Tag Archives: astronauts

#433634 This Robotic Skin Makes Inanimate ...

In Goethe’s poem “The Sorcerer’s Apprentice,” made world-famous by its adaptation in Disney’s Fantasia, a lazy apprentice, left to fetch water, uses magic to bewitch a broom into performing his chores for him. Now, new research from Yale has opened up the possibility of being able to animate—and automate—household objects by fitting them with a robotic skin.

Yale’s Soft Robotics lab, the Faboratory, is led by Professor Rebecca Kramer-Bottiglio, and has long investigated the possibilities associated with new kinds of manufacturing. While the typical image of a robot is hard, cold steel and rigid movements, soft robotics aims to create something more flexible and versatile. After all, the human body is made up of soft, flexible surfaces, and the world is designed for us. Soft, deformable robots could change shape to adapt to different tasks.

When designing a robot, key components are the robot’s sensors, which allow it to perceive its environment, and its actuators, the electrical or pneumatic motors that allow the robot to move and interact with its environment.

Consider your hand, which has temperature and pressure sensors, but also muscles as actuators. The omni-skins, as the Science Robotics paper dubs them, combine sensors and actuators, embedding them into an elastic sheet. The robotic skins are moved by pneumatic actuators or memory alloy that can bounce back into shape. If this is then wrapped around a soft, deformable object, moving the skin with the actuators can allow the object to crawl along a surface.

The key to the design here is flexibility: rather than adding chips, sensors, and motors into every household object to turn them into individual automatons, the same skin can be used for many purposes. “We can take the skins and wrap them around one object to perform a task—locomotion, for example—and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” said Kramer-Bottiglio. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.”

The task is then to dream up applications for the omni-skins. Initially, you might imagine demanding a stuffed toy to fetch the remote control for you, or animating a sponge to wipe down kitchen surfaces—but this is just the beginning. The scientists attached the skins to a soft tube and camera, creating a worm-like robot that could compress itself and crawl into small spaces for rescue missions. The same skins could then be worn by a person to sense their posture. One could easily imagine this being adapted into a soft exoskeleton for medical or industrial purposes: for example, helping with rehabilitation after an accident or injury.

The initial motivating factor for creating the robots was in an environment where space and weight are at a premium, and humans are forced to improvise with whatever’s at hand: outer space. Kramer-Bottoglio originally began the work after NASA called out for soft robotics systems for use by astronauts. Instead of wasting valuable rocket payload by sending up a heavy metal droid like ATLAS to fetch items or perform repairs, soft robotic skins with modular sensors could be adapted for a range of different uses spontaneously.

By reassembling components in the soft robotic skin, a crumpled ball of paper could provide the chassis for a robot that performs repairs on the spaceship, or explores the lunar surface. The dynamic compression provided by the robotic skin could be used for g-suits to protect astronauts when they rapidly accelerate or decelerate.

“One of the main things I considered was the importance of multi-functionality, especially for deep space exploration where the environment is unpredictable. The question is: How do you prepare for the unknown unknowns? … Given the design-on-the-fly nature of this approach, it’s unlikely that a robot created using robotic skins will perform any one task optimally,” Kramer-Bottiglio said. “However, the goal is not optimization, but rather diversity of applications.”

There are still problems to resolve. Many of the videos of the skins indicate that they can rely on an external power supply. Creating new, smaller batteries that can power wearable devices has been a focus of cutting-edge materials science research for some time. Much of the lab’s expertise is in creating flexible, stretchable electronics that can be deformed by the actuators without breaking the circuitry. In the future, the team hopes to work on streamlining the production process; if the components could be 3D printed, then the skins could be created when needed.

In addition, robotic hardware that’s capable of performing an impressive range of precise motions is quite an advanced technology. The software to control those robots, and enable them to perform a variety of tasks, is quite another challenge. With soft robots, it can become even more complex to design that control software, because the body itself can change shape and deform as the robot moves. The same set of programmed motions, then, can produce different results depending on the environment.

“Let’s say I have a soft robot with four legs that crawls along the ground, and I make it walk up a hard slope,” Dr. David Howard, who works on robotics at CSIRO in Australia, explained to ABC.

“If I make that slope out of gravel and I give it the same control commands, the actual body is going to deform in a different way, and I’m not necessarily going to know what that is.”

Despite these and other challenges, research like that at the Faboratory still hopes to redefine how we think of robots and robotics. Instead of a robot that imitates a human and manipulates objects, the objects themselves will become programmable matter, capable of moving autonomously and carrying out a range of tasks. Futurists speculate about a world where most objects are automated to some degree and can assemble and repair themselves, or are even built entirely of tiny robots.

The tale of the Sorcerer’s Apprentice was first written in 1797, at the dawn of the industrial revolution, over a century before the word “robot” was even coined. Yet more and more roboticists aim to prove Arthur C Clarke’s maxim: any sufficiently advanced technology is indistinguishable from magic.

Image Credit: Joran Booth, The Faboratory Continue reading

Posted in Human Robots

#433303 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Artificial Intelligence Is Now a Pentagon Priority. Will Silicon Valley Help?
Cade Metz | The New York Times
“The consultants and planners who try to forecast threats think AI could be the next technological game changer in warfare. The Chinese government has raised the stakes with its own national strategy. Academic and commercial organizations in China have been open about working closely with the military on AI projects.”

BLOCKCHAIN
The World’s Oldest Blockchain Has Been Hiding in the New York Times Since 1995
Daniel Oberhaus | Motherboard
“Instead of posting customer hashes to a public digital ledger, Surety creates a unique hash value of all the new seals added to the database each week and publishes this hash value in the New York Times. The hash is placed in a small ad in the Times classified section under the heading ‘Notices & Lost and Found’ and has appeared once a week since 1995.”

FUTURE OF WORK
Y Combinator Learns Basic Income Is Not So Basic After All
Nitasha Tiku | Wired
“In January 2016, technology incubator Y Combinator announced plans to fund a long-term study on giving people a guaranteed monthly income, in part to offset fears about jobs being destroyed by automation. …Now, nearly three years later, YC Research, the incubator’s nonprofit arm, says it plans to begin the study next year, after a pilot project in Oakland took much longer than expected.”

ROBOTICS
Robotics-as-a-Service Is on the Way and Invia Robotics Is Leading the Charge
Jonathan Shieber | TechCrunch
“The team at inVia Robotics didn’t start out looking to build a business that would create a new kind of model for selling robotics to the masses, but that may be exactly what they’ve done.”

FUTURE
How to Survive Doomsday
Michael Hahn and Daniel Wolf Savin | Nautilus
“Let’s be optimistic and assume that we manage to avoid a self-inflicted nuclear holocaust, an extinction-sized asteroid, or deadly irradiation from a nearby supernova. That leaves about 6 billion years until the sun turns into a red giant, swelling to the orbit of Earth and melting our planet. Sounds like a lot of time. But don’t get too relaxed. Doomsday is coming a lot sooner than that.”

SPACE
NASA’s New Space Taxis
Mark Harris | Air & Space
“With the first launch in its Commercial Crew Program, NASA is trying something new: opening space exploration to private corporations and astronauts. The 21st century space race begins not as a contest between global superpowers but as a competition between companies.”

Image Credit: Jeremy Thomas / Unsplash Continue reading

Posted in Human Robots

#431170 This Week’s Awesome Stories From ...

AUGMENTED REALITY
ZED Mini Turns Rift and Vive Into an AR Headset From the FutureBen Lang | Road to VR“When attached, the camera provides stereo pass-through video and real-time depth and environment mapping, turning the headsets into dev kits emulating the capabilities of high-end AR headsets of the future. The ZED Mini will launch in November.”
ROBOTICS
Life-Size Humanoid Robot Is Designed to Fall Over (and Over and Over)Evan Ackerman | IEEE Spectrum “The researchers came up with a new strategy for not worrying about falls: not worrying about falls. Instead, they’ve built their robot from the ground up with an armored structure that makes it totally okay with falling over and getting right back up again.”
SPACE
Russia Will Team up With NASA to Build a Lunar Space StationAnatoly Zak | Popular Mechanics “NASA and its partner agencies plan to begin the construction of the modular habitat known as the Deep-Space Gateway in orbit around the Moon in the early 2020s. It will become the main destination for astronauts for at least a decade, extending human presence beyond the Earth’s orbit for the first time since the end of the Apollo program in 1972. Launched on NASA’s giant SLS rocket and serviced by the crews of the Orion spacecraft, the outpost would pave the way to a mission to Mars in the 2030s.”
TRANSPORTATION
Dubai Starts Testing Crewless Two-Person ‘Flying Taxis’Thuy Ong | The Verge“The drone was uncrewed and hovered 200 meters high during the test flight, according to Reuters. The AAT, which is about two meters high, was supplied by specialist German manufacturer Volocopter, known for its eponymous helicopter drone hybrid with 18 rotors…Dubai has a target for autonomous transport to account for a quarter of total trips by 2030.”
AUTONOMOUS CARS
Toyota Is Trusting a Startup for a Crucial Part of Its Newest Self-Driving CarsJohana Bhuiyan | Recode “Toyota unveiled the next generation of its self-driving platform today, which features more accurate object detection technology and mapping, among other advancements. These test cars—which Toyota is testing on both a closed driving course and on some public roads—will also be using Luminar’s lidar sensors, or radars that use lasers to detect the distance to an object.”
Image Credit: KHIUS / Shutterstock.com Continue reading

Posted in Human Robots