Tag Archives: capture

#437940 How Boston Dynamics Taught Its Robots to ...

A week ago, Boston Dynamics posted a video of Atlas, Spot, and Handle dancing to “Do You Love Me.” It was, according to the video description, a way “to celebrate the start of what we hope will be a happier year.” As of today the video has been viewed nearly 24 million times, and the popularity is no surprise, considering the compelling mix of technical prowess and creativity on display.

Strictly speaking, the stuff going on in the video isn’t groundbreaking, in the sense that we’re not seeing any of the robots demonstrate fundamentally new capabilities, but that shouldn’t take away from how impressive it is—you’re seeing state-of-the-art in humanoid robotics, quadrupedal robotics, and whatever-the-heck-Handle-is robotics.

What is unique about this video from Boston Dynamics is the artistic component. We know that Atlas can do some practical tasks, and we know it can do some gymnastics and some parkour, but dancing is certainly something new. To learn more about what it took to make these dancing robots happen (and it’s much more complicated than it might seem), we spoke with Aaron Saunders, Boston Dynamics’ VP of Engineering.

Saunders started at Boston Dynamics in 2003, meaning that he’s been a fundamental part of a huge number of Boston Dynamics’ robots, even the ones you may have forgotten about. Remember LittleDog, for example? A team of two designed and built that adorable little quadruped, and Saunders was one of them.

While he’s been part of the Atlas project since the beginning (and had a hand in just about everything else that Boston Dynamics works on), Saunders has spent the last few years leading the Atlas team specifically, and he was kind enough to answer our questions about their dancing robots.

IEEE Spectrum: What’s your sense of how the Internet has been reacting to the video?

Aaron Saunders: We have different expectations for the videos that we make; this one was definitely anchored in fun for us. The response on YouTube was record-setting for us: We received hundreds of emails and calls with people expressing their enthusiasm, and also sharing their ideas for what we should do next, what about this song, what about this dance move, so that was really fun. My favorite reaction was one that I got from my 94-year-old grandma, who watched the video on YouTube and then sent a message through the family asking if I’d taught the robot those sweet moves. I think this video connected with a broader audience, because it mixed the old-school music with new technology.

We haven’t seen Atlas move like this before—can you talk about how you made it happen?

We started by working with dancers and a choreographer to create an initial concept for the dance by composing and assembling a routine. One of the challenges, and probably the core challenge for Atlas in particular, was adjusting human dance moves so that they could be performed on the robot. To do that, we used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go “that would be easy” or “that would be hard” or “that scares me.” And then we’d have a discussion, try different things in simulation, and make adjustments to find a compatible set of moves that we could execute on Atlas.

Throughout the project, the time frame for creating those new dance moves got shorter and shorter as we built tools, and as an example, eventually we were able to use that toolchain to create one of Atlas’ ballet moves in just one day, the day before we filmed, and it worked. So it’s not hand-scripted or hand-coded, it’s about having a pipeline that lets you take a diverse set of motions, that you can describe through a variety of different inputs, and push them through and onto the robot.

Image: Boston Dynamics

Were there some things that were particularly difficult to translate from human dancers to Atlas? Or, things that Atlas could do better than humans?

Some of the spinning turns in the ballet parts took more iterations to get to work, because they were the furthest from leaping and running and some of the other things that we have more experience with, so they challenged both the machine and the software in new ways. We definitely learned not to underestimate how flexible and strong dancers are—when you take elite athletes and you try to do what they do but with a robot, it’s a hard problem. It’s humbling. Fundamentally, I don’t think that Atlas has the range of motion or power that these athletes do, although we continue developing our robots towards that, because we believe that in order to broadly deploy these kinds of robots commercially, and eventually in a home, we think they need to have this level of performance.

One thing that robots are really good at is doing something over and over again the exact same way. So once we dialed in what we wanted to do, the robots could just do it again and again as we played with different camera angles.

I can understand how you could use human dancers to help you put together a routine with Atlas, but how did that work with Spot, and particularly with Handle?

I think the people we worked with actually had a lot of talent for thinking about motion, and thinking about how to express themselves through motion. And our robots do motion really well—they’re dynamic, they’re exciting, they balance. So I think what we found was that the dancers connected with the way the robots moved, and then shaped that into a story, and it didn’t matter whether there were two legs or four legs. When you don’t necessarily have a template of animal motion or human behavior, you just have to think a little harder about how to go about doing something, and that’s true for more pragmatic commercial behaviors as well.

“We used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go ‘that would be easy’ or ‘that would be hard’ or ‘that scares me.’”
—Aaron Saunders, Boston Dynamics

How does the experience that you get teaching robots to dance, or to do gymnastics or parkour, inform your approach to robotics for commercial applications?

We think that the skills inherent in dance and parkour, like agility, balance, and perception, are fundamental to a wide variety of robot applications. Maybe more importantly, finding that intersection between building a new robot capability and having fun has been Boston Dynamics’ recipe for robotics—it’s a great way to advance.

One good example is how when you push limits by asking your robots to do these dynamic motions over a period of several days, you learn a lot about the robustness of your hardware. Spot, through its productization, has become incredibly robust, and required almost no maintenance—it could just dance all day long once you taught it to. And the reason it’s so robust today is because of all those lessons we learned from previous things that may have just seemed weird and fun. You’ve got to go into uncharted territory to even know what you don’t know.

Image: Boston Dynamics

It’s often hard to tell from watching videos like these how much time it took to make things work the way you wanted them to, and how representative they are of the actual capabilities of the robots. Can you talk about that?

Let me try to answer in the context of this video, but I think the same is true for all of the videos that we post. We work hard to make something, and once it works, it works. For Atlas, most of the robot control existed from our previous work, like the work that we’ve done on parkour, which sent us down a path of using model predictive controllers that account for dynamics and balance. We used those to run on the robot a set of dance steps that we’d designed offline with the dancers and choreographer. So, a lot of time, months, we spent thinking about the dance and composing the motions and iterating in simulation.

Dancing required a lot of strength and speed, so we even upgraded some of Atlas’ hardware to give it more power. Dance might be the highest power thing we’ve done to date—even though you might think parkour looks way more explosive, the amount of motion and speed that you have in dance is incredible. That also took a lot of time over the course of months; creating the capability in the machine to go along with the capability in the algorithms.

Once we had the final sequence that you see in the video, we only filmed for two days. Much of that time was spent figuring out how to move the camera through a scene with a bunch of robots in it to capture one continuous two-minute shot, and while we ran and filmed the dance routine multiple times, we could repeat it quite reliably. There was no cutting or splicing in that opening two-minute shot.

There were definitely some failures in the hardware that required maintenance, and our robots stumbled and fell down sometimes. These behaviors are not meant to be productized and to be a 100 percent reliable, but they’re definitely repeatable. We try to be honest with showing things that we can do, not a snippet of something that we did once. I think there’s an honesty required in saying that you’ve achieved something, and that’s definitely important for us.

You mentioned that Spot is now robust enough to dance all day. How about Atlas? If you kept on replacing its batteries, could it dance all day, too?

Atlas, as a machine, is still, you know… there are only a handful of them in the world, they’re complicated, and reliability was not a main focus. We would definitely break the robot from time to time. But the robustness of the hardware, in the context of what we were trying to do, was really great. And without that robustness, we wouldn’t have been able to make the video at all. I think Atlas is a little more like a helicopter, where there’s a higher ratio between the time you spend doing maintenance and the time you spend operating. Whereas with Spot, the expectation is that it’s more like a car, where you can run it for a long time before you have to touch it.

When you’re teaching Atlas to do new things, is it using any kind of machine learning? And if not, why not?

As a company, we’ve explored a lot of things, but Atlas is not using a learning controller right now. I expect that a day will come when we will. Atlas’ current dance performance uses a mixture of what we like to call reflexive control, which is a combination of reacting to forces, online and offline trajectory optimization, and model predictive control. We leverage these techniques because they’re a reliable way of unlocking really high performance stuff, and we understand how to wield these tools really well. We haven’t found the end of the road in terms of what we can do with them.

We plan on using learning to extend and build on the foundation of software and hardware that we’ve developed, but I think that we, along with the community, are still trying to figure out where the right places to apply these tools are. I think you’ll see that as part of our natural progression.

Image: Boston Dynamics

Much of Atlas’ dynamic motion comes from its lower body at the moment, but parkour makes use of upper body strength and agility as well, and we’ve seen some recent concept images showing Atlas doing vaults and pullups. Can you tell us more?

Humans and animals do amazing things using their legs, but they do even more amazing things when they use their whole bodies. I think parkour provides a fantastic framework that allows us to progress towards whole body mobility. Walking and running was just the start of that journey. We’re progressing through more complex dynamic behaviors like jumping and spinning, that’s what we’ve been working on for the last couple of years. And the next step is to explore how using arms to push and pull on the world could extend that agility.

One of the missions that I’ve given to the Atlas team is to start working on leveraging the arms as much as we leverage the legs to enhance and extend our mobility, and I’m really excited about what we’re going to be working on over the next couple of years, because it’s going to open up a lot more opportunities for us to do exciting stuff with Atlas.

What’s your perspective on hydraulic versus electric actuators for highly dynamic robots?

Across my career at Boston Dynamics, I’ve felt passionately connected to so many different types of technology, but I’ve settled into a place where I really don’t think this is an either-or conversation anymore. I think the selection of actuator technology really depends on the size of the robot that you’re building, what you want that robot to do, where you want it to go, and many other factors. Ultimately, it’s good to have both kinds of actuators in your toolbox, and I love having access to both—and we’ve used both with great success to make really impressive dynamic machines.

I think the only delineation between hydraulic and electric actuators that appears to be distinct for me is probably in scale. It’s really challenging to make tiny hydraulic things because the industry just doesn’t do a lot of that, and the reciprocal is that the industry also doesn’t tend to make massive electrical things. So, you may find that to be a natural division between these two technologies.

Besides what you’re working on at Boston Dynamics, what recent robotics research are you most excited about?

For us as a company, we really love to follow advances in sensing, computer vision, terrain perception, these are all things where the better they get, the more we can do. For me personally, one of the things I like to follow is manipulation research, and in particular manipulation research that advances our understanding of complex, friction-based interactions like sliding and pushing, or moving compliant things like ropes.

We’re seeing a shift from just pinching things, lifting them, moving them, and dropping them, to much more meaningful interactions with the environment. Research in that type of manipulation I think is going to unlock the potential for mobile manipulators, and I think it’s really going to open up the ability for robots to interact with the world in a rich way.

Is there anything else you’d like people to take away from this video?

For me personally, and I think it’s because I spend so much of my time immersed in robotics and have a deep appreciation for what a robot is and what its capabilities and limitations are, one of my strong desires is for more people to spend more time with robots. We see a lot of opinions and ideas from people looking at our videos on YouTube, and it seems to me that if more people had opportunities to think about and learn about and spend time with robots, that new level of understanding could help them imagine new ways in which robots could be useful in our daily lives. I think the possibilities are really exciting, and I just want more people to be able to take that journey. Continue reading

Posted in Human Robots

#437924 How a Software Map of the Entire Planet ...

i
“3D map data is the scaffolding of the 21st century.”

–Edward Miller, Founder, Scape Technologies, UK

Covered in cameras, sensors, and a distinctly spaceship looking laser system, Google’s autonomous vehicles were easy to spot when they first hit public roads in 2015. The key hardware ingredient is a spinning laser fixed to the roof, called lidar, which provides the car with a pair of eyes to see the world. Lidar works by sending out beams of light and measuring the time it takes to bounce off objects back to the source. By timing the light’s journey, these depth-sensing systems construct fully 3D maps of their surroundings.

3D maps like these are essentially software copies of the real world. They will be crucial to the development of a wide range of emerging technologies including autonomous driving, drone delivery, robotics, and a fast-approaching future filled with augmented reality.

Like other rapidly improving technologies, lidar is moving quickly through its development cycle. What was an expensive technology on the roof of a well-funded research project is now becoming cheaper, more capable, and readily available to consumers. At some point, lidar will come standard on most mobile devices and is now available to early-adopting owners of the iPhone 12 Pro.

Consumer lidar represents the inevitable shift from wealthy tech companies generating our world’s map data, to a more scalable crowd-sourced approach. To develop the repository for their Street View Maps product, Google reportedly spent $1-2 billion sending cars across continents photographing every street. Compare that to a live-mapping service like Waze, which uses crowd-sourced user data from its millions of users to generate accurate and real-time traffic conditions. Though these maps serve different functions, one is a static, expensive, unchanging map of the world while the other is dynamic, real-time, and constructed by users themselves.

Soon millions of people may be scanning everything from bedrooms to neighborhoods, resulting in 3D maps of significant quality. An online search for lidar room scans demonstrates just how richly textured these three-dimensional maps are compared to anything we’ve had before. With lidar and other depth-sensing systems, we now have the tools to create exact software copies of everywhere and everything on earth.

At some point, likely aided by crowdsourcing initiatives, these maps will become living breathing, real-time representations of the world. Some refer to this idea as a “digital twin” of the planet. In a feature cover story, Kevin Kelly, the cofounder of Wired magazine, calls this concept the “mirrorworld,” a one-to-one software map of everything.

So why is that such a big deal? Take augmented reality as an example.

Of all the emerging industries dependent on such a map, none are more invested in seeing this concept emerge than those within the AR landscape. Apple, for example, is not-so-secretly developing a pair of AR glasses, which they hope will deliver a mainstream turning point for the technology.

For Apple’s AR devices to work as anticipated, they will require virtual maps of the world, a concept AR insiders call the “AR cloud,” which is synonymous with the “mirrorworld” concept. These maps will be two things. First, they will be a tool that creators use to place AR content in very specific locations; like a world canvas to paint on. Second, they will help AR devices both locate and understand the world around them so they can render content in a believable way.

Imagine walking down a street wanting to check the trading hours of a local business. Instead of pulling out your phone to do a tedious search online, you conduct the equivalent of a visual google search simply by gazing at the store. Albeit a trivial example, the AR cloud represents an entirely non-trivial new way of managing how we organize the world’s information. Access to knowledge can be shifted away from the faraway monitors in our pocket, to its relevant real-world location.

Ultimately this describes a blurring of physical and digital infrastructure. Our public and private spaces will thus be comprised equally of both.

No example demonstrates this idea better than Pokémon Go. The game is straightforward enough; users capture virtual characters scattered around the real world. Today, the game relies on traditional GPS technology to place its characters, but GPS is accurate only to within a few meters of a location. For a car navigating on a highway or locating Pikachus in the world, that level of precision is sufficient. For drone deliveries, driverless cars, or placing a Pikachu in a specific location, say on a tree branch in a park, GPS isn’t accurate enough. As astonishing as it may seem, many experimental AR cloud concepts, even entirely mapped cities, are location specific down to the centimeter.

Niantic, the $4 billion publisher behind Pokémon Go, is aggressively working on developing a crowd-sourced approach to building better AR Cloud maps by encouraging their users to scan the world for them. Their recent acquisition of 6D.ai, a mapping software company developed by the University of Oxford’s Victor Prisacariu through his work at Oxford’s Active Vision Lab, indicates Niantic’s ambition to compete with the tech giants in this space.

With 6D.ai’s technology, Niantic is developing the in-house ability to generate their own 3D maps while gaining better semantic understanding of the world. By going beyond just knowing there’s a temporary collection of orange cones in a certain location, for example, the game may one day understand the meaning behind this; that a temporary construction zone means no Pokémon should spawn here to avoid drawing players to this location.

Niantic is not the only company working on this. Many of the big tech firms you would expect have entire teams focused on map data. Facebook, for example, recently acquired the UK-based Scape technologies, a computer vision startup mapping entire cities with centimeter precision.

As our digital maps of the world improve, expect a relentless and justified discussion of privacy concerns as well. How will society react to the idea of a real-time 3D map of their bedroom living on a Facebook or Amazon server? Those horrified by the use of facial recognition AI being used in public spaces are unlikely to find comfort in the idea of a machine-readable world subject to infinite monitoring.

The ability to build high-precision maps of the world could reshape the way we engage with our planet and promises to be one of the biggest technology developments of the next decade. While these maps may stay hidden as behind-the-scenes infrastructure powering much flashier technologies that capture the world’s attention, they will soon prop up large portions of our technological future.

Keep that in mind when a car with no driver is sharing your road.

Image credit: sergio souza / Pexels Continue reading

Posted in Human Robots

#437851 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics has been fielding questions about when its robots are going to go on sale and how much they’ll cost for at least a dozen years now. I can say this with confidence, because that’s how long I’ve been a robotics journalist, and I’ve been pestering them about it the entire time. But it’s only relatively recently that the company started to make a concerted push away from developing robots exclusively for the likes of DARPA into platforms with more commercial potential, starting with a compact legged robot called Spot, first introduced in 2016.

Since then, we’ve been following closely as Spot has gone from a research platform to a product, and today, Boston Dynamics is announcing the final step in that process: commercial availability. You can now order a Spot Explorer Kit from the Boston Dynamics online store for US $74,500 (plus tax), shipping included, with delivery in 6 to 8 weeks. FINALLY!

Over the past 10 months or so, Boston Dynamics has leased Spot robots to carefully selected companies, research groups, and even a few individuals as part of their early adopter program—that’s where all of the clips in the video below came from. While there are over 100 Spots out in the world right now, getting one of them has required convincing Boston Dynamics up front that you knew more or less exactly what you wanted to do and how you wanted to do it. If you’re a big construction company or the Jet Propulsion Laboratory or Adam Savage, that’s all well and good, but for other folks who think that a Spot could be useful for them somehow and want to give it a shot, this new availability provides a fewer-strings attached opportunity to do some experimentation with the robot.

There’s a lot of cool stuff going on in that video, but we were told that the one thing that really stood out to the folks at Boston Dynamics was a 2-second clip that you can see on the left-hand side of the screen from 0:19 to 0:21. In it, Spot is somehow managing to walk across a spider web of rebar without getting tripped up, at faster than human speed. This isn’t something that Spot was specifically programmed to do, and in fact the Spot User Guide specifically identifies “rebar mesh” as an unsafe operating environment. But the robot just handles it, and that’s a big part of what makes Spot so useful—its ability to deal with (almost) whatever you can throw at it.

Before you get too excited, Boston Dynamics is fairly explicit that the current license for the robot is intended for commercial use, and the company specifically doesn’t want people to be just using it at home for fun. We know this because we asked (of course we asked), and they told us “we specifically don’t want people to just be using it at home for fun.” Drat. You can still buy one as an individual, but you have to promise that you’ll follow the terms of use and user guidelines, and it sounds like using a robot in your house might be the second-fastest way to invalidate your warranty:

SPOT IS AN AMAZING ROBOT, BUT IS NOT CERTIFIED SAFE FOR IN-HOME USE OR INTENDED FOR USE NEAR CHILDREN OR OTHERS WHO MAY NOT APPRECIATE THE HAZARDS ASSOCIATED WITH ITS OPERATION.

Not being able to get Spot to play with your kids may be disappointing, but for those of you with the sort of kids who are also students, the good news is that Boston Dynamics has carved out a niche for academic institutions, which can buy Spot at a discounted price. And if you want to buy a whole pack of Spots, there’s a bulk discount for Enterprise users as well.

What do you get for $74,500? All this!

Spot robot
Spot battery (2x)
Spot charger
Tablet controller and charger
Robot case for storage and transportation
FREE SHIPPING!

Photo: Boston Dynamics

The basic package includes the robot, two batteries, charger, a tablet controller, and a storage case.

You can view detailed specs here.

So is $75k a lot of money for a robot like Spot, or not all that much? We don’t have many useful points of comparison, partially because it’s not clear to what extent other pre-commercial quadrupedal robots (like ANYmal or Aliengo) share capabilities and features with Spot. For more perspective on Spot’s price tag, we spoke to Michael Perry, vice president of business development at Boston Dynamics.

IEEE Spectrum: Why is Spot so affordable?

Michael Perry: The main goal of selling the robot at this stage is to try to get it into the hands of as many application developers as possible, so that we can learn from the community what the biggest driver of value is for Spot. As a platform, unlocking the value of an ecosystem is our core focus right now.

Spectrum: Why is Spot so expensive?

Perry: Expensive is relative, but compared to the initial prototypes of Spot, we’ve been able to drop down the cost pretty significantly. One key thing has been designing it for robustness—we’ve put hundreds and hundreds of hours on the robot to make sure that it’s able to be successful when it falls, or when it has an electrostatic discharge. We’ve made sure that it’s able to perceive a wide variety of environments that are difficult for traditional vision-based sensors to handle. A lot of that engineering is baked into the core product so that you don’t have to worry about the mobility or robotic side of the equation, you can just focus on application development.

Photos: Boston Dynamics

Accessories for Spot include [clockwise from top left]: Spot GXP with additional ports for payload integration; Spot CAM with panorama camera and advanced comms; Spot CAM+ with pan-tilt-zoom camera for inspections; Spot EAP with lidar to enhance autonomy on large sites; Spot EAP+ with Spot CAM camera plus lidar; and Spot CORE for additional processing power.

The $75k that you’ll pay for the Spot Explorer Kit, it’s important to note, is just the base price for the robot. As with other things that fall into this price range (like a luxury car), there are all kinds of fun ways to drive that cost up with accessories, although for Spot, some of those accessories will be necessary for many (if not most) applications. For example, a couple of expansion ports to make it easier to install your own payloads on Spot will run you $1,275. An additional battery is $4,620. And if you want to really get some work done, the Enhanced Autonomy Package (with 360 cameras, lights, better comms, and a Velodyne VLP-16) will set you back an additional $34,570. If you were hoping for an arm, you’ll have to wait until the end of the year.

Each Spot also includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff” or “I tried to take my robot swimming.” For that sort of thing (user error) to be covered, you’ll need to upgrade to the $12,000 Spot CARE premium service plan to cover your robot for a year as long as you don’t subject it to willful abuse, which both of those examples I just gave probably qualify as.

While we’re on the subject of robot abuse, Boston Dynamics has very sensibly devoted a substantial amount of the Spot User Guide to help new users understand how they should not be using their robot, in order to “lessen the risk of serious injury, death, or robot and other property damage.” According to the guide, some things that could cause Spot to fall include holes, cliffs, slippery surfaces (like ice and wet grass), and cords. Spot’s sensors also get confused by “transparent, mirrored, or very bright obstacles,” and the guide specifically says Spot “may crash into glass doors and windows.” Also this: “Spot cannot predict trajectories of moving objects. Do not operate Spot around moving objects such as vehicles, children, or pets.”

We should emphasize that this is all totally reasonable, and while there are certainly a lot of things to be aware of, it’s frankly astonishing that these are the only things that Boston Dynamics explicitly warns users against. Obviously, not every potentially unsafe situation or thing is described above, but the point is that Boston Dynamics is willing to say to new users, “here’s your robot, go do stuff with it” without feeling the need to hold their hand the entire time.

There’s one more thing to be aware of before you decide to buy a Spot, which is the following:

“All orders will be subject to Boston Dynamics’ Terms and Conditions of Sale which require the beneficial use of its robots.”

Specifically, this appears to mean that you aren’t allowed to (or supposed to) use the robot in a way that could hurt living things, or “as a weapon, or to enable any weapon.” The conditions of sale also prohibit using the robot for “any illegal or ultra-hazardous purpose,” and there’s some stuff in there about it not being cool to use Spot for “nuclear, chemical, or biological weapons proliferation, or development of missile technology,” which seems weirdly specific.

“Once you make a technology more broadly available, the story of it starts slipping out of your hands. Our hope is that ahead of time we’re able to clearly articulate the beneficial uses of the robot in environments where we think the robot has a high potential to reduce the risk to people, rather than potentially causing harm.”
—Michael Perry, Boston Dynamics

I’m very glad that Boston Dynamics is being so upfront about requiring that Spot is used beneficially. However, it does put the company in a somewhat challenging position now that these robots are being sold. Boston Dynamics can (and will) perform some amount of due-diligence before shipping a Spot, but ultimately, once the robots are in someone else’s hands, there’s only so much that BD can do.

Spectrum: Why is beneficial use important to Boston Dynamics?

Perry: One of the key things that we’ve highlighted many times in our license and terms of use is that we don’t want to see the robot being used in any way that inflicts physical harm on people or animals. There are philosophical reasons for that—I think all of us don’t want to see our technology used in a way that would hurt people. But also from a business perspective, robots are really terrible at conveying intention. In order for the robot to be helpful long-term, it has to be trusted as a piece of technology. So rather than looking at a robot and wondering, “is this something that could potentially hurt me,” we want people to think “this is a robot that’s here to help me.” To the extent that people associate Boston Dynamics with cutting edge robots, we think that this is an important stance for the rollout of our first commercial product. If we find out that somebody’s violated our terms of use, their warranty is invalidated, we won’t repair their product, and we have a licensing timeout that would prevent them from accessing their robot after that timeout has expired. It’s a remediation path, but we do think that it’s important to at least provide that as something that helps enforce our position on use of our technology.

It’s very important to keep all of this in context: Spot is a tool. It’s got some autonomy and the appearance of agency, but it’s still just doing what people tell it to do, even if those things might be unsafe. If you read through the user guide, it’s clear how much of an effort Boston Dynamics is making to try to convey the importance of safety to Spot users—and ultimately, barring some unforeseen and catastrophic software or hardware issues, safety is about the users, rather than Boston Dynamics or Spot itself. I bring this up because as we start seeing more and more Spots doing things without Boston Dynamics watching over them quite so closely, accidents are likely inevitable. Spot might step on someone’s foot. It might knock someone over. If Spot was perfectly safe, it wouldn’t be useful, and we have to acknowledge that its impressive capabilities come with some risks, too.

Photo: Boston Dynamics

Each Spot includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff.”

Now that Spot is on the market for real, we’re excited to see who steps up and orders one. Depending on who the potential customer is, Spot could either seem like an impossibly sophisticated piece of technology that they’d never be able to use, or a magical way of solving all of their problems overnight. In reality, it’s of course neither of those things. For the former (folks with an idea but without a lot of robotics knowledge or experience), Spot does a lot out of the box, but BD is happy to talk with people and facilitate connections with partners who might be able to integrate specific software and hardware to get Spot to do a unique task. And for the latter (who may also be folks with an idea but without a lot of robotics knowledge or experience), BD’s Perry offers a reminder Spot is not Rosie the Robot, and would be equally happy to talk about what the technology is actually capable of doing.

Looking forward a bit, we asked Perry whether Spot’s capabilities mean that customers are starting to think beyond using robots to simply replace humans, and are instead looking at them as a way of enabling a completely different way of getting things done.

Spectrum: Do customers interested in Spot tend to think of it as a way of replacing humans at a specific task, or as a system that can do things that humans aren’t able to do?

Perry: There are what I imagine as three levels of people understanding the robot applications. Right now, we’re at level one, where you take a person out of this dangerous, dull job, and put a robot in. That’s the entry point. The second level is, using the robot, can we increase the production of that task? For example, take site documentation on a construction site—right now, people do 360 image capture of a site maybe once a week, and they might do a laser scan of the site once per project. At the second level, the question is, what if you were able to get that data collection every day, or multiple times a day? What kinds of benefits would that add to your process? To continue the construction example, the third level would be, how could we completely redesign this space now that we know that this type of automation is available? To take one example, there are some things that we cannot physically build because it’s too unsafe for people to be a part of that process, but if you were to apply robotics to that process, then you could potentially open up a huge envelope of design that has been inaccessible to people.

To order a Spot of your very own, visit shop.bostondynamics.com.

A version of this post appears in the August 2020 print issue as “$74,500 Will Fetch You a Spot.” Continue reading

Posted in Human Robots

#437805 Video Friday: Quadruped Robot HyQ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!

The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.

[ IIT ]

Thanks Victor!

Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

[ MIT ]

While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.

[ RSL ]

Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.

The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.

[ NC State ]

As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!

[ University of Michigan ]

GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.

Here’s how the humanoid would handle a similar task:

[ GITAI ]

Thanks Fan!

If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.

[ Fraunhofer ]

Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.

[ UPenn ]

Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.

[ Sparks Lab ]

This is a video about robot spy turtles but OMG that bird drone landing gear.

[ PBS ]

If you have a DJI Mavic, you now have something new to worry about.

[ DroGone ]

I was able to spot just one single person in the warehouse footage in this video.

[ Berkshire Grey ]

Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.

[ Flyability ]

In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.

[ ARL ]

More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.

[ ICRA 2020 Legged Robots Workshop ] Continue reading

Posted in Human Robots

#437583 Video Friday: Attack of the Hexapod ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Happy Halloween from HEBI Robotics!

Thanks Hardik!

[ HEBI Robotics ]

Happy Halloween from Berkshire Grey!

[ Berkshire Grey ]

These are some preliminary results of our lab’s new work on using reinforcement learning to train neural networks to imitate common bipedal gait behaviors, without using any motion capture data or reference trajectories. Our method is described in an upcoming submission to ICRA 2021. Work by Jonah Siekmann and Yesh Godse.

[ OSU DRL ]

The northern goshawk is a fast, powerful raptor that flies effortlessly through forests. This bird was the design inspiration for the next-generation drone developed by scientifics of the Laboratory of Intelligent Systems of EPFL led by Dario Floreano. They carefully studied the shape of the bird’s wings and tail and its flight behavior, and used that information to develop a drone with similar characteristics.

The engineers already designed a bird-inspired drone with morphing wing back in 2016. In a step forward, their new model can adjust the shape of its wing and tail thanks to its artificial feathers. Flying this new type of drone isn’t easy, due to the large number of wing and tail configurations possible. To take full advantage of the drone’s flight capabilities, Floreano’s team plans to incorporate artificial intelligence into the drone’s flight system so that it can fly semi-automatically. The team’s research has been published in Science Robotics.

[ EPFL ]

Oopsie.

[ Roborace ]

We’ve covered MIT’s Roboats in the past, but now they’re big enough to keep a couple of people afloat.

Self-driving boats have been able to transport small items for years, but adding human passengers has felt somewhat intangible due to the current size of the vessels. Roboat II is the “half-scale” boat in the growing body of work, and joins the previously developed quarter-scale Roboat, which is 1 meter long. The third installment, which is under construction in Amsterdam and is considered to be “full scale,” is 4 meters long and aims to carry anywhere from four to six passengers.

[ MIT ]

With a training technique commonly used to teach dogs to sit and stay, Johns Hopkins University computer scientists showed a robot how to teach itself several new tricks, including stacking blocks. With the method, the robot, named Spot, was able to learn in days what typically takes a month.

[ JHU ]

Exyn, a pioneer in autonomous aerial robot systems for complex, GPS-denied industrial environments, today announced the first dog, Kody, to successfully fly a drone at Number 9 Coal Mine, in Lansford, PA. Selected to carry out this mission was the new autonomous aerial robot, the ExynAero.

Yes, this is obviously a publicity stunt, and Kody is only flying the drone in the sense that he’s pushing the launch button and then taking a nap. But that’s also the point— drone autonomy doesn’t get much fuller than this, despite the challenge of the environment.

[ Exyn ]

In this video object instance segmentation and shape completion are combined with classical regrasp planning to perform pick-place of novel objects. It is demonstrated with a UR5, Robotiq 85 parallel-jaw gripper, and Structure depth sensor with three rearrangement tasks: bin packing (minimize the height of the packing), placing bottles onto coasters, and arrange blocks from tallest to shortest (according to the longest edge). The system also accounts for uncertainty in the segmentation/completion by avoiding grasping or placing on parts of the object where perceptual uncertainty is predicted to be high.

[ Paper ] via [ Northeastern ]

Thanks Marcus!

U can’t touch this!

[ University of Tokyo ]

We introduce a way to enable more natural interaction between humans and robots through Mixed Reality, by using a shared coordinate system. Azure Spatial Anchors, which already supports colocalizing multiple HoloLens and smartphone devices in the same space, has now been extended to support robots equipped with cameras. This allows humans and robots sharing the same space to interact naturally: humans can see the plan and intention of the robot, while the robot can interpret commands given from the person’s perspective. We hope that this can be a building block in the future of humans and robots being collaborators and coworkers.

[ Microsoft ]

Some very high jumps from the skinniest quadruped ever.

[ ODRI ]

In this video we present recent efforts to make our humanoid robot LOLA ready for multi-contact locomotion, i.e. additional hand-environment support for extra stabilization during walking.

[ TUM ]

Classic bike moves from Dr. Guero.

[ Dr. Guero ]

For a robotics company, iRobot is OLD.

[ iRobot ]

The Canadian Space Agency presents Juno, a preliminary version of a rover that could one day be sent to the Moon or Mars. Juno can navigate autonomously or be operated remotely. The Lunar Exploration Analogue Deployment (LEAD) consisted in replicating scenarios of a lunar sample return mission.

[ CSA ]

How exactly does the Waymo Driver handle a cat cutting across its driving path? Jonathan N., a Product Manager on our Perception team, breaks it all down for us.

Now do kangaroos.

[ Waymo ]

Jibo is hard at work at MIT playing games with kids.

Children’s creativity plummets as they enter elementary school. Social interactions with peers and playful environments have been shown to foster creativity in children. Digital pedagogical tools often lack the creativity benefits of co-located social interaction with peers. In this work, we leverage a social embodied robot as a playful peer and designed Escape!Bot, a game involving child-robot co-play, where the robot is a social agent that scaffolds for creativity during gameplay.

[ Paper ]

It’s nice when convenience stores are convenient even for the folks who have to do the restocking.

Who’s moving the crates around, though?

[ Telexistence ]

Hi, fans ! Join the ROS World 2020, opening November 12th , and see the footage of ROBOTIS’ ROS platform robots 🙂

[ ROS World 2020 ]

ML/RL methods are often viewed as a magical black box, and while that’s not true, learned policies are nonetheless a valuable tool that can work in conjunction with the underlying physics of the robot. In this video, Agility CTO Jonathan Hurst – wearing his professor hat at Oregon State University – presents some recent student work on using learned policies as a control method for highly dynamic legged robots.

[ Agility Robotics ]

Here’s an ICRA Legged Robots workshop talk from Marco Hutter at ETH Zürich, on Autonomy for ANYmal.

Recent advances in legged robots and their locomotion skills has led to systems that are skilled and mature enough for real-world deployment. In particular, quadrupedal robots have reached a level of mobility to navigate complex environments, which enables them to take over inspection or surveillance jobs in place like offshore industrial plants, in underground areas, or on construction sites. In this talk, I will present our research work with the quadruped ANYmal and explain some of the underlying technologies for locomotion control, environment perception, and mission autonomy. I will show how these robots can learn and plan complex maneuvers, how they can navigate through unknown environments, and how they are able to conduct surveillance, inspection, or exploration scenarios.

[ RSL ] Continue reading

Posted in Human Robots