Tag Archives: 3d
#438774 The World’s First 3D Printed School ...
3D printed houses have been popping up all over the map. Some are hive-shaped, some can float, some are up for sale. Now this practical, cost-cutting technology is being employed for another type of building: a school.
Located on the island of Madagascar, the project is a collaboration between San Francisco-based architecture firm Studio Mortazavi and Thinking Huts, a nonprofit whose mission is to increase global access to education through 3D printing. The school will be built on the campus of a university in Fianarantsoa, a city in the south central area of the island nation.
According to the World Economic Forum, lack of physical infrastructure is one of the biggest barriers to education. Building schools requires not only funds, human capital, and building materials, but also community collaboration and ongoing upkeep and maintenance. For people to feel good about sending their kids to school each day, the buildings should be conveniently located, appealing, comfortable to spend several hours in, and of course safe. All of this is harder to accomplish than you might think, especially in low-income areas.
Because of its comparatively low cost and quick turnaround time, 3D printing has been lauded as a possible solution to housing shortages and a tool to aid in disaster relief. Cost details of the Madagascar school haven’t been released, but if 3D printed houses can go up in a day for under $10,000 or list at a much lower price than their non-3D-printed neighbors, it’s safe to say that 3D printing a school is likely substantially cheaper than building it through traditional construction methods.
The school’s modular design resembles a honeycomb, where as few or as many nodes as needed can be linked together. Each node consists of a room with two bathrooms, a closet, and a front and rear entrance. The Fianarantsoa school with just have one node to start with, but as local technologists will participate in the building process, they’ll learn the 3D printing ins and outs and subsequently be able to add new nodes or build similar schools in other areas.
Artist rendering of the completed school. Image Credit: Studio Mortazavi/Thinking Huts
The printer for the project is coming from Hyperion Robotics, a Finnish company that specializes in 3D printing solutions for reinforced concrete. The building’s walls will be made of layers of a special cement mixture that Thinking Huts says emits less carbon dioxide than traditional concrete. The roof, doors, and windows will be sourced locally, and the whole process can be completed in less than a week, another major advantage over traditional building methods.
“We can build these schools in less than a week, including the foundation and all the electrical and plumbing work that’s involved,” said Amir Mortazavi, lead architect on the project. “Something like this would typically take months, if not even longer.”
The roof of the building will be equipped with solar panels to provide the school with power, and in a true melding of modern technology and traditional design, the pattern of its walls is based on Malagasy textiles.
Thinking Huts considered seven different countries for its first school, and ended up choosing Madagascar for the pilot based on its need for education infrastructure, stable political outlook, opportunity for growth, and renewable energy potential. However, the team is hoping the pilot will be the first of many similar projects across multiple countries. “We can use this as a case study,” Mortazavi said. “Then we can go to other countries around the world and train the local technologists to use the 3D printer and start a nonprofit there to be able to build schools.”
Construction of the school will take place in the latter half of this year, with hopes of getting students into the classroom as soon as the pandemic is no longer a major threat to the local community’s health.
Image Credit: Studio Mortazavi/Thinking Huts Continue reading
#437193 TyroBot: DIY Humanoid Robot
“TyroBot” is a novice-friendly (but high-tech) 3D-printable open source kit that can be assembled in a few hours, and is very easy to program. It’s great way to teach yourself robotics and programming! Read more, or back them on Kickstarter.
#438014 Meet Blueswarm, a Smart School of ...
Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.
Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.
The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.
“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”
The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.
Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.
“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.
In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.
“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”
Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.
“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.
The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.
“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading