Tag Archives: website

#432293 An Innovator’s City Guide to Shanghai

Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.

Meet Your Guide

Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century

Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance

1. Coworking Space: Mixpace

With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.

2. Makerspace: XinCheJian

The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.

3. Local meetups/ networks: FinTech Connector

FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.

4. Best coffee shop with free WiFi: Seesaw

Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.

5. The startup neighborhood: Knowledge & Innovation Community (KIC)

Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.

6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen

Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.

7. Best way to get around: Metro

Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.

8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.

Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.

9. City’s best-kept secret: Barber Shop

This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).

10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund

On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.

11. Local volunteering opportunity: Shanghai Volunteer

Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.

12. Local University with great resources: Shanghai Jiao Tong University

Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.

This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.

Image Credits: Qinsong (Dora) Ke

Banner Image Credit: ESB Professional / Shutterstock.com Continue reading

Posted in Human Robots

#432021 Unleashing Some of the Most Ambitious ...

At Singularity University, we are unleashing a generation of women who are smashing through barriers and starting some of the most ambitious technology companies on the planet.

Singularity University was founded in 2008 to empower leaders to use exponential technologies to solve our world’s biggest challenges. Our flagship program, the Global Solutions Program, has historically brought 80 entrepreneurs from around the world to Silicon Valley for 10 weeks to learn about exponential technologies and create moonshot startups that improve the lives of a billion people within a decade.

After nearly 10 years of running this program, we can say that about 70 percent of our successful startups have been founded or co-founded by female entrepreneurs (see below for inspiring examples of their work). This is in sharp contrast to the typical 10–20 percent of venture-backed tech companies that have a female founder, as reported by TechCrunch.

How are we so dramatically changing the game? While 100 percent of the credit goes to these courageous women, as both an alumna of the Global Solutions Program and our current vice chair of Global Grand Challenges, I want to share my reflections on what has worked.

At the most basic level, it is essential to deeply believe in the inherent worth, intellectual genius, and profound entrepreneurial caliber of women. While this may seem obvious, this is not the way our world currently thinks—we live in a world that sees women’s ideas, contributions, work, and existence as inherently less valuable than men’s.

For example, a 2017 Harvard Business Review article noted that even when women engage in the same behaviors and work as men, their work is considered less valuable simply because a woman did the job. An additional 2017 Harvard Business Review article showed that venture capitalists are significantly less likely to invest in female entrepreneurs and are more likely to ask men questions about the potential success of their companies while grilling women about the potential downfalls of their companies.

This doubt and lack of recognition of the genius and caliber of women is also why women are still paid less than men for completing identical work. Further, it’s why women’s work often gets buried in “number two” support roles of men in leadership roles and why women are expected to take on second shifts at home managing tedious household chores in addition to their careers. I would also argue these views as well as the rampant sexual harassment, assault, and violence against women that exists today stems from stubborn, historical, patriarchal views of women as living for the benefit of men, rather than for their own sovereignty and inherent value.

As with any other business, Singularity University has not been immune to these biases but is resolutely focused on helping women achieve intellectual genius and global entrepreneurial caliber by harnessing powerful exponential technologies.

We create an environment where women can physically and intellectually thrive free of harassment to reach their full potential, and we are building a broader ecosystem of alumni and partners around the world who not only support our female entrepreneurs throughout their entrepreneurial journeys, but who are also sparking and leading systemic change in their own countries and communities.

Respecting the Intellectual Genius and Entrepreneurial Caliber of Women
The entrepreneurial legends of our time—Steve Jobs, Elon Musk, Mark Zuckerberg, Bill Gates, Jeff Bezos, Larry Page, Sergey Brin—are men who have all built their empires using exponential technologies. Exponential technologies helped these men succeed faster and with greater impact due to Moore’s Law and the Law of Accelerating Returns which states that any digital technology (such as computing, software, artificial intelligence, robotics, quantum computing, biotechnology, nanotechnology, etc.) will become more sophisticated while dramatically falling in price, enabling rapid scaling.

Knowing this, an entrepreneur can plot her way to an ambitious global solution over time, releasing new applications just as the technology and market are ready. Furthermore, these rapidly advancing technologies often converge to create new tools and opportunities for innovators to come up with novel solutions to challenges that were previously impossible to solve in the past.

For various reasons, women have not pursued exponential technologies as aggressively as men (or were prevented or discouraged from doing so).

While more women are founding firms at a higher rate than ever in wealthy countries like the United States, the majority are small businesses in linear industries that have been around for hundreds of years, such as social assistance, health, education, administrative, or consulting services. In lower-income countries, international aid agencies and nonprofits often encourage women to pursue careers in traditional handicrafts, micro-enterprise, and micro-finance. While these jobs have historically helped women escape poverty and gain financial independence, they have done little to help women realize the enormous power, influence, wealth, and ability to transform the world for the better that comes from building companies, nonprofits, and solutions grounded in exponential technologies.

We need women to be working with exponential technologies today in order to be powerful leaders in the future.

Participants who enroll in our Global Solutions Program spend the first few weeks of the program learning about exponential technologies from the world’s experts and the final weeks launching new companies or nonprofits in their area of interest. We require that women (as well as men) utilize exponential technologies as a condition of the program.

In this sense, at Singularity University women start their endeavors with all of us believing and behaving in a way that assumes they can achieve global impact at the level of our world’s most legendary entrepreneurs.

Creating an Environment Where Woman Can Thrive
While challenging women to embrace exponential technologies is essential, it is also important to create an environment where women can thrive. In particular, this means ensuring women feel at home on our campus by ensuring gender diversity, aggressively addressing sexual harassment, and flipping the traditional culture from one that penalizes women, to one that values and supports them.

While women were initially only a small minority of our Global Solutions Program, in 2014, we achieved around 50% female attendance—a statistic that has since held over the years.

This is not due to a quota—every year we turn away extremely qualified women from our program (and are working on reformulating the program to allow more people to participate in the future.) While part of our recruiting success is due to the efforts of our marketing team, we also benefited from the efforts of some of our early female founders, staff, faculty, and alumnae including Susan Fonseca, Emeline Paat-Dahlstrom, Kathryn Myronuk, Lajuanda Asemota, Chiara Giovenzana, and Barbara Silva Tronseca.

As early champions of Singularity University these women not only launched diversity initiatives and personally reached out to women, but were crucial role models holding leadership roles in our community. In addition, Fonseca and Silva also both created multiple organizations and initiatives outside of (or in conjunction with) the university that produced additional pipelines of female candidates. In particular, Fonseca founded Women@TheFrontier as well as other organizations focusing on women, technology and innovation, and Silva founded BestInnovation (a woman’s accelerator in Latin America), as well as led Singularity University’s Chilean Chapter and founded the first SingularityU Summit in Latin America.

These women’s efforts in globally scaling Singularity University have been critical in ensuring woman around the world now see Singularity University as a place where they can lead and shape the future.

Also, thanks to Google (Alphabet) and many of our alumni and partners, we were able to provide full scholarships to any woman (or man) to attend our program regardless of their economic status. Google committed significant funding for full scholarships while our partners around the world also hosted numerous Global Impact Competitions, where entrepreneurs pitched their solutions to their local communities with the winners earning a full scholarship funded by our partners to attend the Global Solution Program as their prize.

Google and our partners’ support helped individuals attend our program and created a wider buzz around exponential technology and social change around the world in local communities. It led to the founding of 110 SU chapters in 55 countries.

Another vital aspect of our work in supporting women has been trying to create a harassment-free environment. Throughout the Silicon Valley, more than 60% of women convey that while they are trying to build their companies or get their work done, they are also dealing with physical and sexual harassment while being demeaned and excluded in other ways in the workplace. We have taken actions to educate and train our staff on how to deal with situations should they occur. All staff receives training on harassment when they join Singularity University, and all Global Solutions Program participants attend mandatory trainings on sexual harassment when they first arrive on campus. We also have male and female wellness counselors available that can offer support to both individuals and teams of entrepreneurs throughout the entire program.

While at a minimum our campus must be physically safe for women, we also strive to create a culture that values women and supports them in the additional challenges and expectations they face. For example, one of our 2016 female participants, Van Duesterberg, was pregnant during the program and said that instead of having people doubt her commitment to her startup or make her prove she could handle having a child and running a start-up at the same time, people went out of their way to help her.

“I was the epitome of a person not supposed to be doing a startup,” she said. “I was pregnant and would need to take care of my child. But Singularity University was supportive and encouraging. They made me feel super-included and that it was possible to do both. I continue to come back to campus even though the program is over because the network welcomes me and supports me rather than shuts me out because of my physical limitations. Rather than making me feel I had to prove myself, everyone just understood me and supported me, whether it was bringing me healthy food or recommending funders.”

Another strength that we have in supporting women is that after the Global Solutions Program, entrepreneurs have access to a much larger ecosystem.

Many entrepreneurs partake in SU Ventures, which can provide further support to startups as they develop, and we now have a larger community of over 200,000 people in almost every country. These members have often attended other Singularity University programs, events and are committed to our vision of the future. These women and men consist of business executives, Fortune 500 companies, investors, nonprofit and government leaders, technologists, members of the media, and other movers and shakers in the world. They have made introductions for our founders, collaborated with them on business ventures, invested in them and showcased their work at high profile events around the world.

Building for the Future
While our Global Solutions Program is making great strides in supporting female entrepreneurs, there is always more work to do. We are now focused on achieving the same degree of female participation across all of our programs and actively working to recruit and feature more female faculty and speakers on stage. As our community grows and scales around the world, we are also intent at how to best uphold our values and policies around sexual harassment across diverse locations and cultures. And like all businesses everywhere, we are focused on recruiting more women to serve at senior leadership levels within SU. As we make our way forward, we hope that you will join us in boldly leading this change and recognizing the genius and power of female entrepreneurs.

Meet Some of Our Female Moonshots
While we have many remarkable female entrepreneurs in the Singularity University community, the list below features a few of the women who have founded or co-founded companies at the Global Solutions Program that have launched new industries and are on their way to changing the way our world works for millions if not billions of people.

Jessica Scorpio co-founded Getaround in 2009. Getaround was one of the first car-sharing service platforms allowing anyone to rent out their car using a smartphone app. GetAround was a revolutionary idea in 2009, not only because smartphones and apps were still in their infancy, but because it was unthinkable that a technology startup could disrupt the major entrenched car, transport, and logistics companies. Scorpio’s early insights and pioneering entrepreneurial work brought to life new ways that humans relate to car sharing and the future self-driving car industry. Scorpio and Getaround have won numerous awards, and Getaround now serves over 200,000 members.

Paola Santana co-founded Matternet in 2011, which pioneered the commercial drone transport industry. In 2011, only military, hobbyists or the film industry used drones. Matternet demonstrated that drones could be used for commercial transport in short point-to-point deliveries for high-value goods laying the groundwork for drone transport around the world as well as some of the early thinking behind the future flying car industry. Santana was also instrumental in shaping regulations for the use of commercial drones around the world, making the industry possible.

Sara Naseri co-founded Qurasense in 2014, a life sciences start-up that analyzes women’s health through menstrual blood allowing women to track their health every month. Naseri is shifting our understanding of women’s menstrual blood as a waste product and something “not to be talked about,” to a rich, non-invasive, abundant source of information about women’s health.

Abi Ramanan co-founded ImpactVision in 2015, a software company that rapidly analyzes the quality and characteristics of food through hyperspectral images. Her long-term vision is to digitize food supply chains to reduce waste and fraud, given that one-third of all food is currently wasted before it reaches our plates. Ramanan is also helping the world understand that hyperspectral technology can be used in many industries to help us “see the unseen” and augment our ability to sense and understand what is happening around us in a much more sophisticated way.

Anita Schjøll Brede and Maria Ritola co-founded Iris AI in 2015, an artificial intelligence company that is building an AI research assistant that drastically improves the efficiency of R&D research and breaks down silos between different industries. Their long-term vision is for Iris AI to become smart enough that she will become a scientist herself. Fast Company named Iris AI one of the 10 most innovative artificial intelligence companies for 2017.

Hla Hla Win co-founded 360ed in 2016, a startup that conducts teacher training and student education through virtual reality and augmented reality in Myanmar. They have already connected teachers from 128 private schools in Myanmar with schools teaching 21st-century skills in Silicon Valley and around the world. Their moonshot is to build a platform where any teacher in the world can share best practices in teachers’ training. As they succeed, millions of children in some of the poorest parts of the world will have access to a 21st-century education.

Min FitzGerald and Van Duesterberg cofounded Nutrigene in 2017, a startup that ships freshly formulated, tailor-made supplement elixirs directly to consumers. Their long-term vision is to help people optimize their health using actionable data insights, so people can take a guided, tailored approaching to thriving into longevity.

Anna Skaya co-founded Basepaws in 2016, which created the first genetic test for cats and is building a community of citizen scientist pet owners. They are creating personalized pet products such as supplements, therapeutics, treats, and toys while also developing a database of genetic data for future research that will help both humans and pets over the long term.

Olivia Ramos co-founded Deep Blocks in 2016, a startup using artificial intelligence to integrate and streamline the processes of architecture, pre-construction, and real estate. As digital technologies, artificial intelligence, and robotics advance, it no longer makes sense for these industries to exist separately. Ramos recognized the tremendous value and efficiency that it is now possible to unlock with exponential technologies and creating an integrated industry in the future.

Please also visit our website to learn more about other female entrepreneurs, staff and faculty who are pioneering the future through exponential technologies. Continue reading

Posted in Human Robots

#431928 How Fast Is AI Progressing? Stanford’s ...

When? This is probably the question that futurists, AI experts, and even people with a keen interest in technology dread the most. It has proved famously difficult to predict when new developments in AI will take place. The scientists at the Dartmouth Summer Research Project on Artificial Intelligence in 1956 thought that perhaps two months would be enough to make “significant advances” in a whole range of complex problems, including computers that can understand language, improve themselves, and even understand abstract concepts.
Sixty years later, and these problems are not yet solved. The AI Index, from Stanford, is an attempt to measure how much progress has been made in artificial intelligence.
The index adopts a unique approach, and tries to aggregate data across many regimes. It contains Volume of Activity metrics, which measure things like venture capital investment, attendance at academic conferences, published papers, and so on. The results are what you might expect: tenfold increases in academic activity since 1996, an explosive growth in startups focused around AI, and corresponding venture capital investment. The issue with this metric is that it measures AI hype as much as AI progress. The two might be correlated, but then again, they may not.
The index also scrapes data from the popular coding website Github, which hosts more source code than anyone in the world. They can track the amount of AI-related software people are creating, as well as the interest levels in popular machine learning packages like Tensorflow and Keras. The index also keeps track of the sentiment of news articles that mention AI: surprisingly, given concerns about the apocalypse and an employment crisis, those considered “positive” outweigh the “negative” by three to one.
But again, this could all just be a measure of AI enthusiasm in general.
No one would dispute the fact that we’re in an age of considerable AI hype, but the progress of AI is littered by booms and busts in hype, growth spurts that alternate with AI winters. So the AI Index attempts to track the progress of algorithms against a series of tasks. How well does computer vision perform at the Large Scale Visual Recognition challenge? (Superhuman at annotating images since 2015, but they still can’t answer questions about images very well, combining natural language processing and image recognition). Speech recognition on phone calls is almost at parity.
In other narrow fields, AIs are still catching up to humans. Translation might be good enough that you can usually get the gist of what’s being said, but still scores poorly on the BLEU metric for translation accuracy. The AI index even keeps track of how well the programs can do on the SAT test, so if you took it, you can compare your score to an AI’s.
Measuring the performance of state-of-the-art AI systems on narrow tasks is useful and fairly easy to do. You can define a metric that’s simple to calculate, or devise a competition with a scoring system, and compare new software with old in a standardized way. Academics can always debate about the best method of assessing translation or natural language understanding. The Loebner prize, a simplified question-and-answer Turing Test, recently adopted Winograd Schema type questions, which rely on contextual understanding. AI has more difficulty with these.
Where the assessment really becomes difficult, though, is in trying to map these narrow-task performances onto general intelligence. This is hard because of a lack of understanding of our own intelligence. Computers are superhuman at chess, and now even a more complex game like Go. The braver predictors who came up with timelines thought AlphaGo’s success was faster than expected, but does this necessarily mean we’re closer to general intelligence than they thought?
Here is where it’s harder to track progress.
We can note the specialized performance of algorithms on tasks previously reserved for humans—for example, the index cites a Nature paper that shows AI can now predict skin cancer with more accuracy than dermatologists. We could even try to track one specific approach to general AI; for example, how many regions of the brain have been successfully simulated by a computer? Alternatively, we could simply keep track of the number of professions and professional tasks that can now be performed to an acceptable standard by AI.

“We are running a race, but we don’t know how to get to the endpoint, or how far we have to go.”

Progress in AI over the next few years is far more likely to resemble a gradual rising tide—as more and more tasks can be turned into algorithms and accomplished by software—rather than the tsunami of a sudden intelligence explosion or general intelligence breakthrough. Perhaps measuring the ability of an AI system to learn and adapt to the work routines of humans in office-based tasks could be possible.
The AI index doesn’t attempt to offer a timeline for general intelligence, as this is still too nebulous and confused a concept.
Michael Woodridge, head of Computer Science at the University of Oxford, notes, “The main reason general AI is not captured in the report is that neither I nor anyone else would know how to measure progress.” He is concerned about another AI winter, and overhyped “charlatans and snake-oil salesmen” exaggerating the progress that has been made.
A key concern that all the experts bring up is the ethics of artificial intelligence.
Of course, you don’t need general intelligence to have an impact on society; algorithms are already transforming our lives and the world around us. After all, why are Amazon, Google, and Facebook worth any money? The experts agree on the need for an index to measure the benefits of AI, the interactions between humans and AIs, and our ability to program values, ethics, and oversight into these systems.
Barbra Grosz of Harvard champions this view, saying, “It is important to take on the challenge of identifying success measures for AI systems by their impact on people’s lives.”
For those concerned about the AI employment apocalypse, tracking the use of AI in the fields considered most vulnerable (say, self-driving cars replacing taxi drivers) would be a good idea. Society’s flexibility for adapting to AI trends should be measured, too; are we providing people with enough educational opportunities to retrain? How about teaching them to work alongside the algorithms, treating them as tools rather than replacements? The experts also note that the data suffers from being US-centric.
We are running a race, but we don’t know how to get to the endpoint, or how far we have to go. We are judging by the scenery, and how far we’ve run already. For this reason, measuring progress is a daunting task that starts with defining progress. But the AI index, as an annual collection of relevant information, is a good start.
Image Credit: Photobank gallery / Shutterstock.com Continue reading

Posted in Human Robots

#431873 Why the World Is Still Getting ...

If you read or watch the news, you’ll likely think the world is falling to pieces. Trends like terrorism, climate change, and a growing population straining the planet’s finite resources can easily lead you to think our world is in crisis.
But there’s another story, a story the news doesn’t often report. This story is backed by data, and it says we’re actually living in the most peaceful, abundant time in history, and things are likely to continue getting better.
The News vs. the Data
The reality that’s often clouded by a constant stream of bad news is we’re actually seeing a massive drop in poverty, fewer deaths from violent crime and preventable diseases. On top of that, we’re the most educated populace to ever walk the planet.
“Violence has been in decline for thousands of years, and today we may be living in the most peaceful era in the existence of our species.” –Steven Pinker
In the last hundred years, we’ve seen the average human life expectancy nearly double, the global GDP per capita rise exponentially, and childhood mortality drop 10-fold.

That’s pretty good progress! Maybe the world isn’t all gloom and doom.If you’re still not convinced the world is getting better, check out the charts in this article from Vox and on Peter Diamandis’ website for a lot more data.
Abundance for All Is Possible
So now that you know the world isn’t so bad after all, here’s another thing to think about: it can get much better, very soon.
In their book Abundance: The Future Is Better Than You Think, Steven Kotler and Peter Diamandis suggest it may be possible for us to meet and even exceed the basic needs of all the people living on the planet today.
“In the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.”
This means making sure every single person in the world has adequate food, water and shelter, as well as a good education, access to healthcare, and personal freedom.
This might seem unimaginable, especially if you tend to think the world is only getting worse. But given how much progress we’ve already made in the last few hundred years, coupled with the recent explosion of information sharing and new, powerful technologies, abundance for all is not as out of reach as you might believe.
Throughout history, we’ve seen that in the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.
Napoleon III
In Abundance, Diamandis and Kotler tell the story of how aluminum went from being one of the rarest metals on the planet to being one of the most abundant…
In the 1800s, aluminum was more valuable than silver and gold because it was rarer. So when Napoleon III entertained the King of Siam, the king and his guests were honored by being given aluminum utensils, while the rest of the dinner party ate with gold.
But aluminum is not really rare.
In fact, aluminum is the third most abundant element in the Earth’s crust, making up 8.3% of the weight of our planet. But it wasn’t until chemists Charles Martin Hall and Paul Héroult discovered how to use electrolysis to cheaply separate aluminum from surrounding materials that the element became suddenly abundant.
The problems keeping us from achieving a world where everyone’s basic needs are met may seem like resource problems — when in reality, many are accessibility problems.
The Engine Driving Us Toward Abundance: Exponential Technology
History is full of examples like the aluminum story. The most powerful one of the last few decades is information technology. Think about all the things that computers and the internet made abundant that were previously far less accessible because of cost or availability … Here are just a few examples:

Easy access to the world’s information
Ability to share information freely with anyone and everyone
Free/cheap long-distance communication
Buying and selling goods/services regardless of location

Less than two decades ago, when someone reached a certain level of economic stability, they could spend somewhere around $10K on stereos, cameras, entertainment systems, etc — today, we have all that equipment in the palm of our hand.
Now, there is a new generation of technologies heavily dependant on information technology and, therefore, similarly riding the wave of exponential growth. When put to the right use, emerging technologies like artificial intelligence, robotics, digital manufacturing, nano-materials and digital biology make it possible for us to drastically raise the standard of living for every person on the planet.

These are just some of the innovations which are unlocking currently scarce resources:

IBM’s Watson Health is being trained and used in medical facilities like the Cleveland Clinic to help doctors diagnose disease. In the future, it’s likely we’ll trust AI just as much, if not more than humans to diagnose disease, allowing people all over the world to have access to great diagnostic tools regardless of whether there is a well-trained doctor near them.

Solar power is now cheaper than fossil fuels in some parts of the world, and with advances in new materials and storage, the cost may decrease further. This could eventually lead to nearly-free, clean energy for people across the world.

Google’s GMNT network can now translate languages as well as a human, unlocking the ability for people to communicate globally as we never have before.

Self-driving cars are already on the roads of several American cities and will be coming to a road near you in the next couple years. Considering the average American spends nearly two hours driving every day, not having to drive would free up an increasingly scarce resource: time.

The Change-Makers
Today’s innovators can create enormous change because they have these incredible tools—which would have once been available only to big organizations—at their fingertips. And, as a result of our hyper-connected world, there is an unprecedented ability for people across the planet to work together to create solutions to some of our most pressing problems today.
“In today’s hyperlinked world, solving problems anywhere, solves problems everywhere.” –Peter Diamandis and Steven Kotler, Abundance
According to Diamandis and Kotler, there are three groups of people accelerating positive change.

DIY InnovatorsIn the 1970s and 1980s, the Homebrew Computer Club was a meeting place of “do-it-yourself” computer enthusiasts who shared ideas and spare parts. By the 1990s and 2000s, that little club became known as an inception point for the personal computer industry — dozens of companies, including Apple Computer, can directly trace their origins back to Homebrew. Since then, we’ve seen the rise of the social entrepreneur, the Maker Movement and the DIY Bio movement, which have similar ambitions to democratize social reform, manufacturing, and biology, the way Homebrew democratized computers. These are the people who look for new opportunities and aren’t afraid to take risks to create something new that will change the status-quo.
Techno-PhilanthropistsUnlike the robber barons of the 19th and early 20th centuries, today’s “techno-philanthropists” are not just giving away some of their wealth for a new museum, they are using their wealth to solve global problems and investing in social entrepreneurs aiming to do the same. The Bill and Melinda Gates Foundation has given away at least $28 billion, with a strong focus on ending diseases like polio, malaria, and measles for good. Jeff Skoll, after cashing out of eBay with $2 billion in 1998, went on to create the Skoll Foundation, which funds social entrepreneurs across the world. And last year, Mark Zuckerberg and Priscilla Chan pledged to give away 99% of their $46 billion in Facebook stock during their lifetimes.
The Rising BillionCisco estimates that by 2020, there will be 4.1 billion people connected to the internet, up from 3 billion in 2015. This number might even be higher, given the efforts of companies like Facebook, Google, Virgin Group, and SpaceX to bring internet access to the world. That’s a billion new people in the next several years who will be connected to the global conversation, looking to learn, create and better their own lives and communities.In his book, Fortune at the Bottom of the Pyramid, C.K. Pahalad writes that finding co-creative ways to serve this rising market can help lift people out of poverty while creating viable businesses for inventive companies.

The Path to Abundance
Eager to create change, innovators armed with powerful technologies can accomplish incredible feats. Kotler and Diamandis imagine that the path to abundance occurs in three tiers:

Basic Needs (food, water, shelter)
Tools of Growth (energy, education, access to information)
Ideal Health and Freedom

Of course, progress doesn’t always happen in a straight, logical way, but having a framework to visualize the needs is helpful.
Many people don’t believe it’s possible to end the persistent global problems we’re facing. However, looking at history, we can see many examples where technological tools have unlocked resources that previously seemed scarce.
Technological solutions are not always the answer, and we need social change and policy solutions as much as we need technology solutions. But we have seen time and time again, that powerful tools in the hands of innovative, driven change-makers can make the seemingly impossible happen.

You can download the full “Path to Abundance” infographic here. It was created under a CC BY-NC-ND license. If you share, please attribute to Singularity University.
Image Credit: janez volmajer / Shutterstock.com Continue reading

Posted in Human Robots

#431866 The Technologies We’ll Have Our Eyes ...

It’s that time of year again when our team has a little fun and throws on our futurist glasses to look ahead at some of the technologies and trends we’re most anticipating next year.
Whether the implications of a technology are vast or it resonates with one of us personally, here’s the list from some of the Singularity Hub team of what we have our eyes on as we enter the new year.
For a little refresher, these were the technologies our team was fired up about at the start of 2017.
Tweet us the technology you’re excited to watch in 2018 at @SingularityHub.
Cryptocurrency and Blockchain
“Given all the noise Bitcoin is making globally in the media, it is driving droves of main street investors to dabble in and learn more about cryptocurrencies. This will continue to raise valuations and drive adoption of blockchain. From Bank of America recently getting a blockchain-based patent approved to the Australian Securities Exchange’s plan to use blockchain, next year is going to be chock-full of these stories. Coindesk even recently spotted a patent filing from Apple involving blockchain. From ‘China’s Ethereum’, NEO, to IOTA to Golem to Qtum, there are a lot of interesting cryptos to follow given the immense numbers of potential applications. Hang on, it’s going to be a bumpy ride in 2018!”
–Kirk Nankivell, Website Manager
There Is No One Technology to Watch
“Next year may be remembered for advances in gene editing, blockchain, AI—or most likely all these and more. There is no single technology to watch. A number of consequential trends are advancing and converging. This general pace of change is exciting, and it also contributes to spiking anxiety. Technology’s invisible lines of force are extending further and faster into our lives and subtly subverting how we view the world and each other in unanticipated ways. Still, all the near-term messiness and volatility, the little and not-so-little dramas, the hype and disillusion, the controversies and conflict, all that smooths out a bit when you take a deep breath and a step back, and it’s my sincere hope and belief the net result will be more beneficial than harmful.”
–Jason Dorrier, Managing Editor
‘Fake News’ Fighting Technology
“It’s been a wild ride for the media this year with the term ‘fake news’ moving from the public’s peripheral and into mainstream vocabulary. The spread of ‘fake news’ is often blamed on media outlets, but social media platforms and search engines are often responsible too. (Facebook still won’t identify as a media company—maybe next year?) Yes, technology can contribute to spreading false information, but it can also help stop it. From technologists who are building in-article ‘trust indicator’ features, to artificial intelligence systems that can both spot and shut down fake news early on, I’m hopeful we can create new solutions to this huge problem. One step further: if publishers step up to fix this we might see some faith restored in the media.”
–Alison E. Berman, Digital Producer
Pay-as-You-Go Home Solar Power
“People in rural African communities are increasingly bypassing electrical grids (which aren’t even an option in many cases) and installing pay-as-you-go solar panels on their homes. The companies offering these services are currently not subject to any regulations, though they’re essentially acting as a utility. As demand for power grows, they’ll have to come up with ways to efficiently scale, and to balance the humanitarian and capitalistic aspects of their work. It’s fascinating to think traditional grids may never be necessary in many areas of the continent thanks to this technology.”
–Vanessa Bates Ramirez, Associate Editor
Virtual Personal Assistants
“AI is clearly going to rule our lives, and in many ways it already makes us look like clumsy apes. Alexa, Siri, and Google Assistant are promising first steps toward a world of computers that understand us and relate to us on an emotional level. I crave the day when my Apple Watch coaches me into healthier habits, lets me know about new concerts nearby, speaks to my self-driving Lyft on my behalf, and can help me respond effectively to aggravating emails based on communication patterns. But let’s not brush aside privacy concerns and the implications of handing over our personal data to megacorporations. The scariest thing here is that privacy laws and advertising ethics do not accommodate this level of intrusive data hoarding.”
–Matthew Straub, Director of Digital Engagement (Hub social media)
Solve for Learning: Educational Apps for Children in Conflict Zones
“I am most excited by exponential technology when it is used to help solve a global grand challenge. Educational apps are currently being developed to help solve for learning by increasing accessibility to learning opportunities for children living in conflict zones. Many children in these areas are not receiving an education, with girls being 2.5 times more likely than boys to be out of school. The EduApp4Syria project is developing apps to help children in Syria and Kashmir learn in their native languages. Mobile phones are increasingly available in these areas, and the apps are available offline for children who do not have consistent access to mobile networks. The apps are low-cost, easily accessible, and scalable educational opportunities.
–Paige Wilcoxson, Director, Curriculum & Learning Design
Image Credit: Triff / Shutterstock.com Continue reading

Posted in Human Robots