Tag Archives: communication
#438807 Visible Touch: How Cameras Can Help ...
The dawn of the robot revolution is already here, and it is not the dystopian nightmare we imagined. Instead, it comes in the form of social robots: Autonomous robots in homes and schools, offices and public spaces, able to interact with humans and other robots in a socially acceptable, human-perceptible way to resolve tasks related to core human needs.
To design social robots that “understand” humans, robotics scientists are delving into the psychology of human communication. Researchers from Cornell University posit that embedding the sense of touch in social robots could teach them to detect physical interactions and gestures. They describe a way of doing so by relying not on touch but on vision.
A USB camera inside the robot captures shadows of hand gestures on the robot’s surface and classifies them with machine-learning software. They call this method ShadowSense, which they define as a modality between vision and touch, bringing “the high resolution and low cost of vision-sensing to the close-up sensory experience of touch.”
Touch-sensing in social or interactive robots is usually achieved with force sensors or capacitive sensors, says study co-author Guy Hoffman of the Sibley School of Mechanical and Aerospace Engineering at Cornell University. The drawback to his group’s approach has been that, even to achieve coarse spatial resolution, many sensors are needed in a small area.
However, working with non-rigid, inflatable robots, Hoffman and his co-researchers installed a consumer-grade USB camera to which they attached a fisheye lens for a wider field of vision.
“Given that the robot is already hollow, and has a soft and translucent skin, we could do touch interaction by looking at the shadows created by people touching the robot,” says Hoffman. They used deep neural networks to interpret the shadows. “And we were able to do it with very high accuracy,” he says. The robot was able to interpret six different gestures, including one- or two-handed touch, pointing, hugging and punching, with an accuracy of 87.5 to 96 percent, depending on the lighting.
This is not the first time that computer vision has been used for tactile sensing, though the scale and application of ShadowSense is unique. “Photography has been used for touch mainly in robotic grasping,” says Hoffman. By contrast, Hoffman and collaborators wanted to develop a sense that could be “felt” across the whole of the device.
The potential applications for ShadowSense include mobile robot guidance using touch, and interactive screens on soft robots. A third concerns privacy, especially in home-based social robots. “We have another paper currently under review that looks specifically at the ability to detect gestures that are further away [from the robot’s skin],” says Hoffman. This way, users would be able to cover their robot’s camera with a translucent material and still allow it to interpret actions and gestures from shadows. Thus, even though it’s prevented from capturing a high-resolution image of the user or their surrounding environment, using the right kind of training datasets, the robot can continue to monitor some kinds of non-tactile activities.
In its current iteration, Hoffman says, ShadowSense doesn’t do well in low-light conditions. Environmental noise, or shadows from surrounding objects, also interfere with image classification. Relying on one camera also means a single point of failure. “I think if this were to become a commercial product, we would probably [have to] work a little bit better on image detection,” says Hoffman.
As it was, the researchers used transfer learning—reusing a pre-trained deep-learning model in a new problem—for image analysis. “One of the problems with multi-layered neural networks is that you need a lot of training data to make accurate predictions,” says Hoffman. “Obviously, we don’t have millions of examples of people touching a hollow, inflatable robot. But we can use pre-trained networks trained on general images, which we have billions of, and we only retrain the last layers of the network using our own dataset.” Continue reading
#438613 Video Friday: Digit Takes a Hike
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
It's winter in Oregon, so everything is damp, all the time. No problem for Digit!
Also the case for summer in Oregon.
[ Agility Robotics ]
While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.
No, this doesn't squick me out at all, why would it.
[ Georgia Tech ]
A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.
[ Paper ]
Thanks Zhifeng!
The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.
As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.
[ SRI ]
Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.
[ Disney Research ]
Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.
[ Engineered Arts ]
There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:
[ Paper ]
Thanks Van!
This is really more of an automated system than a robot, but these little levitating pucks are very very slick.
ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.
[ ACOPOS ]
Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.
[ CHARM Lab ]
The quadrotor experts at UZH have been really cranking it up recently.
Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.
[ Paper ]
I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?
[ Harvest Automation ]
Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.
[ OTTO Motors ]
Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.
[ PRISMA Lab ]
Thanks Fan!
State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.
[ Paper ]
Highlights from the 2020 ROS Industrial conference.
[ ROS Industrial ]
Thanks Thilo!
Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”
[ CHI 1995 ]
This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”
Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.
[ UPenn ] Continue reading