#437988 Bio-in­spired ro­bot­ics: Learn­ing ...

It is a high-speed movement: within fractions of a second the mouthparts of the dragonfly larvae spring forwards to seize its prey. For decades, researchers had assumed that this action must have been driven primarily by hydraulic pressure. Now, for the first time, scientists at Kiel University (CAU) have completely decrypted the biomechanical functional principle of what is known as the labial mask of dragonfly larvae. A vital contribution to this discovery was made by the team led by Dr. Sebastian Büsse of the Zoological Institute in its development of a bio-inspired robot with the operating principle of the complex mouthparts adapted to test its own hypothesis—the technology used here could lead to a significant enhancement of agile robot systems. The results of the ambitious research project were published on Wednesday 20 January in the renowned specialist journal Science Robotics.[Read more…]

This entry was posted in Human Robots and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

Comments are closed.