Tag Archives: communication

#437216 New Report: Tech Could Fuel an Age of ...

With rapid technological progress running headlong into dramatic climate change and widening inequality, most experts agree the coming decade will be tumultuous. But a new report predicts it could actually make or break civilization as we know it.

The idea that humanity is facing a major shake-up this century is not new. The Fourth Industrial Revolution being brought about by technologies like AI, gene editing, robotics, and 3D printing is predicted to cause dramatic social, political, and economic upheaval in the coming decades.

But according to think tank RethinkX, thinking about the coming transition as just another industrial revolution is too simplistic. In a report released last week called Rethinking Humanity, the authors argue that we are about to see a reordering of our relationship with the world as fundamental as when hunter-gatherers came together to build the first civilizations.

At the core of their argument is the fact that since the first large human settlements appeared 10,000 years ago, civilization has been built on the back of our ability to extract resources from nature, be they food, energy, or materials. This led to a competitive landscape where the governing logic is grow or die, which has driven all civilizations to date.

That could be about to change thanks to emerging technologies that will fundamentally disrupt the five foundational sectors underpinning society: information, energy, food, transportation, and materials. They predict that across all five, costs will fall by 10 times or more, while production processes will become 10 times more efficient and will use 90 percent fewer natural resources with 10 to 100 times less waste.

They say that this transformation has already happened in information, where the internet has dramatically reduced barriers to communication and knowledge. They predict the combination of cheap solar and grid storage will soon see energy costs drop as low as one cent per kilowatt hour, and they envisage widespread adoption of autonomous electric vehicles and the replacement of car ownership with ride-sharing.

The authors laid out their vision for the future of food in another report last year, where they predicted that traditional agriculture would soon be replaced by industrial-scale brewing of single-celled organisms genetically modified to produce all the nutrients we need. In a similar vein, they believe the same processes combined with additive manufacturing and “nanotechnologies” will allow us to build all the materials required for the modern world from the molecule up rather than extracting scarce natural resources.

They believe this could allow us to shift from a system of production based on extraction to one built on creation, as limitless renewable energy makes it possible to build everything we need from scratch and barriers to movement and information disappear. As a result, a lifestyle worthy of the “American Dream” could be available to anyone for as little as $250/month by 2030.

This will require a fundamental reimagining of our societies, though. All great civilizations have eventually hit fundamental limits on their growth and we are no different, as demonstrated by our growing impact on the environment and the increasing concentration of wealth. Historically this stage of development has lead to a doubling down on old tactics in search of short-term gains, but this invariably leads to the collapse of the civilization.

The authors argue that we’re in a unique position. Because of the technological disruption detailed above, we have the ability to break through the limits on our growth. But only if we change what the authors call our “Organizing System.” They describe this as “the prevailing models of thought, belief systems, myths, values, abstractions, and conceptual frameworks that help explain how the world works and our relationship to it.”

They say that the current hierarchical, centralized system based on nation-states is unfit for the new system of production that is emerging. The cracks are already starting to appear, with problems like disinformation campaigns, fake news, and growing polarization demonstrating how ill-suited our institutions are for dealing with the distributed nature of today’s information systems. And as this same disruption comes to the other foundational sectors the shockwaves could lead to the collapse of civilization as we know it.

Their solution is a conscious shift towards a new way of organizing the world. As emerging technology allows communities to become self-sufficient, flows of physical resources will be replaced by flows of information, and we will require a decentralized but highly networked Organizing System.

The report includes detailed recommendations on how to usher this in. Examples include giving individuals control and ownership of data rights; developing new models for community ownership of energy, information, and transportation networks; and allowing states and cities far greater autonomy on policies like immigration, taxation, education, and public expenditure.

How easy it will be to get people on board with such a shift is another matter. The authors say it may require us to re-examine the foundations of our society, like representative democracy, capitalism, and nation-states. While they acknowledge that these ideas are deeply entrenched, they appear to believe we can reason our way around them.

That seems optimistic. Cultural and societal change can be glacial, and efforts to impose it top-down through reason and logic are rarely successful. The report seems to brush over many of the messy realities of humanity, such as the huge sway that tradition and religion hold over the vast majority of people.

It also doesn’t deal with the uneven distribution of the technology that is supposed to catapult us into this new age. And while the predicted revolutions in transportation, energy, and information do seem inevitable, the idea that in the next decade or two we’ll be able to produce any material we desire using cheap and abundant stock materials seems like a stretch.

Despite the techno-utopianism though, many of the ideas in the report hold promise for building societies that are better adapted for the disruptive new age we are about to enter.

Image Credit: Futuristic Society/flickr Continue reading

Posted in Human Robots

#437202 Scientists Used Dopamine to Seamlessly ...

In just half a decade, neuromorphic devices—or brain-inspired computing—already seem quaint. The current darling? Artificial-biological hybrid computing, uniting both man-made computer chips and biological neurons seamlessly into semi-living circuits.

It sounds crazy, but a new study in Nature Materials shows that it’s possible to get an artificial neuron to communicate directly with a biological one using not just electricity, but dopamine—a chemical the brain naturally uses to change how neural circuits behave, most known for signaling reward.

Because these chemicals, known as “neurotransmitters,” are how biological neurons functionally link up in the brain, the study is a dramatic demonstration that it’s possible to connect artificial components with biological brain cells into a functional circuit.

The team isn’t the first to pursue hybrid neural circuits. Previously, a different team hooked up two silicon-based artificial neurons with a biological one into a circuit using electrical protocols alone. Although a powerful demonstration of hybrid computing, the study relied on only one-half of the brain’s computational ability: electrical computing.

The new study now tackles the other half: chemical computing. It adds a layer of compatibility that lays the groundwork not just for brain-inspired computers, but also for brain-machine interfaces and—perhaps—a sort of “cyborg” future. After all, if your brain can’t tell the difference between an artificial neuron and your own, could you? And even if you did, would you care?

Of course, that scenario is far in the future—if ever. For now, the team, led by Dr. Alberto Salleo, professor of materials science and engineering at Stanford University, collectively breathed a sigh of relief that the hybrid circuit worked.

“It’s a demonstration that this communication melding chemistry and electricity is possible,” said Salleo. “You could say it’s a first step toward a brain-machine interface, but it’s a tiny, tiny very first step.”

Neuromorphic Computing
The study grew from years of work into neuromorphic computing, or data processing inspired by the brain.

The blue-sky idea was inspired by the brain’s massive parallel computing capabilities, along with vast energy savings. By mimicking these properties, scientists reasoned, we could potentially turbo-charge computing. Neuromorphic devices basically embody artificial neural networks in physical form—wouldn’t hardware that mimics how the brain processes information be even more efficient and powerful?

These explorations led to novel neuromorphic chips, or artificial neurons that “fire” like biological ones. Additional work found that it’s possible to link these chips up into powerful circuits that run deep learning with ease, with bioengineered communication nodes called artificial synapses.

As a potential computing hardware replacement, these systems have proven to be incredibly promising. Yet scientists soon wondered: given their similarity to biological brains, can we use them as “replacement parts” for brains that suffer from traumatic injuries, aging, or degeneration? Can we hook up neuromorphic components to the brain to restore its capabilities?

Buzz & Chemistry
Theoretically, the answer’s yes.

But there’s a huge problem: current brain-machine interfaces only use electrical signals to mimic neural computation. The brain, in contrast, has two tricks up its sleeve: electricity and chemicals, or electrochemical.

Within a neuron, electricity travels up its incoming branches, through the bulbous body, then down the output branches. When electrical signals reach the neuron’s outgoing “piers,” dotted along the output branch, however, they hit a snag. A small gap exists between neurons, so to get to the other side, the electrical signals generally need to be converted into little bubble ships, packed with chemicals, and set sail to the other neuronal shore.

In other words, without chemical signals, the brain can’t function normally. These neurotransmitters don’t just passively carry information. Dopamine, for example, can dramatically change how a neural circuit functions. For an artificial-biological hybrid neural system, the absence of chemistry is like nixing international cargo vessels and only sticking with land-based trains and highways.

“To emulate biological synaptic behavior, the connectivity of the neuromorphic device must be dynamically regulated by the local neurotransmitter activity,” the team said.

Let’s Get Electro-Chemical
The new study started with two neurons: the upstream, an immortalized biological cell that releases dopamine; and the downstream, an artificial neuron that the team previously introduced in 2017, made of a mix of biocompatible and electrical-conducting materials.

Rather than the classic neuron shape, picture more of a sandwich with a chunk bitten out in the middle (yup, I’m totally serious). Each of the remaining parts of the sandwich is a soft electrode, made of biological polymers. The “bitten out” part has a conductive solution that can pass on electrical signals.

The biological cell sits close to the first electrode. When activated, it dumps out boats of dopamine, which drift to the electrode and chemically react with it—mimicking the process of dopamine docking onto a biological neuron. This, in turn, generates a current that’s passed on to the second electrode through the conductive solution channel. When this current reaches the second electrode, it changes the electrode’s conductance—that is, how well it can pass on electrical information. This second step is analogous to docked dopamine “ships” changing how likely it is that a biological neuron will fire in the future.

In other words, dopamine release from the biological neuron interacts with the artificial one, so that the chemicals change how the downstream neuron behaves in a somewhat lasting way—a loose mimic of what happens inside the brain during learning.

But that’s not all. Chemical signaling is especially powerful in the brain because it’s flexible. Dopamine, for example, only grabs onto the downstream neurons for a bit before it returns back to its upstream neuron—that is, recycled or destroyed. This means that its effect is temporary, giving the neural circuit breathing room to readjust its activity.

The Stanford team also tried reconstructing this quirk in their hybrid circuit. They crafted a microfluidic channel that shuttles both dopamine and its byproduct away from the artificial neurons after they’ve done their job for recycling.

Putting It All Together
After confirming that biological cells can survive happily on top of the artificial one, the team performed a few tests to see if the hybrid circuit could “learn.”

They used electrical methods to first activate the biological dopamine neuron, and watched the artificial one. Before the experiment, the team wasn’t quite sure what to expect. Theoretically, it made sense that dopamine would change the artificial neuron’s conductance, similar to learning. But “it was hard to know whether we’d achieve the outcome we predicted on paper until we saw it happen in the lab,” said study author Scott Keene.

On the first try, however, the team found that the burst of chemical signaling was able to change the artificial neuron’s conductance long-term, similar to the neuroscience dogma “neurons that fire together, wire together.” Activating the upstream biological neuron with chemicals also changed the artificial neuron’s conductance in a way that mimicked learning.

“That’s when we realized the potential this has for emulating the long-term learning process of a synapse,” said Keene.

Visualizing under an electron microscope, the team found that, similar to its biological counterpart, the hybrid synapse was able to efficiently recycle dopamine with timescales similar to the brain after some calibration. By playing with how much dopamine accumulates at the artificial neuron, the team found that they loosely mimic a learning rule called spike learning—a darling of machine learning inspired by the brain’s computation.

A Hybrid Future?
Unfortunately for cyborg enthusiasts, the work is still in its infancy.

For one, the artificial neurons are still rather bulky compared to biological ones. This means that they can’t capture and translate information from a single “boat” of dopamine. It’s also unclear if, and how, a hybrid synapse can work inside a living brain. Given the billions of synapses firing away in our heads, it’ll be a challenge to find-and-replace those that need replacement, and be able to control our memories and behaviors similar to natural ones.

That said, we’re inching ever closer to full-capability artificial-biological hybrid circuits.

“The neurotransmitter-mediated neuromorphic device presented in this work constitutes a fundamental building block for artificial neural networks that can be directly modulated based on biological feedback from live neurons,” the authors concluded. “[It] is a crucial first step in realizing next-generation adaptive biohybrid interfaces.”

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436911 Scientists Linked Artificial and ...

Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.

Whoa.

We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.

As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.

This month, an international team put all of those ingredients together, turning theory into reality.

The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.

The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.

That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.

And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.

The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.

The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.

Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.

Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.

Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.

That’s what this study did.

A Hybrid Network
Still with me? Let’s talk network.

It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.

Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).

So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.

To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.

Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.

Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.

You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.

Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.

Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.

It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.

However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.

While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.

“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436530 How Smart Roads Will Make Driving ...

Roads criss-cross the landscape, but while they provide vital transport links, in many ways they represent a huge amount of wasted space. Advances in “smart road” technology could change that, creating roads that can harvest energy from cars, detect speeding, automatically weigh vehicles, and even communicate with smart cars.

“Smart city” projects are popping up in countries across the world thanks to advances in wireless communication, cloud computing, data analytics, remote sensing, and artificial intelligence. Transportation is a crucial element of most of these plans, but while much of the focus is on public transport solutions, smart roads are increasingly being seen as a crucial feature of these programs.

New technology is making it possible to tackle a host of issues including traffic congestion, accidents, and pollution, say the authors of a paper in the journal Proceedings of the Royal Society A. And they’ve outlined ten of the most promising advances under development or in planning stages that could feature on tomorrow’s roads.

Energy harvesting

A variety of energy harvesting technologies integrated into roads have been proposed as ways to power street lights and traffic signals or provide a boost to the grid. Photovoltaic panels could be built into the road surface to capture sunlight, or piezoelectric materials installed beneath the asphalt could generate current when deformed by vehicles passing overhead.

Musical roads

Countries like Japan, Denmark, the Netherlands, Taiwan, and South Korea have built roads that play music as cars pass by. By varying the spacing of rumble strips, it’s possible to produce a series of different notes as vehicles drive over them. The aim is generally to warn of hazards or help drivers keep to the speed limit.

Automatic weighing

Weight-in-motion technology that measures vehicles’ loads as they drive slowly through a designated lane has been around since the 1970s, but more recently high speed weight-in-motion tech has made it possible to measure vehicles as they travel at regular highway speeds. The latest advance has been integration with automatic licence plate reading and wireless communication to allow continuous remote monitoring both to enforce weight restrictions and monitor wear on roads.

Vehicle charging

The growing popularity of electric vehicles has spurred the development of technology to charge cars and buses as they drive. The most promising of these approaches is magnetic induction, which involves burying cables beneath the road to generate electromagnetic fields that a receiver device in the car then transforms into electrical power to charge batteries.

Smart traffic signs

Traffic signs aren’t always as visible as they should be, and it can often be hard to remember what all of them mean. So there are now proposals for “smart signs” that wirelessly beam a sign’s content to oncoming cars fitted with receivers, which can then alert the driver verbally or on the car’s display. The approach isn’t affected by poor weather and lighting, can be reprogrammed easily, and could do away with the need for complex sign recognition technology in future self-driving cars.

Traffic violation detection and notification

Sensors and cameras can be combined with these same smart signs to detect and automatically notify drivers of traffic violations. The automatic transmission of traffic signals means drivers won’t be able to deny they’ve seen the warnings or been notified of any fines, as a record will be stored on their car’s black box.

Talking cars

Car-to-car communication technology and V2X, which lets cars share information with any other connected device, are becoming increasingly common. Inter-car communication can be used to propagate accidents or traffic jam alerts to prevent congestion, while letting vehicles communicate with infrastructure can help signals dynamically manage timers to keep traffic flowing or automatically collect tolls.

Smart intersections

Combing sensors and cameras with object recognition systems that can detect vehicles and other road users can help increase safety and efficiency at intersections. It can be used to extend green lights for slower road users like pedestrians and cyclists, sense jaywalkers, give priority to emergency vehicles, and dynamically adjust light timers to optimize traffic flow. Information can even be broadcast to oncoming vehicles to highlight blind spots and potential hazards.

Automatic crash detection

There’s a “golden hour” after an accident in which the chance of saving lives is greatly increased. Vehicle communication technology can ensure that notification of a crash reaches the emergency services rapidly, and can also provide vital information about the number and type of vehicles involved, which can help emergency response planning. It can also be used to alert other drivers to slow down or stop to prevent further accidents.

Smart street lights

Street lights are increasingly being embedded with sensors, wireless connectivity, and micro-controllers to enable a variety of smart functions. These include motion activation to save energy, providing wireless access points, air quality monitoring, or parking and litter monitoring. This can also be used to send automatic maintenance requests if a light is faulty, and can even allow neighboring lights to be automatically brightened to compensate.

Image Credit: Image by David Mark from Pixabay Continue reading

Posted in Human Robots

#436504 20 Technology Metatrends That Will ...

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “metatrends” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom up.

Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

Let’s dive in.

20 Metatrends for the 2020s
(1) Continued increase in global abundance: The number of individuals in extreme poverty continues to drop, as the middle-income population continues to rise. This metatrend is driven by the convergence of high-bandwidth and low-cost communication, ubiquitous AI on the cloud, and growing access to AI-aided education and AI-driven healthcare. Everyday goods and services (finance, insurance, education, and entertainment) are being digitized and becoming fully demonetized, available to the rising billion on mobile devices.

(2) Global gigabit connectivity will connect everyone and everything, everywhere, at ultra-low cost: The deployment of both licensed and unlicensed 5G, plus the launch of a multitude of global satellite networks (OneWeb, Starlink, etc.), allow for ubiquitous, low-cost communications for everyone, everywhere, not to mention the connection of trillions of devices. And today’s skyrocketing connectivity is bringing online an additional three billion individuals, driving tens of trillions of dollars into the global economy. This metatrend is driven by the convergence of low-cost space launches, hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(3) The average human healthspan will increase by 10+ years: A dozen game-changing biotech and pharmaceutical solutions (currently in Phase 1, 2, or 3 clinical trials) will reach consumers this decade, adding an additional decade to the human healthspan. Technologies include stem cell supply restoration, wnt pathway manipulation, senolytic medicines, a new generation of endo-vaccines, GDF-11, and supplementation of NMD/NAD+, among several others. And as machine learning continues to mature, AI is set to unleash countless new drug candidates, ready for clinical trials. This metatrend is driven by the convergence of genome sequencing, CRISPR technologies, AI, quantum computing, and cellular medicine.

(4) An age of capital abundance will see increasing access to capital everywhere: From 2016 – 2018 (and likely in 2019), humanity hit all-time highs in the global flow of seed capital, venture capital, and sovereign wealth fund investments. While this trend will witness some ups and downs in the wake of future recessions, it is expected to continue its overall upward trajectory. Capital abundance leads to the funding and testing of ‘crazy’ entrepreneurial ideas, which in turn accelerate innovation. Already, $300 billion in crowdfunding is anticipated by 2025, democratizing capital access for entrepreneurs worldwide. This metatrend is driven by the convergence of global connectivity, dematerialization, demonetization, and democratization.

(5) Augmented reality and the spatial web will achieve ubiquitous deployment: The combination of augmented reality (yielding Web 3.0, or the spatial web) and 5G networks (offering 100Mb/s – 10Gb/s connection speeds) will transform how we live our everyday lives, impacting every industry from retail and advertising to education and entertainment. Consumers will play, learn, and shop throughout the day in a newly intelligent, virtually overlaid world. This metatrend will be driven by the convergence of hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(6) Everything is smart, embedded with intelligence: The price of specialized machine learning chips is dropping rapidly with a rise in global demand. Combined with the explosion of low-cost microscopic sensors and the deployment of high-bandwidth networks, we’re heading into a decade wherein every device becomes intelligent. Your child’s toy remembers her face and name. Your kids’ drone safely and diligently follows and videos all the children at the birthday party. Appliances respond to voice commands and anticipate your needs.

(7) AI will achieve human-level intelligence: As predicted by technologist and futurist Ray Kurzweil, artificial intelligence will reach human-level performance this decade (by 2030). Through the 2020s, AI algorithms and machine learning tools will be increasingly made open source, available on the cloud, allowing any individual with an internet connection to supplement their cognitive ability, augment their problem-solving capacity, and build new ventures at a fraction of the current cost. This metatrend will be driven by the convergence of global high-bandwidth connectivity, neural networks, and cloud computing. Every industry, spanning industrial design, healthcare, education, and entertainment, will be impacted.

(8) AI-human collaboration will skyrocket across all professions: The rise of “AI as a Service” (AIaaS) platforms will enable humans to partner with AI in every aspect of their work, at every level, in every industry. AIs will become entrenched in everyday business operations, serving as cognitive collaborators to employees—supporting creative tasks, generating new ideas, and tackling previously unattainable innovations. In some fields, partnership with AI will even become a requirement. For example: in the future, making certain diagnoses without the consultation of AI may be deemed malpractice.

(9) Most individuals adapt a JARVIS-like “software shell” to improve their quality of life: As services like Alexa, Google Home, and Apple Homepod expand in functionality, such services will eventually travel beyond the home and become your cognitive prosthetic 24/7. Imagine a secure JARVIS-like software shell that you give permission to listen to all your conversations, read your email, monitor your blood chemistry, etc. With access to such data, these AI-enabled software shells will learn your preferences, anticipate your needs and behavior, shop for you, monitor your health, and help you problem-solve in support of your mid- and long-term goals.

(10) Globally abundant, cheap renewable energy: Continued advancements in solar, wind, geothermal, hydroelectric, nuclear, and localized grids will drive humanity towards cheap, abundant, and ubiquitous renewable energy. The price per kilowatt-hour will drop below one cent per kilowatt-hour for renewables, just as storage drops below a mere three cents per kilowatt-hour, resulting in the majority displacement of fossil fuels globally. And as the world’s poorest countries are also the world’s sunniest, the democratization of both new and traditional storage technologies will grant energy abundance to those already bathed in sunlight.

(11) The insurance industry transforms from “recovery after risk” to “prevention of risk”: Today, fire insurance pays you after your house burns down; life insurance pays your next-of-kin after you die; and health insurance (which is really sick insurance) pays only after you get sick. This next decade, a new generation of insurance providers will leverage the convergence of machine learning, ubiquitous sensors, low-cost genome sequencing, and robotics to detect risk, prevent disaster, and guarantee safety before any costs are incurred.

(12) Autonomous vehicles and flying cars will redefine human travel (soon to be far faster and cheaper): Fully autonomous vehicles, car-as-a-service fleets, and aerial ride-sharing (flying cars) will be fully operational in most major metropolitan cities in the coming decade. The cost of transportation will plummet 3-4X, transforming real estate, finance, insurance, the materials economy, and urban planning. Where you live and work, and how you spend your time, will all be fundamentally reshaped by this future of human travel. Your kids and elderly parents will never drive. This metatrend will be driven by the convergence of machine learning, sensors, materials science, battery storage improvements, and ubiquitous gigabit connections.

(13) On-demand production and on-demand delivery will birth an “instant economy of things”: Urban dwellers will learn to expect “instant fulfillment” of their retail orders as drone and robotic last-mile delivery services carry products from local supply depots directly to your doorstep. Further riding the deployment of regional on-demand digital manufacturing (3D printing farms), individualized products can be obtained within hours, anywhere, anytime. This metatrend is driven by the convergence of networks, 3D printing, robotics, and artificial intelligence.

(14) Ability to sense and know anything, anytime, anywhere: We’re rapidly approaching the era wherein 100 billion sensors (the Internet of Everything) is monitoring and sensing (imaging, listening, measuring) every facet of our environments, all the time. Global imaging satellites, drones, autonomous car LIDARs, and forward-looking augmented reality (AR) headset cameras are all part of a global sensor matrix, together allowing us to know anything, anytime, anywhere. This metatrend is driven by the convergence of terrestrial, atmospheric and space-based sensors, vast data networks, and machine learning. In this future, it’s not “what you know,” but rather “the quality of the questions you ask” that will be most important.

(15) Disruption of advertising: As AI becomes increasingly embedded in everyday life, your custom AI will soon understand what you want better than you do. In turn, we will begin to both trust and rely upon our AIs to make most of our buying decisions, turning over shopping to AI-enabled personal assistants. Your AI might make purchases based upon your past desires, current shortages, conversations you’ve allowed your AI to listen to, or by tracking where your pupils focus on a virtual interface (i.e. what catches your attention). As a result, the advertising industry—which normally competes for your attention (whether at the Superbowl or through search engines)—will have a hard time influencing your AI. This metatrend is driven by the convergence of machine learning, sensors, augmented reality, and 5G/networks.

(16) Cellular agriculture moves from the lab into inner cities, providing high-quality protein that is cheaper and healthier: This next decade will witness the birth of the most ethical, nutritious, and environmentally sustainable protein production system devised by humankind. Stem cell-based ‘cellular agriculture’ will allow the production of beef, chicken, and fish anywhere, on-demand, with far higher nutritional content, and a vastly lower environmental footprint than traditional livestock options. This metatrend is enabled by the convergence of biotechnology, materials science, machine learning, and AgTech.

(17) High-bandwidth brain-computer interfaces (BCIs) will come online for public use: Technologist and futurist Ray Kurzweil has predicted that in the mid-2030s, we will begin connecting the human neocortex to the cloud. This next decade will see tremendous progress in that direction, first serving those with spinal cord injuries, whereby patients will regain both sensory capacity and motor control. Yet beyond assisting those with motor function loss, several BCI pioneers are now attempting to supplement their baseline cognitive abilities, a pursuit with the potential to increase their sensorium, memory, and even intelligence. This metatrend is fueled by the convergence of materials science, machine learning, and robotics.

(18) High-resolution VR will transform both retail and real estate shopping: High-resolution, lightweight virtual reality headsets will allow individuals at home to shop for everything from clothing to real estate from the convenience of their living room. Need a new outfit? Your AI knows your detailed body measurements and can whip up a fashion show featuring your avatar wearing the latest 20 designs on a runway. Want to see how your furniture might look inside a house you’re viewing online? No problem! Your AI can populate the property with your virtualized inventory and give you a guided tour. This metatrend is enabled by the convergence of: VR, machine learning, and high-bandwidth networks.

(19) Increased focus on sustainability and the environment: An increase in global environmental awareness and concern over global warming will drive companies to invest in sustainability, both from a necessity standpoint and for marketing purposes. Breakthroughs in materials science, enabled by AI, will allow companies to drive tremendous reductions in waste and environmental contamination. One company’s waste will become another company’s profit center. This metatrend is enabled by the convergence of materials science, artificial intelligence, and broadband networks.

(20) CRISPR and gene therapies will minimize disease: A vast range of infectious diseases, ranging from AIDS to Ebola, are now curable. In addition, gene-editing technologies continue to advance in precision and ease of use, allowing families to treat and ultimately cure hundreds of inheritable genetic diseases. This metatrend is driven by the convergence of various biotechnologies (CRISPR, gene therapy), genome sequencing, and artificial intelligence.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots