Tag Archives: wall

#432884 This Week’s Awesome Stories From ...

ROBOTICS
Boston Dynamics’ SpotMini Robot Dog Goes on Sale in 2019
Stephen Shankland | CNET
“The company has 10 SpotMini prototypes now and will work with manufacturing partners to build 100 this year, said company co-founder and President Marc Raibert at a TechCrunch robotics conference Friday. ‘That’s a prelude to getting into a higher rate of production’ in anticipation of sales next year, he said. Who’ll buy it? Probably not you.”

Also from Boston Dynamics’ this week:

SPACE
Made In Space Wins NASA Contract for Next-Gen ‘Vulcan’ Manufacturing System
Mike Wall | Space.com
“’The Vulcan hybrid manufacturing system allows for flexible augmentation and creation of metallic components on demand with high precision,’ Mike Snyder, Made In Space chief engineer and principal investigator, said in a statement. …When Vulcan is ready to go, Made In Space aims to demonstrate the technology on the ISS, showing Vulcan’s potential usefulness for a variety of exploration missions.”

ARTIFICIAL INTELLIGENCE
Duplex Shows Google Failing at Ethical and Creative AI Design
Natasha Lomas | TechCrunch
“But while the home crowd cheered enthusiastically at how capable Google had seemingly made its prototype robot caller—with Pichai going on to sketch a grand vision of the AI saving people and businesses time—the episode is worryingly suggestive of a company that views ethics as an after-the-fact consideration. One it does not allow to trouble the trajectory of its engineering ingenuity.”

DESIGN
What Artists Can Tech Us About Making Technology More Human
Elizabeth Stinson| Wired
“For the last year, Park, along with the artist Sougwen Chung and dancers Jason Oremus and Garrett Coleman of the dance collective Hammerstep, have been working out of Bell Labs as part of a residency called Experiments in Art and Technology. The year-long residency, a collaboration between Bell Labs and the New Museum’s incubator, New Inc, culminated in ‘Only Human,’ a recently-opened exhibition at Mana where the artists’ pieces will be on display through the end of May.”

GOVERNANCE
The White House Says a New AI Task Force Will Protect Workers and Keep America First
Will Knight | MIT Technology Review
“The meeting and the select committee signal that the administration takes the impact of artificial intellgence seriously. This has not always been apparent. In his campaign speeches, Trump suggested reviving industries that have already been overhauled by automation. The Treasury secretary, Steven Mnuchin, also previously said that the idea of robots and AI taking people’s jobs was ‘not even on my radar screen.’”

Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#432671 Stuff 3.0: The Era of Programmable ...

It’s the end of a long day in your apartment in the early 2040s. You decide your work is done for the day, stand up from your desk, and yawn. “Time for a film!” you say. The house responds to your cues. The desk splits into hundreds of tiny pieces, which flow behind you and take on shape again as a couch. The computer screen you were working on flows up the wall and expands into a flat projection screen. You relax into the couch and, after a few seconds, a remote control surfaces from one of its arms.

In a few seconds flat, you’ve gone from a neatly-equipped office to a home cinema…all within the same four walls. Who needs more than one room?

This is the dream of those who work on “programmable matter.”

In his recent book about AI, Max Tegmark makes a distinction between three different levels of computational sophistication for organisms. Life 1.0 is single-celled organisms like bacteria; here, hardware is indistinguishable from software. The behavior of the bacteria is encoded into its DNA; it cannot learn new things.

Life 2.0 is where humans live on the spectrum. We are more or less stuck with our hardware, but we can change our software by choosing to learn different things, say, Spanish instead of Italian. Much like managing space on your smartphone, your brain’s hardware will allow you to download only a certain number of packages, but, at least theoretically, you can learn new behaviors without changing your underlying genetic code.

Life 3.0 marks a step-change from this: creatures that can change both their hardware and software in something like a feedback loop. This is what Tegmark views as a true artificial intelligence—one that can learn to change its own base code, leading to an explosion in intelligence. Perhaps, with CRISPR and other gene-editing techniques, we could be using our “software” to doctor our “hardware” before too long.

Programmable matter extends this analogy to the things in our world: what if your sofa could “learn” how to become a writing desk? What if, instead of a Swiss Army knife with dozens of tool attachments, you just had a single tool that “knew” how to become any other tool you could require, on command? In the crowded cities of the future, could houses be replaced by single, OmniRoom apartments? It would save space, and perhaps resources too.

Such are the dreams, anyway.

But when engineering and manufacturing individual gadgets is such a complex process, you can imagine that making stuff that can turn into many different items can be extremely complicated. Professor Skylar Tibbits at MIT referred to it as 4D printing in a TED Talk, and the website for his research group, the Self-Assembly Lab, excitedly claims, “We have also identified the key ingredients for self-assembly as a simple set of responsive building blocks, energy and interactions that can be designed within nearly every material and machining process available. Self-assembly promises to enable breakthroughs across many disciplines, from biology to material science, software, robotics, manufacturing, transportation, infrastructure, construction, the arts, and even space exploration.”

Naturally, their projects are still in the early stages, but the Self-Assembly Lab and others are genuinely exploring just the kind of science fiction applications we mooted.

For example, there’s the cell-phone self-assembly project, which brings to mind eerie, 24/7 factories where mobile phones assemble themselves from 3D printed kits without human or robotic intervention. Okay, so the phones they’re making are hardly going to fly off the shelves as fashion items, but if all you want is something that works, it could cut manufacturing costs substantially and automate even more of the process.

One of the major hurdles to overcome in making programmable matter a reality is choosing the right fundamental building blocks. There’s a very important balance to strike. To create fine details, you need to have things that aren’t too big, so as to keep your rearranged matter from being too lumpy. This might make the building blocks useless for certain applications—for example, if you wanted to make tools for fine manipulation. With big pieces, it might be difficult to simulate a range of textures. On the other hand, if the pieces are too small, different problems can arise.

Imagine a setup where each piece is a small robot. You have to contain the robot’s power source and its brain, or at least some kind of signal-generator and signal-processor, all in the same compact unit. Perhaps you can imagine that one might be able to simulate a range of textures and strengths by changing the strength of the “bond” between individual units—your desk might need to be a little bit more firm than your bed, which might be nicer with a little more give.

Early steps toward creating this kind of matter have been taken by those who are developing modular robots. There are plenty of different groups working on this, including MIT, Lausanne, and the University of Brussels.

In the latter configuration, one individual robot acts as a centralized decision-maker, referred to as the brain unit, but additional robots can autonomously join the brain unit as and when needed to change the shape and structure of the overall system. Although the system is only ten units at present, it’s a proof-of-concept that control can be orchestrated over a modular system of robots; perhaps in the future, smaller versions of the same thing could be the components of Stuff 3.0.

You can imagine that with machine learning algorithms, such swarms of robots might be able to negotiate obstacles and respond to a changing environment more easily than an individual robot (those of you with techno-fear may read “respond to a changing environment” and imagine a robot seamlessly rearranging itself to allow a bullet to pass straight through without harm).

Speaking of robotics, the form of an ideal robot has been a subject of much debate. In fact, one of the major recent robotics competitions—DARPA’s Robotics Challenge—was won by a robot that could adapt, beating Boston Dynamics’ infamous ATLAS humanoid with the simple addition of a wheel that allowed it to drive as well as walk.

Rather than building robots into a humanoid shape (only sometimes useful), allowing them to evolve and discover the ideal form for performing whatever you’ve tasked them to do could prove far more useful. This is particularly true in disaster response, where expensive robots can still be more valuable than humans, but conditions can be very unpredictable and adaptability is key.

Further afield, many futurists imagine “foglets” as the tiny nanobots that will be capable of constructing anything from raw materials, somewhat like the “Santa Claus machine.” But you don’t necessarily need anything quite so indistinguishable from magic to be useful. Programmable matter that can respond and adapt to its surroundings could be used in all kinds of industrial applications. How about a pipe that can strengthen or weaken at will, or divert its direction on command?

We’re some way off from being able to order our beds to turn into bicycles. As with many tech ideas, it may turn out that the traditional low-tech solution is far more practical and cost-effective, even as we can imagine alternatives. But as the march to put a chip in every conceivable object goes on, it seems certain that inanimate objects are about to get a lot more animated.

Image Credit: PeterVrabel / Shutterstock.com Continue reading

Posted in Human Robots

#432487 Can We Make a Musical Turing Test?

As artificial intelligence advances, we’re encountering the same old questions. How much of what we consider to be fundamentally human can be reduced to an algorithm? Can we create something sufficiently advanced that people can no longer distinguish between the two? This, after all, is the idea behind the Turing Test, which has yet to be passed.

At first glance, you might think music is beyond the realm of algorithms. Birds can sing, and people can compose symphonies. Music is evocative; it makes us feel. Very often, our intense personal and emotional attachments to music are because it reminds us of our shared humanity. We are told that creative jobs are the least likely to be automated. Creativity seems fundamentally human.

But I think above all, we view it as reductionist sacrilege: to dissect beautiful things. “If you try to strangle a skylark / to cut it up, see how it works / you will stop its heart from beating / you will stop its mouth from singing.” A human musician wrote that; a machine might be able to string words together that are happy or sad; it might even be able to conjure up a decent metaphor from the depths of some neural network—but could it understand humanity enough to produce art that speaks to humans?

Then, of course, there’s the other side of the debate. Music, after all, has a deeply mathematical structure; you can train a machine to produce harmonics. “In the teachings of Pythagoras and his followers, music was inseparable from numbers, which were thought to be the key to the whole spiritual and physical universe,” according to Grout in A History of Western Music. You might argue that the process of musical composition cannot be reduced to a simple algorithm, yet musicians have often done so. Mozart, with his “Dice Music,” used the roll of a dice to decide how to order musical fragments; creativity through an 18th-century random number generator. Algorithmic music goes back a very long way, with the first papers on the subject from the 1960s.

Then there’s the techno-enthusiast side of the argument. iTunes has 26 million songs, easily more than a century of music. A human could never listen to and learn from them all, but a machine could. It could also memorize every note of Beethoven. Music can be converted into MIDI files, a nice chewable data format that allows even a character-by-character neural net you can run on your computer to generate music. (Seriously, even I could get this thing working.)

Indeed, generating music in the style of Bach has long been a test for AI, and you can see neural networks gradually learn to imitate classical composers while trying to avoid overfitting. When an algorithm overfits, it essentially starts copying the existing music, rather than being inspired by it but creating something similar: a tightrope the best human artists learn to walk. Creativity doesn’t spring from nowhere; even maverick musical geniuses have their influences.

Does a machine have to be truly ‘creative’ to produce something that someone would find valuable? To what extent would listeners’ attitudes change if they thought they were hearing a human vs. an AI composition? This all suggests a musical Turing Test. Of course, it already exists. In fact, it’s run out of Dartmouth, the school that hosted that first, seminal AI summer conference. This year, the contest is bigger than ever: alongside the PoetiX, LimeriX and LyriX competitions for poetry and lyrics, there’s a DigiKidLit competition for children’s literature (although you may have reservations about exposing your children to neural-net generated content… it can get a bit surreal).

There’s also a pair of musical competitions, including one for original compositions in different genres. Key genres and styles are represented by Charlie Parker for Jazz and the Bach chorales for classical music. There’s also a free composition, and a contest where a human and an AI try to improvise together—the AI must respond to a human spontaneously, in real time, and in a musically pleasing way. Quite a challenge! In all cases, if any of the generated work is indistinguishable from human performers, the neural net has passed the Turing Test.

Did they? Here’s part of 2017’s winning sonnet from Charese Smiley and Hiroko Bretz:

The large cabin was in total darkness.
Come marching up the eastern hill afar.
When is the clock on the stairs dangerous?
Everything seemed so near and yet so far.
Behind the wall silence alone replied.
Was, then, even the staircase occupied?
Generating the rhymes is easy enough, the sentence structure a little trickier, but what’s impressive about this sonnet is that it sticks to a single topic and appears to be a more coherent whole. I’d guess they used associated “lexical fields” of similar words to help generate something coherent. In a similar way, most of the more famous examples of AI-generated music still involve some amount of human control, even if it’s editorial; a human will build a song around an AI-generated riff, or select the most convincing Bach chorale from amidst many different samples.

We are seeing strides forward in the ability of AI to generate human voices and human likenesses. As the latter example shows, in the fake news era people have focused on the dangers of this tech– but might it also be possible to create a virtual performer, trained on a dataset of their original music? Did you ever want to hear another Beatles album, or jam with Miles Davis? Of course, these things are impossible—but could we create a similar experience that people would genuinely value? Even, to the untrained eye, something indistinguishable from the real thing?

And if it did measure up to the real thing, what would this mean? Jaron Lanier is a fascinating technology writer, a critic of strong AI, and a believer in the power of virtual reality to change the world and provide truly meaningful experiences. He’s also a composer and a musical aficionado. He pointed out in a recent interview that translation algorithms, by reducing the amount of work translators are commissioned to do, have, in some sense, profited from stolen expertise. They were trained on huge datasets purloined from human linguists and translators. If you can train an AI on someone’s creative output and it produces new music, who “owns” it?

Although companies that offer AI music tools are starting to proliferate, and some groups will argue that the musical Turing test has been passed already, AI-generated music is hardly racing to the top of the pop charts just yet. Even as the line between human-composed and AI-generated music starts to blur, there’s still a gulf between the average human and musical genius. In the next few years, we’ll see how far the current techniques can take us. It may be the case that there’s something in the skylark’s song that can’t be generated by machines. But maybe not, and then this song might need an extra verse.

Image Credit: d1sk / Shutterstock.com Continue reading

Posted in Human Robots

#432456 This Planned Solar Farm in Saudi Arabia ...

Right now it only exists on paper, in the form of a memorandum of understanding. But if constructed, the newly-announced solar photovoltaic project in Saudi Arabia would break an astonishing array of records. It’s larger than any solar project currently planned by a factor of 100. When completed, nominally in 2030, it would have a capacity of an astonishing 200 gigawatts (GW). The project is backed by Softbank Group and Saudi Arabia’s new crown prince, Mohammed Bin Salman, and was announced in New York on March 27.

The Tengger Desert Solar Park in China, affectionately known as the “Great Wall of Solar,” is the world’s largest operating solar farm, with a capacity of 1.5 GW. Larger farms are under construction, including the Westlands Solar Park, which plans to finish with 2.7 GW of capacity. But even those that are only in the planning phases are dwarfed by the Saudi project; two early-stage solar parks will have capacity of 7.2 GW, and the plan involves them generating electricity as early as next year.

It makes more sense to compare to slightly larger projects, like nations, or even planets. Saudi Arabia’s current electricity generation capacity is 77 GW. This project would almost triple it. The current total solar photovoltaic generation capacity installed worldwide is 303 GW. In other words, this single solar farm would account for a similar installed capacity as the entire world’s capacity in 2015, and over a thousand times more than we had in 2000.

That’s exponential growth for you, folks.

Of course, practically doubling the world’s solar capacity doesn’t come cheap; the nominal estimate for the budget is around $200 billion (compared to $20 billion for around half a gigawatt of fusion, though, it may not seem so bad.) But the project would help solve a number of pressing problems for Saudi Arabia.

For a start, solar power works well in the desert. The irradiance is high, you have plenty of empty space, and peak demand is driven by air conditioning in the cities and so corresponds with peak supply. Even if oil companies might seem blasé about the global supply of oil running out, individual countries are aware that their own reserves won’t last forever, and they don’t want to miss the energy transition. The country’s Vision 2030 project aims to diversify its heavily oil-dependent economy by that year. If they can construct solar farms on this scale, alongside the $80 billion the government plans to spend on a fleet of nuclear reactors, it seems logical to export that power to other countries in the region, especially given the amount of energy storage that would be required otherwise.

We’ve already discussed a large-scale project to build solar panels in the desert then export the electricity: the DESERTEC initiative in the Sahara. Although DESERTEC planned a range of different demonstration plants on scales of around 500 MW, its ultimate ambition was to “provide 20 percent of Europe’s electricity by 2050.” It seems that this project is similar in scale to what they were planning. Weaning ourselves off fossil fuels is going to be incredibly difficult. Only large-scale nuclear, wind, or solar can really supply the world’s energy needs if consumption is anything like what it is today; in all likelihood, we’ll need a combination of all three.

To make a sizeable contribution to that effort, the renewable projects have to be truly epic in scale. The planned 2 GW solar park at Bulli Creek in Australia would cover 5 square kilometers, so it’s not unreasonable to suggest that, across many farms, this project could cover around 500 square kilometers—around the size of Chicago.

It will come as no surprise that Softbank is involved in this project. The founder, Masayoshi Son, is well-known for large-scale “visionary” investments. This is suggested by the name of his $100 billion VC fund, the Softbank Vision Fund, and the focus of its investments. It has invested millions of dollars in tech companies like Uber, IoT, NVIDIA and ARM, and startups across fields like VR, agritech, and AI.

Of course, Softbank is also the company that bought infamous robot-makers Boston Dynamics from Google when their not-at-all-sinister “Project Replicant” was sidelined. Softbank is famous in Japan in part due to their mascot, Pepper, which is probably the most widespread humanoid robot on the planet. Suffice it to say that Softbank is keen to be a part of any technological development, and they’re not afraid of projects that are truly vast in scope.

Since the Fukushima disaster in 2011 led Japan to turn away from nuclear power, Son has also been focused on green electricity, floating the idea of an Asia Super Grid. Similar to DESERTEC, it aims to get around the main issues with renewable energy (the land use and the intermittency of supply) with a vast super-grid that would connect Mongolia, India, Japan, China, Russia, and South Korea with high-voltage DC power cables. “Since this is such a grandiose project, many people told me it is crazy,” Son said. “They said it is impossible both economically and politically.” The first stage of the project, a demonstration wind farm of 50 megawatts in Mongolia, began operating in October of last year.

Given that Saudi Arabia put up $45 billion of the Vision Fund, it’s also not surprising to see the location of the project; Softbank reportedly had plans to invest $25 billion of the Vision Fund in Saudi Arabia, and $1 billion will be spent on the first solar farms there. Prince Mohammed Bin Salman, 32, who recently consolidated power, is looking to be seen on the global stage as a modernizer. He was effusive about the project. “It’s a huge step in human history,” he said. “It’s bold, risky, and we hope we succeed doing that.”

It is the risk that will keep renewable energy enthusiasts concerned.

Every visionary plan contains the potential for immense disappointment. As yet, the Asian Super Grid and the Saudi power plan are more or less at the conceptual stage. The fact that a memorandum of understanding exists between the Saudi government and Softbank is no guarantee that it will ever be built. Some analysts in the industry are a little skeptical.

“It’s an unprecedented construction effort; it’s an unprecedented financing effort,” said Benjamin Attia, a global solar analyst for Green Tech Media Research. “But there are so many questions, so few details, and a lot of headwinds, like grid instability, the availability of commercial debt, construction, and logistics challenges.”

We have already seen with the DESERTEC initiative that these vast-scale renewable energy projects can fail, despite immense enthusiasm. They are not easy to accomplish. But in a world without fossil fuels, they will be required. This project could be a flagship example for how to run a country on renewable energy—or another example of grand designs and good intentions. We’ll have to wait to find out which.

Image Credit: Love Silhouette / Shutterstock.com Continue reading

Posted in Human Robots

#431368 This Week’s Awesome Stories From ...

INTERNET OF THINGSAmazon Key Is a New Service That Lets Couriers Unlock Your Front DoorBen Popper | The Verge“When a courier arrives with a package for in-home delivery, they scan the barcode, sending a request to Amazon’s cloud. If everything checks out, the cloud grants permission by sending a message back to the camera, which starts recording. The courier then gets a prompt on their app, swipes the screen, and voilà, your door unlocks.”
ROBOTICSWatch Yamaha’s Humanoid Robot Ride a Motorcycle Around a RacetrackPhilip E. Ross | IEEE Spectrum“What’s striking is that the bike is unmodified: the robot is a hunched-over form on top. It senses the environment, calculates what to do, keeps the bike stable, manages acceleration and deceleration—all while factoring in road conditions, air resistance, and engine braking.”
ARTIFICIAL INTELLIGENCETech Giants Are Paying Huge Salaries for Scarce A.I. TalentCade Metz | The New York Times“Typical A.I. specialists, including both Ph.D.s fresh out of school and people with less education and just a few years of experience, can be paid from $300,000 to $500,000 a year or more in salary and company stock, according to nine people who work for major tech companies or have entertained job offers from them. All of them requested anonymity because they did not want to damage their professional prospects.”
HEALTH This Doctor Diagnosed His Own Cancer With an iPhone UltrasoundAntonio Regalado | MIT Technology Review“The device he used, called the Butterfly IQ, is the first solid-state ultrasound machine to reach the market in the U.S. Ultrasound works by shooting sound into the body and capturing the echoes. Usually, the sound waves are generated by a vibrating crystal. But Butterfly’s machine instead uses 9,000 tiny drums etched onto a semiconductor chip.”
ENTREPRENEURSHIPWeWork: A $20 Billion Startup Fueled by Silicon Valley Pixie DustEliot Brown | Wall Street Journal“WeWork’s strategy carries the costs and risks associated with traditional real estate. Its client list is heavily weighted toward startups that may or may not be around for long. WeWork is on the hook for long-term leases, and it doesn’t own its own buildings. Vacancy rates have risen recently, and the company is increasing incentives to draw tenants… The model has proved popular, with 150,000 individuals renting space in more than 170 locations globally.”
Image Credit: NIKITA TV / Shutterstock.com Continue reading

Posted in Human Robots