Tag Archives: ATLAS

#433725 This Week’s Awesome Stories From ...

ROBOTICS
The Demise of Rethink Robotics Shows How Hard It Is to Make Machines Truly Smart
Will Knight | MIT Technology Review
“There’s growing interest in using recent advances in AI to make industrial robots a lot smarter and more useful. …But look carefully and you’ll see that these technologies are at a very early stage, and that deploying them commercially could prove extremely challenging. The demise of Rethink doesn’t mean industrial robotics isn’t flourishing, or that AI-driven advances won’t come about. But it shows just how hard doing real innovation in robotics can be.”

SCIENCE
The Human Cell Atlas Is Biologists’ Latest Grand Project
Megan Molteni | Wired
“Dubbed the Human Cell Atlas, the project intends to catalog all of the estimated 37 trillion cells that make up a human body. …By decoding the genes active in single cells, pegging different cell types to a specific address in the body, and tracing the molecular circuits between them, participating researchers plan to create a more comprehensive map of human biology than has ever existed before.”

TRANSPORTATION
US Will Rewrite Safety Rules to Permit Fully Driverless Cars on Public Roads
Andrew J. Hawkins | The Verge
“Under current US safety rules, a motor vehicle must have traditional controls, like a steering wheel, mirrors, and foot pedals, before it is allowed to operate on public roads. But that could all change under a new plan released on Thursday by the Department of Transportation that’s intended to open the floodgates for fully driverless cars.”

ARTIFICIAL INTELLIGENCE
When an AI Goes Full Jack Kerouac
Brian Merchant | The Atlantic
“By the end of the four-day trip, receipts emblazoned with artificially intelligent prose would cover the floor of the car. …it is a hallucinatory, oddly illuminating account of a bot’s life on the interstate; the Electric Kool-Aid Acid Test meets Google Street View, narrated by Siri.”

FUTURE OF FOOD
New Autonomous Farm Wants to Produce Food Without Human Workers
Erin Winick | MIT Technology Review
“As the firm’s cofounder Brandon Alexander puts it: ‘We are a farm and will always be a farm.’ But it’s no ordinary farm. For starters, the company’s 15 human employees share their work space with robots who quietly go about the business of tending rows and rows of leafy greens.”

Image Credit: Kotenko Olaksandr / Shutterstock.com Continue reading

Posted in Human Robots

#433634 This Robotic Skin Makes Inanimate ...

In Goethe’s poem “The Sorcerer’s Apprentice,” made world-famous by its adaptation in Disney’s Fantasia, a lazy apprentice, left to fetch water, uses magic to bewitch a broom into performing his chores for him. Now, new research from Yale has opened up the possibility of being able to animate—and automate—household objects by fitting them with a robotic skin.

Yale’s Soft Robotics lab, the Faboratory, is led by Professor Rebecca Kramer-Bottiglio, and has long investigated the possibilities associated with new kinds of manufacturing. While the typical image of a robot is hard, cold steel and rigid movements, soft robotics aims to create something more flexible and versatile. After all, the human body is made up of soft, flexible surfaces, and the world is designed for us. Soft, deformable robots could change shape to adapt to different tasks.

When designing a robot, key components are the robot’s sensors, which allow it to perceive its environment, and its actuators, the electrical or pneumatic motors that allow the robot to move and interact with its environment.

Consider your hand, which has temperature and pressure sensors, but also muscles as actuators. The omni-skins, as the Science Robotics paper dubs them, combine sensors and actuators, embedding them into an elastic sheet. The robotic skins are moved by pneumatic actuators or memory alloy that can bounce back into shape. If this is then wrapped around a soft, deformable object, moving the skin with the actuators can allow the object to crawl along a surface.

The key to the design here is flexibility: rather than adding chips, sensors, and motors into every household object to turn them into individual automatons, the same skin can be used for many purposes. “We can take the skins and wrap them around one object to perform a task—locomotion, for example—and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” said Kramer-Bottiglio. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.”

The task is then to dream up applications for the omni-skins. Initially, you might imagine demanding a stuffed toy to fetch the remote control for you, or animating a sponge to wipe down kitchen surfaces—but this is just the beginning. The scientists attached the skins to a soft tube and camera, creating a worm-like robot that could compress itself and crawl into small spaces for rescue missions. The same skins could then be worn by a person to sense their posture. One could easily imagine this being adapted into a soft exoskeleton for medical or industrial purposes: for example, helping with rehabilitation after an accident or injury.

The initial motivating factor for creating the robots was in an environment where space and weight are at a premium, and humans are forced to improvise with whatever’s at hand: outer space. Kramer-Bottoglio originally began the work after NASA called out for soft robotics systems for use by astronauts. Instead of wasting valuable rocket payload by sending up a heavy metal droid like ATLAS to fetch items or perform repairs, soft robotic skins with modular sensors could be adapted for a range of different uses spontaneously.

By reassembling components in the soft robotic skin, a crumpled ball of paper could provide the chassis for a robot that performs repairs on the spaceship, or explores the lunar surface. The dynamic compression provided by the robotic skin could be used for g-suits to protect astronauts when they rapidly accelerate or decelerate.

“One of the main things I considered was the importance of multi-functionality, especially for deep space exploration where the environment is unpredictable. The question is: How do you prepare for the unknown unknowns? … Given the design-on-the-fly nature of this approach, it’s unlikely that a robot created using robotic skins will perform any one task optimally,” Kramer-Bottiglio said. “However, the goal is not optimization, but rather diversity of applications.”

There are still problems to resolve. Many of the videos of the skins indicate that they can rely on an external power supply. Creating new, smaller batteries that can power wearable devices has been a focus of cutting-edge materials science research for some time. Much of the lab’s expertise is in creating flexible, stretchable electronics that can be deformed by the actuators without breaking the circuitry. In the future, the team hopes to work on streamlining the production process; if the components could be 3D printed, then the skins could be created when needed.

In addition, robotic hardware that’s capable of performing an impressive range of precise motions is quite an advanced technology. The software to control those robots, and enable them to perform a variety of tasks, is quite another challenge. With soft robots, it can become even more complex to design that control software, because the body itself can change shape and deform as the robot moves. The same set of programmed motions, then, can produce different results depending on the environment.

“Let’s say I have a soft robot with four legs that crawls along the ground, and I make it walk up a hard slope,” Dr. David Howard, who works on robotics at CSIRO in Australia, explained to ABC.

“If I make that slope out of gravel and I give it the same control commands, the actual body is going to deform in a different way, and I’m not necessarily going to know what that is.”

Despite these and other challenges, research like that at the Faboratory still hopes to redefine how we think of robots and robotics. Instead of a robot that imitates a human and manipulates objects, the objects themselves will become programmable matter, capable of moving autonomously and carrying out a range of tasks. Futurists speculate about a world where most objects are automated to some degree and can assemble and repair themselves, or are even built entirely of tiny robots.

The tale of the Sorcerer’s Apprentice was first written in 1797, at the dawn of the industrial revolution, over a century before the word “robot” was even coined. Yet more and more roboticists aim to prove Arthur C Clarke’s maxim: any sufficiently advanced technology is indistinguishable from magic.

Image Credit: Joran Booth, The Faboratory Continue reading

Posted in Human Robots

#433505 Boston Dynamics: Atlas

The future is already here, courtesy of Atlas by Boston Dynamics!

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#432671 Stuff 3.0: The Era of Programmable ...

It’s the end of a long day in your apartment in the early 2040s. You decide your work is done for the day, stand up from your desk, and yawn. “Time for a film!” you say. The house responds to your cues. The desk splits into hundreds of tiny pieces, which flow behind you and take on shape again as a couch. The computer screen you were working on flows up the wall and expands into a flat projection screen. You relax into the couch and, after a few seconds, a remote control surfaces from one of its arms.

In a few seconds flat, you’ve gone from a neatly-equipped office to a home cinema…all within the same four walls. Who needs more than one room?

This is the dream of those who work on “programmable matter.”

In his recent book about AI, Max Tegmark makes a distinction between three different levels of computational sophistication for organisms. Life 1.0 is single-celled organisms like bacteria; here, hardware is indistinguishable from software. The behavior of the bacteria is encoded into its DNA; it cannot learn new things.

Life 2.0 is where humans live on the spectrum. We are more or less stuck with our hardware, but we can change our software by choosing to learn different things, say, Spanish instead of Italian. Much like managing space on your smartphone, your brain’s hardware will allow you to download only a certain number of packages, but, at least theoretically, you can learn new behaviors without changing your underlying genetic code.

Life 3.0 marks a step-change from this: creatures that can change both their hardware and software in something like a feedback loop. This is what Tegmark views as a true artificial intelligence—one that can learn to change its own base code, leading to an explosion in intelligence. Perhaps, with CRISPR and other gene-editing techniques, we could be using our “software” to doctor our “hardware” before too long.

Programmable matter extends this analogy to the things in our world: what if your sofa could “learn” how to become a writing desk? What if, instead of a Swiss Army knife with dozens of tool attachments, you just had a single tool that “knew” how to become any other tool you could require, on command? In the crowded cities of the future, could houses be replaced by single, OmniRoom apartments? It would save space, and perhaps resources too.

Such are the dreams, anyway.

But when engineering and manufacturing individual gadgets is such a complex process, you can imagine that making stuff that can turn into many different items can be extremely complicated. Professor Skylar Tibbits at MIT referred to it as 4D printing in a TED Talk, and the website for his research group, the Self-Assembly Lab, excitedly claims, “We have also identified the key ingredients for self-assembly as a simple set of responsive building blocks, energy and interactions that can be designed within nearly every material and machining process available. Self-assembly promises to enable breakthroughs across many disciplines, from biology to material science, software, robotics, manufacturing, transportation, infrastructure, construction, the arts, and even space exploration.”

Naturally, their projects are still in the early stages, but the Self-Assembly Lab and others are genuinely exploring just the kind of science fiction applications we mooted.

For example, there’s the cell-phone self-assembly project, which brings to mind eerie, 24/7 factories where mobile phones assemble themselves from 3D printed kits without human or robotic intervention. Okay, so the phones they’re making are hardly going to fly off the shelves as fashion items, but if all you want is something that works, it could cut manufacturing costs substantially and automate even more of the process.

One of the major hurdles to overcome in making programmable matter a reality is choosing the right fundamental building blocks. There’s a very important balance to strike. To create fine details, you need to have things that aren’t too big, so as to keep your rearranged matter from being too lumpy. This might make the building blocks useless for certain applications—for example, if you wanted to make tools for fine manipulation. With big pieces, it might be difficult to simulate a range of textures. On the other hand, if the pieces are too small, different problems can arise.

Imagine a setup where each piece is a small robot. You have to contain the robot’s power source and its brain, or at least some kind of signal-generator and signal-processor, all in the same compact unit. Perhaps you can imagine that one might be able to simulate a range of textures and strengths by changing the strength of the “bond” between individual units—your desk might need to be a little bit more firm than your bed, which might be nicer with a little more give.

Early steps toward creating this kind of matter have been taken by those who are developing modular robots. There are plenty of different groups working on this, including MIT, Lausanne, and the University of Brussels.

In the latter configuration, one individual robot acts as a centralized decision-maker, referred to as the brain unit, but additional robots can autonomously join the brain unit as and when needed to change the shape and structure of the overall system. Although the system is only ten units at present, it’s a proof-of-concept that control can be orchestrated over a modular system of robots; perhaps in the future, smaller versions of the same thing could be the components of Stuff 3.0.

You can imagine that with machine learning algorithms, such swarms of robots might be able to negotiate obstacles and respond to a changing environment more easily than an individual robot (those of you with techno-fear may read “respond to a changing environment” and imagine a robot seamlessly rearranging itself to allow a bullet to pass straight through without harm).

Speaking of robotics, the form of an ideal robot has been a subject of much debate. In fact, one of the major recent robotics competitions—DARPA’s Robotics Challenge—was won by a robot that could adapt, beating Boston Dynamics’ infamous ATLAS humanoid with the simple addition of a wheel that allowed it to drive as well as walk.

Rather than building robots into a humanoid shape (only sometimes useful), allowing them to evolve and discover the ideal form for performing whatever you’ve tasked them to do could prove far more useful. This is particularly true in disaster response, where expensive robots can still be more valuable than humans, but conditions can be very unpredictable and adaptability is key.

Further afield, many futurists imagine “foglets” as the tiny nanobots that will be capable of constructing anything from raw materials, somewhat like the “Santa Claus machine.” But you don’t necessarily need anything quite so indistinguishable from magic to be useful. Programmable matter that can respond and adapt to its surroundings could be used in all kinds of industrial applications. How about a pipe that can strengthen or weaken at will, or divert its direction on command?

We’re some way off from being able to order our beds to turn into bicycles. As with many tech ideas, it may turn out that the traditional low-tech solution is far more practical and cost-effective, even as we can imagine alternatives. But as the march to put a chip in every conceivable object goes on, it seems certain that inanimate objects are about to get a lot more animated.

Image Credit: PeterVrabel / Shutterstock.com Continue reading

Posted in Human Robots