting edge robots, we think that this is an important stance for the rollout of our first commercial product. If we find out that somebody’s violated our terms of use, their warranty is invalidated, we won’t repair their product, and we have a licensing timeout that would prevent them from accessing their robot after that timeout has expired. It’s a remediation path, but we do think that it’s important to at least provide that as something that helps enforce our position on use of our technology.

It’s very important to keep all of this in context: Spot is a tool. It’s got some autonomy and the appearance of agency, but it’s still just doing what people tell it to do, even if those things might be unsafe. If you read through the user guide, it’s clear how much of an effort Boston Dynamics is making to try to convey the importance of safety to Spot users—and ultimately, barring some unforeseen and catastrophic software or hardware issues, safety is about the users, rather than Boston Dynamics or Spot itself. I bring this up because as we start seeing more and more Spots doing things without Boston Dynamics watching over them quite so closely, accidents are likely inevitable. Spot might step on someone’s foot. It might knock someone over. If Spot was perfectly safe, it wouldn’t be useful, and we have to acknowledge that its impressive capabilities come with some risks, too.

Photo: Boston Dynamics

Each Spot includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff.”

Now that Spot is on the market for real, we’re excited to see who steps up and orders one. Depending on who the potential customer is, Spot could either seem like an impossibly sophisticated piece of technology that they’d never be able to use, or a magical way of solving all of their problems overnight. In reality, it’s of course neither of those things. For the former (folks with an idea but without a lot of robotics knowledge or experience), Spot does a lot out of the box, but BD is happy to talk with people and facilitate connections with partners who might be able to integrate specific software and hardware to get Spot to do a unique task. And for the latter (who may also be folks with an idea but without a lot of robotics knowledge or experience), BD’s Perry offers a reminder Spot is not Rosie the Robot, and would be equally happy to talk about what the technology is actually capable of doing.

Looking forward a bit, we asked Perry whether Spot’s capabilities mean that customers are starting to think beyond using robots to simply replace humans, and are instead looking at them as a way of enabling a completely different way of getting things done.

Spectrum: Do customers interested in Spot tend to think of it as a way of replacing humans at a specific task, or as a system that can do things that humans aren’t able to do?

Perry: There are what I imagine as three levels of people understanding the robot applications. Right now, we’re at level one, where you take a person out of this dangerous, dull job, and put a robot in. That’s the entry point. The second level is, using the robot, can we increase the production of that task? For example, take site documentation on a construction site—right now, people do 360 image capture of a site maybe once a week, and they might do a laser scan of the site once per project. At the second level, the question is, what if you were able to get that data collection every day, or multiple times a day? What kinds of benefits would that add to your process? To continue the construction example, the third level would be, how could we completely redesign this space now that we know that this type of automation is available? To take one example, there are some things that we cannot physically build because it’s too unsafe for people to be a part of that process, but if you were to apply robotics to that process, then you could potentially open up a huge envelope of design that has been inaccessible to people.

To order a Spot of your very own, visit shop.bostondynamics.com.

A version of this post appears in the August 2020 print issue as “$74,500 Will Fetch You a Spot.” Continue reading

Posted in Human Robots

#437809 Q&A: The Masterminds Behind ...

Illustration: iStockphoto

Getting a car to drive itself is undoubtedly the most ambitious commercial application of artificial intelligence (AI). The research project was kicked into life by the 2004 DARPA Urban Challenge and then taken up as a business proposition, first by Alphabet, and later by the big automakers.

The industry-wide effort vacuumed up many of the world’s best roboticists and set rival companies on a multibillion-dollar acquisitions spree. It also launched a cycle of hype that paraded ever more ambitious deadlines—the most famous of which, made by Alphabet’s Sergei Brin in 2012, was that full self-driving technology would be ready by 2017. Those deadlines have all been missed.

Much of the exhilaration was inspired by the seeming miracles that a new kind of AI—deep learning—was achieving in playing games, recognizing faces, and transliterating voices. Deep learning excels at tasks involving pattern recognition—a particular challenge for older, rule-based AI techniques. However, it now seems that deep learning will not soon master the other intellectual challenges of driving, such as anticipating what human beings might do.

Among the roboticists who have been involved from the start are Gill Pratt, the chief executive officer of Toyota Research Institute (TRI) , formerly a program manager at the Defense Advanced Research Projects Agency (DARPA); and Wolfram Burgard, vice president of automated driving technology for TRI and president of the IEEE Robotics and Automation Society. The duo spoke with IEEE Spectrum’s Philip Ross at TRI’s offices in Palo Alto, Calif.

This interview has been condensed and edited for clarity.

IEEE Spectrum: How does AI handle the various parts of the self-driving problem?

Photo: Toyota

Gill Pratt

Gill Pratt: There are three different systems that you need in a self-driving car: It starts with perception, then goes to prediction, and then goes to planning.

The one that by far is the most problematic is prediction. It’s not prediction of other automated cars, because if all cars were automated, this problem would be much more simple. How do you predict what a human being is going to do? That’s difficult for deep learning to learn right now.

Spectrum: Can you offset the weakness in prediction with stupendous perception?

Photo: Toyota Research Institute for Burgard

Wolfram Burgard

Wolfram Burgard: Yes, that is what car companies basically do. A camera provides semantics, lidar provides distance, radar provides velocities. But all this comes with problems, because sometimes you look at the world from different positions—that’s called parallax. Sometimes you don’t know which range estimate that pixel belongs to. That might make the decision complicated as to whether that is a person painted onto the side of a truck or whether this is an actual person.

With deep learning there is this promise that if you throw enough data at these networks, it’s going to work—finally. But it turns out that the amount of data that you need for self-driving cars is far larger than we expected.

Spectrum: When do deep learning’s limitations become apparent?

Pratt: The way to think about deep learning is that it’s really high-performance pattern matching. You have input and output as training pairs; you say this image should lead to that result; and you just do that again and again, for hundreds of thousands, millions of times.

Here’s the logical fallacy that I think most people have fallen prey to with deep learning. A lot of what we do with our brains can be thought of as pattern matching: “Oh, I see this stop sign, so I should stop.” But it doesn’t mean all of intelligence can be done through pattern matching.

“I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur?”
—Gill Pratt, Toyota Research Institute

For instance, when I’m driving and I see a mother holding the hand of a child on a corner and trying to cross the street, I am pretty sure she’s not going to cross at a red light and jaywalk. I know from my experience being a human being that mothers and children don’t act that way. On the other hand, say there are two teenagers—with blue hair, skateboards, and a disaffected look. Are they going to jaywalk? I look at that, you look at that, and instantly the probability in your mind that they’ll jaywalk is much higher than for the mother holding the hand of the child. It’s not that you’ve seen 100,000 cases of young kids—it’s that you understand what it is to be either a teenager or a mother holding a child’s hand.

You can try to fake that kind of intelligence. If you specifically train a neural network on data like that, you could pattern-match that. But you’d have to know to do it.

Spectrum: So you’re saying that when you substitute pattern recognition for reasoning, the marginal return on the investment falls off pretty fast?

Pratt: That’s absolutely right. Unfortunately, we don’t have the ability to make an AI that thinks yet, so we don’t know what to do. We keep trying to use the deep-learning hammer to hammer more nails—we say, well, let’s just pour more data in, and more data.

Spectrum: Couldn’t you train the deep-learning system to recognize teenagers and to assign the category a high propensity for jaywalking?

Burgard: People have been doing that. But it turns out that these heuristics you come up with are extremely hard to tweak. Also, sometimes the heuristics are contradictory, which makes it extremely hard to design these expert systems based on rules. This is where the strength of the deep-learning methods lies, because somehow they encode a way to see a pattern where, for example, here’s a feature and over there is another feature; it’s about the sheer number of parameters you have available.

Our separation of the components of a self-driving AI eases the development and even the learning of the AI systems. Some companies even think about using deep learning to do the job fully, from end to end, not having any structure at all—basically, directly mapping perceptions to actions.

Pratt: There are companies that have tried it; Nvidia certainly tried it. In general, it’s been found not to work very well. So people divide the problem into blocks, where we understand what each block does, and we try to make each block work well. Some of the blocks end up more like the expert system we talked about, where we actually code things, and other blocks end up more like machine learning.

Spectrum: So, what’s next—what new technique is in the offing?

Pratt: If I knew the answer, we’d do it. [Laughter]

Spectrum: You said that if all cars on the road were automated, the problem would be easy. Why not “geofence” the heck out of the self-driving problem, and have areas where only self-driving cars are allowed?

Pratt: That means putting in constraints on the operational design domain. This includes the geography—where the car should be automated; it includes the weather, it includes the level of traffic, it includes speed. If the car is going slow enough to avoid colliding without risking a rear-end collision, that makes the problem much easier. Street trolleys operate with traffic still in some parts of the world, and that seems to work out just fine. People learn that this vehicle may stop at unexpected times. My suspicion is, that is where we’ll see Level 4 autonomy in cities. It’s going to be in the lower speeds.

“We are now in the age of deep learning, and we don’t know what will come after.”
—Wolfram Burgard, Toyota Research Institute

That’s a sweet spot in the operational design domain, without a doubt. There’s another one at high speed on a highway, because access to highways is so limited. But unfortunately there is still the occasional debris that suddenly crosses the road, and the weather gets bad. The classic example is when somebody irresponsibly ties a mattress to the top of a car and it falls off; what are you going to do? And the answer is that terrible things happen—even for humans.

Spectrum: Learning by doing worked for the first cars, the first planes, the first steam boilers, and even the first nuclear reactors. We ran risks then; why not now?

Pratt: It has to do with the times. During the era where cars took off, all kinds of accidents happened, women died in childbirth, all sorts of diseases ran rampant; the expected characteristic of life was that bad things happened. Expectations have changed. Now the chance of dying in some freak accident is quite low because of all the learning that’s gone on, the OSHA [Occupational Safety and Health Administration] rules, UL code for electrical appliances, all the building standards, medicine.

Furthermore—and we think this is very important—we believe that empathy for a human being at the wheel is a significant factor in public acceptance when there is a crash. We don’t know this for sure—it’s a speculation on our part. I’ve driven, I’ve had close calls; that could have been me that made that mistake and had that wreck. I think people are more tolerant when somebody else makes mistakes, and there’s an awful crash. In the case of an automated car, we worry that that empathy won’t be there.

Photo: Toyota

Toyota is using this
Platform 4 automated driving test vehicle, based on the Lexus LS, to develop Level-4 self-driving capabilities for its “Chauffeur” project.

Spectrum: Toyota is building a system called Guardian to back up the driver, and a more futuristic system called Chauffeur, to replace the driver. How can Chauffeur ever succeed? It has to be better than a human plus Guardian!

Pratt: In the discussions we’ve had with others in this field, we’ve talked about that a lot. What is the standard? Is it a person in a basic car? Or is it a person with a car that has active safety systems in it? And what will people think is good enough?

These systems will never be perfect—there will always be some accidents, and no matter how hard we try there will still be occasions where there will be some fatalities. At what threshold are people willing to say that’s okay?

Spectrum: You were among the first top researchers to warn against hyping self-driving technology. What did you see that so many other players did not?

Pratt: First, in my own case, during my time at DARPA I worked on robotics, not cars. So I was somewhat of an outsider. I was looking at it from a fresh perspective, and that helps a lot.

Second, [when I joined Toyota in 2015] I was joining a company that is very careful—even though we have made some giant leaps—with the Prius hybrid drive system as an example. Even so, in general, the philosophy at Toyota is kaizen—making the cars incrementally better every single day. That care meant that I was tasked with thinking very deeply about this thing before making prognostications.

And the final part: It was a new job for me. The first night after I signed the contract I felt this incredible responsibility. I couldn’t sleep that whole night, so I started to multiply out the numbers, all using a factor of 10. How many cars do we have on the road? Cars on average last 10 years, though ours last 20, but let’s call it 10. They travel on an order of 10,000 miles per year. Multiply all that out and you get 10 to the 10th miles per year for our fleet on Planet Earth, a really big number. I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur? And the answer was so incredibly good that I knew it would take a long time. That was five years ago.

Burgard: We are now in the age of deep learning, and we don’t know what will come after. We are still making progress with existing techniques, and they look very promising. But the gradient is not as steep as it was a few years ago.

Pratt: There isn’t anything that’s telling us that it can’t be done; I should be very clear on that. Just because we don’t know how to do it doesn’t mean it can’t be done. Continue reading

Posted in Human Robots

#437805 Video Friday: Quadruped Robot HyQ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!

The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.

[ IIT ]

Thanks Victor!

Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

[ MIT ]

While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.

[ RSL ]

Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.

The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.

[ NC State ]

As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!

[ University of Michigan ]

GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.

Here’s how the humanoid would handle a similar task:

[ GITAI ]

Thanks Fan!

If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.

[ Fraunhofer ]

Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.

[ UPenn ]

Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.

[ Sparks Lab ]

This is a video about robot spy turtles but OMG that bird drone landing gear.

[ PBS ]

If you have a DJI Mavic, you now have something new to worry about.

[ DroGone ]

I was able to spot just one single person in the warehouse footage in this video.

[ Berkshire Grey ]

Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.

[ Flyability ]

In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.

[ ARL ]

More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.

[ ICRA 2020 Legged Robots Workshop ] Continue reading

Posted in Human Robots

#437765 Video Friday: Massive Robot Joins ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Here are some professional circus artists messing around with an industrial robot for fun, like you do.

The acrobats are part of Östgötateatern, a Swedish theatre group, and the chair bit got turned into its own act, called “The Last Fish.” But apparently the Swedish Work Environment Authority didn’t like that an industrial robot—a large ABB robotic arm—was being used in an artistic performance, arguing that the same safety measures that apply in a factory setting would apply on stage. In other words, the robot had to operate inside a protective cage and humans could not physically interact with it.

When told that their robot had to be removed, the acrobats went to court. And won! At least that’s what we understand from this Swedish press release. The court in Linköping, in southern Sweden, ruled that the safety measures taken by the theater had been sufficient. The group had worked with a local robotics firm, Dyno Robotics, to program the manipulator and learn how to interact with it as safely as possible. The robot—which the acrobats say is the eighth member of their troupe—will now be allowed to return.

[ Östgötateatern ]

Houston Mechathronics’ Aquanaut continues to be awesome, even in the middle of a pandemic. It’s taken the big step (big swim?) out of NASA’s swimming pool and into open water.

[ HMI ]

Researchers from Carnegie Mellon University and Facebook AI Research have created a navigation system for robots powered by common sense. The technique uses machine learning to teach robots how to recognize objects and understand where they’re likely to be found in house. The result allows the machines to search more strategically.

[ CMU ]

Cassie manages 2.1 m/s, which is uncomfortably fast in a couple of different ways.

Next, untethered. After that, running!

[ Michigan Robotics ]

Engineers at Caltech have designed a new data-driven method to control the movement of multiple robots through cluttered, unmapped spaces, so they do not run into one another.

Multi-robot motion coordination is a fundamental robotics problem with wide-ranging applications that range from urban search and rescue to the control of fleets of self-driving cars to formation-flying in cluttered environments. Two key challenges make multi-robot coordination difficult: first, robots moving in new environments must make split-second decisions about their trajectories despite having incomplete data about their future path; second, the presence of larger numbers of robots in an environment makes their interactions increasingly complex (and more prone to collisions).

To overcome these challenges, Soon-Jo Chung, Bren Professor of Aerospace, and Yisong Yue, professor of computing and mathematical sciences, along with Caltech graduate student Benjamin Rivière (MS ’18), postdoctoral scholar Wolfgang Hönig, and graduate student Guanya Shi, developed a multi-robot motion-planning algorithm called “Global-to-Local Safe Autonomy Synthesis,” or GLAS, which imitates a complete-information planner with only local information, and “Neural-Swarm,” a swarm-tracking controller augmented to learn complex aerodynamic interactions in close-proximity flight.

[ Caltech ]

Fetch Robotics’ Freight robot is now hauling around pulsed xenon UV lamps to autonomously disinfect spaces with UV-A, UV-B, and UV-C, all at the same time.

[ SmartGuard UV ]

When you’re a vertically symmetrical quadruped robot, there is no upside-down.

[ Ghost Robotics ]

In the virtual world, the objects you pick up do not exist: you can see that cup or pen, but it does not feel like you’re touching them. That presented a challenge to EPFL professor Herbert Shea. Drawing on his extensive experience with silicone-based muscles and motors, Shea wanted to find a way to make virtual objects feel real. “With my team, we’ve created very small, thin and fast actuators,” explains Shea. “They are millimeter-sized capsules that use electrostatic energy to inflate and deflate.” The capsules have an outer insulating membrane made of silicone enclosing an inner pocket filled with oil. Each bubble is surrounded by four electrodes, that can close like a zipper. When a voltage is applied, the electrodes are pulled together, causing the center of the capsule to swell like a blister. It is an ingenious system because the capsules, known as HAXELs, can move not only up and down, but also side to side and around in a circle. “When they are placed under your fingers, it feels as though you are touching a range of different objects,” says Shea.

[ EPFL ]

Through the simple trick of reversing motors on impact, a quadrotor can land much more reliably on slopes.

[ Sherbrooke ]

Turtlebot delivers candy at Harvard.

I <3 Turtlebot SO MUCH

[ Harvard ]

Traditional drone controllers are a little bit counterintuitive, because there’s one stick that’s forwards and backwards and another stick that’s up and down but they’re both moving on the same axis. How does that make sense?! Here’s a remote that gives you actual z-axis control instead.

[ Fenics ]

Thanks Ashley!

Lio is a mobile robot platform with a multifunctional arm explicitly designed for human-robot interaction and personal care assistant tasks. The robot has already been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an everyday basis.

[ F&P Robotics ]

Video shows a ground vehicle autonomously exploring and mapping a multi-storage garage building and a connected patio on Carnegie Mellon University campus. The vehicle runs onboard state estimation and mapping leveraging range, vision, and inertial sensing, local planning for collision avoidance, and terrain analysis. All processing is real-time and no post-processing involved. The vehicle drives at 2m/s through the exploration run. This work is dedicated to DARPA Subterranean Challange.

[ CMU ]

Raytheon UK’s flagship STEM programme, the Quadcopter Challenge, gives 14-15 year olds the chance to participate in a hands-on, STEM-based engineering challenge to build a fully operational quadcopter. Each team is provided with an identical kit of parts, tools and instructions to build and customise their quadcopter, whilst Raytheon UK STEM Ambassadors provide mentoring, technical support and deliver bite-size learning modules to support the build.

[ Raytheon ]

A video on some of the research work that is being carried out at The Australian Centre for Field Robotics, University of Sydney.

[ University of Sydney ]

Jeannette Bohg, assistant professor of computer science at Stanford University, gave one of the Early Career Award Keynotes at RSS 2020.

[ RSS 2020 ]

Adam Savage remembers Grant Imahara.

[ Tested ] Continue reading

Posted in Human Robots