Tag Archives: vision

#432021 Unleashing Some of the Most Ambitious ...

At Singularity University, we are unleashing a generation of women who are smashing through barriers and starting some of the most ambitious technology companies on the planet.

Singularity University was founded in 2008 to empower leaders to use exponential technologies to solve our world’s biggest challenges. Our flagship program, the Global Solutions Program, has historically brought 80 entrepreneurs from around the world to Silicon Valley for 10 weeks to learn about exponential technologies and create moonshot startups that improve the lives of a billion people within a decade.

After nearly 10 years of running this program, we can say that about 70 percent of our successful startups have been founded or co-founded by female entrepreneurs (see below for inspiring examples of their work). This is in sharp contrast to the typical 10–20 percent of venture-backed tech companies that have a female founder, as reported by TechCrunch.

How are we so dramatically changing the game? While 100 percent of the credit goes to these courageous women, as both an alumna of the Global Solutions Program and our current vice chair of Global Grand Challenges, I want to share my reflections on what has worked.

At the most basic level, it is essential to deeply believe in the inherent worth, intellectual genius, and profound entrepreneurial caliber of women. While this may seem obvious, this is not the way our world currently thinks—we live in a world that sees women’s ideas, contributions, work, and existence as inherently less valuable than men’s.

For example, a 2017 Harvard Business Review article noted that even when women engage in the same behaviors and work as men, their work is considered less valuable simply because a woman did the job. An additional 2017 Harvard Business Review article showed that venture capitalists are significantly less likely to invest in female entrepreneurs and are more likely to ask men questions about the potential success of their companies while grilling women about the potential downfalls of their companies.

This doubt and lack of recognition of the genius and caliber of women is also why women are still paid less than men for completing identical work. Further, it’s why women’s work often gets buried in “number two” support roles of men in leadership roles and why women are expected to take on second shifts at home managing tedious household chores in addition to their careers. I would also argue these views as well as the rampant sexual harassment, assault, and violence against women that exists today stems from stubborn, historical, patriarchal views of women as living for the benefit of men, rather than for their own sovereignty and inherent value.

As with any other business, Singularity University has not been immune to these biases but is resolutely focused on helping women achieve intellectual genius and global entrepreneurial caliber by harnessing powerful exponential technologies.

We create an environment where women can physically and intellectually thrive free of harassment to reach their full potential, and we are building a broader ecosystem of alumni and partners around the world who not only support our female entrepreneurs throughout their entrepreneurial journeys, but who are also sparking and leading systemic change in their own countries and communities.

Respecting the Intellectual Genius and Entrepreneurial Caliber of Women
The entrepreneurial legends of our time—Steve Jobs, Elon Musk, Mark Zuckerberg, Bill Gates, Jeff Bezos, Larry Page, Sergey Brin—are men who have all built their empires using exponential technologies. Exponential technologies helped these men succeed faster and with greater impact due to Moore’s Law and the Law of Accelerating Returns which states that any digital technology (such as computing, software, artificial intelligence, robotics, quantum computing, biotechnology, nanotechnology, etc.) will become more sophisticated while dramatically falling in price, enabling rapid scaling.

Knowing this, an entrepreneur can plot her way to an ambitious global solution over time, releasing new applications just as the technology and market are ready. Furthermore, these rapidly advancing technologies often converge to create new tools and opportunities for innovators to come up with novel solutions to challenges that were previously impossible to solve in the past.

For various reasons, women have not pursued exponential technologies as aggressively as men (or were prevented or discouraged from doing so).

While more women are founding firms at a higher rate than ever in wealthy countries like the United States, the majority are small businesses in linear industries that have been around for hundreds of years, such as social assistance, health, education, administrative, or consulting services. In lower-income countries, international aid agencies and nonprofits often encourage women to pursue careers in traditional handicrafts, micro-enterprise, and micro-finance. While these jobs have historically helped women escape poverty and gain financial independence, they have done little to help women realize the enormous power, influence, wealth, and ability to transform the world for the better that comes from building companies, nonprofits, and solutions grounded in exponential technologies.

We need women to be working with exponential technologies today in order to be powerful leaders in the future.

Participants who enroll in our Global Solutions Program spend the first few weeks of the program learning about exponential technologies from the world’s experts and the final weeks launching new companies or nonprofits in their area of interest. We require that women (as well as men) utilize exponential technologies as a condition of the program.

In this sense, at Singularity University women start their endeavors with all of us believing and behaving in a way that assumes they can achieve global impact at the level of our world’s most legendary entrepreneurs.

Creating an Environment Where Woman Can Thrive
While challenging women to embrace exponential technologies is essential, it is also important to create an environment where women can thrive. In particular, this means ensuring women feel at home on our campus by ensuring gender diversity, aggressively addressing sexual harassment, and flipping the traditional culture from one that penalizes women, to one that values and supports them.

While women were initially only a small minority of our Global Solutions Program, in 2014, we achieved around 50% female attendance—a statistic that has since held over the years.

This is not due to a quota—every year we turn away extremely qualified women from our program (and are working on reformulating the program to allow more people to participate in the future.) While part of our recruiting success is due to the efforts of our marketing team, we also benefited from the efforts of some of our early female founders, staff, faculty, and alumnae including Susan Fonseca, Emeline Paat-Dahlstrom, Kathryn Myronuk, Lajuanda Asemota, Chiara Giovenzana, and Barbara Silva Tronseca.

As early champions of Singularity University these women not only launched diversity initiatives and personally reached out to women, but were crucial role models holding leadership roles in our community. In addition, Fonseca and Silva also both created multiple organizations and initiatives outside of (or in conjunction with) the university that produced additional pipelines of female candidates. In particular, Fonseca founded Women@TheFrontier as well as other organizations focusing on women, technology and innovation, and Silva founded BestInnovation (a woman’s accelerator in Latin America), as well as led Singularity University’s Chilean Chapter and founded the first SingularityU Summit in Latin America.

These women’s efforts in globally scaling Singularity University have been critical in ensuring woman around the world now see Singularity University as a place where they can lead and shape the future.

Also, thanks to Google (Alphabet) and many of our alumni and partners, we were able to provide full scholarships to any woman (or man) to attend our program regardless of their economic status. Google committed significant funding for full scholarships while our partners around the world also hosted numerous Global Impact Competitions, where entrepreneurs pitched their solutions to their local communities with the winners earning a full scholarship funded by our partners to attend the Global Solution Program as their prize.

Google and our partners’ support helped individuals attend our program and created a wider buzz around exponential technology and social change around the world in local communities. It led to the founding of 110 SU chapters in 55 countries.

Another vital aspect of our work in supporting women has been trying to create a harassment-free environment. Throughout the Silicon Valley, more than 60% of women convey that while they are trying to build their companies or get their work done, they are also dealing with physical and sexual harassment while being demeaned and excluded in other ways in the workplace. We have taken actions to educate and train our staff on how to deal with situations should they occur. All staff receives training on harassment when they join Singularity University, and all Global Solutions Program participants attend mandatory trainings on sexual harassment when they first arrive on campus. We also have male and female wellness counselors available that can offer support to both individuals and teams of entrepreneurs throughout the entire program.

While at a minimum our campus must be physically safe for women, we also strive to create a culture that values women and supports them in the additional challenges and expectations they face. For example, one of our 2016 female participants, Van Duesterberg, was pregnant during the program and said that instead of having people doubt her commitment to her startup or make her prove she could handle having a child and running a start-up at the same time, people went out of their way to help her.

“I was the epitome of a person not supposed to be doing a startup,” she said. “I was pregnant and would need to take care of my child. But Singularity University was supportive and encouraging. They made me feel super-included and that it was possible to do both. I continue to come back to campus even though the program is over because the network welcomes me and supports me rather than shuts me out because of my physical limitations. Rather than making me feel I had to prove myself, everyone just understood me and supported me, whether it was bringing me healthy food or recommending funders.”

Another strength that we have in supporting women is that after the Global Solutions Program, entrepreneurs have access to a much larger ecosystem.

Many entrepreneurs partake in SU Ventures, which can provide further support to startups as they develop, and we now have a larger community of over 200,000 people in almost every country. These members have often attended other Singularity University programs, events and are committed to our vision of the future. These women and men consist of business executives, Fortune 500 companies, investors, nonprofit and government leaders, technologists, members of the media, and other movers and shakers in the world. They have made introductions for our founders, collaborated with them on business ventures, invested in them and showcased their work at high profile events around the world.

Building for the Future
While our Global Solutions Program is making great strides in supporting female entrepreneurs, there is always more work to do. We are now focused on achieving the same degree of female participation across all of our programs and actively working to recruit and feature more female faculty and speakers on stage. As our community grows and scales around the world, we are also intent at how to best uphold our values and policies around sexual harassment across diverse locations and cultures. And like all businesses everywhere, we are focused on recruiting more women to serve at senior leadership levels within SU. As we make our way forward, we hope that you will join us in boldly leading this change and recognizing the genius and power of female entrepreneurs.

Meet Some of Our Female Moonshots
While we have many remarkable female entrepreneurs in the Singularity University community, the list below features a few of the women who have founded or co-founded companies at the Global Solutions Program that have launched new industries and are on their way to changing the way our world works for millions if not billions of people.

Jessica Scorpio co-founded Getaround in 2009. Getaround was one of the first car-sharing service platforms allowing anyone to rent out their car using a smartphone app. GetAround was a revolutionary idea in 2009, not only because smartphones and apps were still in their infancy, but because it was unthinkable that a technology startup could disrupt the major entrenched car, transport, and logistics companies. Scorpio’s early insights and pioneering entrepreneurial work brought to life new ways that humans relate to car sharing and the future self-driving car industry. Scorpio and Getaround have won numerous awards, and Getaround now serves over 200,000 members.

Paola Santana co-founded Matternet in 2011, which pioneered the commercial drone transport industry. In 2011, only military, hobbyists or the film industry used drones. Matternet demonstrated that drones could be used for commercial transport in short point-to-point deliveries for high-value goods laying the groundwork for drone transport around the world as well as some of the early thinking behind the future flying car industry. Santana was also instrumental in shaping regulations for the use of commercial drones around the world, making the industry possible.

Sara Naseri co-founded Qurasense in 2014, a life sciences start-up that analyzes women’s health through menstrual blood allowing women to track their health every month. Naseri is shifting our understanding of women’s menstrual blood as a waste product and something “not to be talked about,” to a rich, non-invasive, abundant source of information about women’s health.

Abi Ramanan co-founded ImpactVision in 2015, a software company that rapidly analyzes the quality and characteristics of food through hyperspectral images. Her long-term vision is to digitize food supply chains to reduce waste and fraud, given that one-third of all food is currently wasted before it reaches our plates. Ramanan is also helping the world understand that hyperspectral technology can be used in many industries to help us “see the unseen” and augment our ability to sense and understand what is happening around us in a much more sophisticated way.

Anita Schjøll Brede and Maria Ritola co-founded Iris AI in 2015, an artificial intelligence company that is building an AI research assistant that drastically improves the efficiency of R&D research and breaks down silos between different industries. Their long-term vision is for Iris AI to become smart enough that she will become a scientist herself. Fast Company named Iris AI one of the 10 most innovative artificial intelligence companies for 2017.

Hla Hla Win co-founded 360ed in 2016, a startup that conducts teacher training and student education through virtual reality and augmented reality in Myanmar. They have already connected teachers from 128 private schools in Myanmar with schools teaching 21st-century skills in Silicon Valley and around the world. Their moonshot is to build a platform where any teacher in the world can share best practices in teachers’ training. As they succeed, millions of children in some of the poorest parts of the world will have access to a 21st-century education.

Min FitzGerald and Van Duesterberg cofounded Nutrigene in 2017, a startup that ships freshly formulated, tailor-made supplement elixirs directly to consumers. Their long-term vision is to help people optimize their health using actionable data insights, so people can take a guided, tailored approaching to thriving into longevity.

Anna Skaya co-founded Basepaws in 2016, which created the first genetic test for cats and is building a community of citizen scientist pet owners. They are creating personalized pet products such as supplements, therapeutics, treats, and toys while also developing a database of genetic data for future research that will help both humans and pets over the long term.

Olivia Ramos co-founded Deep Blocks in 2016, a startup using artificial intelligence to integrate and streamline the processes of architecture, pre-construction, and real estate. As digital technologies, artificial intelligence, and robotics advance, it no longer makes sense for these industries to exist separately. Ramos recognized the tremendous value and efficiency that it is now possible to unlock with exponential technologies and creating an integrated industry in the future.

Please also visit our website to learn more about other female entrepreneurs, staff and faculty who are pioneering the future through exponential technologies. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431987 OptoForce Industrial Robot Sensors

OptoForce Sensors Providing Industrial Robots with

a “Sense of Touch” to Advance Manufacturing Automation

Global efforts to expand the capabilities of industrial robots are on the rise, as the demand from manufacturing companies to strengthen their operations and improve performance grows.

Hungary-based OptoForce, with a North American office in Charlotte, North Carolina, is one company that continues to support organizations with new robotic capabilities, as evidenced by its several new applications released in 2017.

The company, a leading robotics technology provider of multi-axis force and torque sensors, delivers 6 degrees of freedom force and torque measurement for industrial automation, and provides sensors for most of the currently-used industrial robots.

It recently developed and brought to market three new applications for KUKA industrial robots.

The new applications are hand guiding, presence detection, and center pointing and will be utilized by both end users and systems integrators. Each application is summarized below and what they provide for KUKA robots, along with video demonstrations to show how they operate.

Photo By: www.optoforce.com

Hand Guiding: With OptoForce’s Hand Guiding application, KUKA robots can easily and smoothly move in an assigned direction and selected route. This video shows specifically how to program the robot for hand guiding.

Presence Detection: This application allows KUKA robots to detect the presence of a specific object and to find the object even if it has moved. Visit here to learn more about presence detection.
Center Pointing: With this application, the OptoForce sensor helps the KUKA robot find the center point of an object by providing the robot with a sense of touch. This solution also works with glossy metal objects where a vision system would not be able to define its position. This video shows in detail how the center pointing application works.

The company’s CEO explained how these applications help KUKA robots and industrial automation.

Photo By: www.optoforce.com
“OptoForce’s new applications for KUKA robots pave the way for substantial improvements in industrial automation for both end users and systems integrators,” said Ákos Dömötör, CEO of OptoForce. “Our 6-axis force/torque sensors are combined with highly functional hardware and a comprehensive software package, which include the pre-programmed industrial applications. Essentially, we’re adding a ‘sense of touch’ to KUKA robot arms, enabling these robots to have abilities similar to a human hand, and opening up numerous new capabilities in industrial automation.”

Along with these new applications recently released for KUKA robots, OptoForce sensors are also being used by various companies on numerous industrial robots and manufacturing automation projects around the world. Examples of other uses include: path recording, polishing plastic and metal, box insertion, placing pins in holes, stacking/destacking, palletizing, and metal part sanding.

Specifically, some of the projects current underway by companies include: a plastic parting line removal; an obstacle detection for a major car manufacturing company; and a center point insertion application for a car part supplier, where the task of the robot is to insert a mirror, completely centered, onto a side mirror housing.

For more information, visit www.optoforce.com.

This post was provided by: OptoForce

The post OptoForce Industrial Robot Sensors appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431928 How Fast Is AI Progressing? Stanford’s ...

When? This is probably the question that futurists, AI experts, and even people with a keen interest in technology dread the most. It has proved famously difficult to predict when new developments in AI will take place. The scientists at the Dartmouth Summer Research Project on Artificial Intelligence in 1956 thought that perhaps two months would be enough to make “significant advances” in a whole range of complex problems, including computers that can understand language, improve themselves, and even understand abstract concepts.
Sixty years later, and these problems are not yet solved. The AI Index, from Stanford, is an attempt to measure how much progress has been made in artificial intelligence.
The index adopts a unique approach, and tries to aggregate data across many regimes. It contains Volume of Activity metrics, which measure things like venture capital investment, attendance at academic conferences, published papers, and so on. The results are what you might expect: tenfold increases in academic activity since 1996, an explosive growth in startups focused around AI, and corresponding venture capital investment. The issue with this metric is that it measures AI hype as much as AI progress. The two might be correlated, but then again, they may not.
The index also scrapes data from the popular coding website Github, which hosts more source code than anyone in the world. They can track the amount of AI-related software people are creating, as well as the interest levels in popular machine learning packages like Tensorflow and Keras. The index also keeps track of the sentiment of news articles that mention AI: surprisingly, given concerns about the apocalypse and an employment crisis, those considered “positive” outweigh the “negative” by three to one.
But again, this could all just be a measure of AI enthusiasm in general.
No one would dispute the fact that we’re in an age of considerable AI hype, but the progress of AI is littered by booms and busts in hype, growth spurts that alternate with AI winters. So the AI Index attempts to track the progress of algorithms against a series of tasks. How well does computer vision perform at the Large Scale Visual Recognition challenge? (Superhuman at annotating images since 2015, but they still can’t answer questions about images very well, combining natural language processing and image recognition). Speech recognition on phone calls is almost at parity.
In other narrow fields, AIs are still catching up to humans. Translation might be good enough that you can usually get the gist of what’s being said, but still scores poorly on the BLEU metric for translation accuracy. The AI index even keeps track of how well the programs can do on the SAT test, so if you took it, you can compare your score to an AI’s.
Measuring the performance of state-of-the-art AI systems on narrow tasks is useful and fairly easy to do. You can define a metric that’s simple to calculate, or devise a competition with a scoring system, and compare new software with old in a standardized way. Academics can always debate about the best method of assessing translation or natural language understanding. The Loebner prize, a simplified question-and-answer Turing Test, recently adopted Winograd Schema type questions, which rely on contextual understanding. AI has more difficulty with these.
Where the assessment really becomes difficult, though, is in trying to map these narrow-task performances onto general intelligence. This is hard because of a lack of understanding of our own intelligence. Computers are superhuman at chess, and now even a more complex game like Go. The braver predictors who came up with timelines thought AlphaGo’s success was faster than expected, but does this necessarily mean we’re closer to general intelligence than they thought?
Here is where it’s harder to track progress.
We can note the specialized performance of algorithms on tasks previously reserved for humans—for example, the index cites a Nature paper that shows AI can now predict skin cancer with more accuracy than dermatologists. We could even try to track one specific approach to general AI; for example, how many regions of the brain have been successfully simulated by a computer? Alternatively, we could simply keep track of the number of professions and professional tasks that can now be performed to an acceptable standard by AI.

“We are running a race, but we don’t know how to get to the endpoint, or how far we have to go.”

Progress in AI over the next few years is far more likely to resemble a gradual rising tide—as more and more tasks can be turned into algorithms and accomplished by software—rather than the tsunami of a sudden intelligence explosion or general intelligence breakthrough. Perhaps measuring the ability of an AI system to learn and adapt to the work routines of humans in office-based tasks could be possible.
The AI index doesn’t attempt to offer a timeline for general intelligence, as this is still too nebulous and confused a concept.
Michael Woodridge, head of Computer Science at the University of Oxford, notes, “The main reason general AI is not captured in the report is that neither I nor anyone else would know how to measure progress.” He is concerned about another AI winter, and overhyped “charlatans and snake-oil salesmen” exaggerating the progress that has been made.
A key concern that all the experts bring up is the ethics of artificial intelligence.
Of course, you don’t need general intelligence to have an impact on society; algorithms are already transforming our lives and the world around us. After all, why are Amazon, Google, and Facebook worth any money? The experts agree on the need for an index to measure the benefits of AI, the interactions between humans and AIs, and our ability to program values, ethics, and oversight into these systems.
Barbra Grosz of Harvard champions this view, saying, “It is important to take on the challenge of identifying success measures for AI systems by their impact on people’s lives.”
For those concerned about the AI employment apocalypse, tracking the use of AI in the fields considered most vulnerable (say, self-driving cars replacing taxi drivers) would be a good idea. Society’s flexibility for adapting to AI trends should be measured, too; are we providing people with enough educational opportunities to retrain? How about teaching them to work alongside the algorithms, treating them as tools rather than replacements? The experts also note that the data suffers from being US-centric.
We are running a race, but we don’t know how to get to the endpoint, or how far we have to go. We are judging by the scenery, and how far we’ve run already. For this reason, measuring progress is a daunting task that starts with defining progress. But the AI index, as an annual collection of relevant information, is a good start.
Image Credit: Photobank gallery / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431836 Do Our Brains Use Deep Learning to Make ...

The first time Dr. Blake Richards heard about deep learning, he was convinced that he wasn’t just looking at a technique that would revolutionize artificial intelligence. He also knew he was looking at something fundamental about the human brain.
That was the early 2000s, and Richards was taking a course with Dr. Geoff Hinton at the University of Toronto. Hinton, a pioneer architect of the algorithm that would later take the world by storm, was offering an introductory course on his learning method inspired by the human brain.
The key words here are “inspired by.” Despite Richards’ conviction, the odds were stacked against him. The human brain, as it happens, seems to lack a critical function that’s programmed into deep learning algorithms. On the surface, the algorithms were violating basic biological facts already proven by neuroscientists.
But what if, superficial differences aside, deep learning and the brain are actually compatible?
Now, in a new study published in eLife, Richards, working with DeepMind, proposed a new algorithm based on the biological structure of neurons in the neocortex. Also known as the cortex, this outermost region of the brain is home to higher cognitive functions such as reasoning, prediction, and flexible thought.
The team networked their artificial neurons together into a multi-layered network and challenged it with a classic computer vision task—identifying hand-written numbers.
The new algorithm performed well. But the kicker is that it analyzed the learning examples in a way that’s characteristic of deep learning algorithms, even though it was completely based on the brain’s fundamental biology.
“Deep learning is possible in a biological framework,” concludes the team.
Because the model is only a computer simulation at this point, Richards hopes to pass the baton to experimental neuroscientists, who could actively test whether the algorithm operates in an actual brain.
If so, the data could then be passed back to computer scientists to work out the next generation of massively parallel and low-energy algorithms to power our machines.
It’s a first step towards merging the two fields back into a “virtuous circle” of discovery and innovation.
The blame game
While you’ve probably heard of deep learning’s recent wins against humans in the game of Go, you might not know the nitty-gritty behind the algorithm’s operations.
In a nutshell, deep learning relies on an artificial neural network with virtual “neurons.” Like a towering skyscraper, the network is structured into hierarchies: lower-level neurons process aspects of an input—for example, a horizontal or vertical stroke that eventually forms the number four—whereas higher-level neurons extract more abstract aspects of the number four.
To teach the network, you give it examples of what you’re looking for. The signal propagates forward in the network (like climbing up a building), where each neuron works to fish out something fundamental about the number four.
Like children trying to learn a skill the first time, initially the network doesn’t do so well. It spits out what it thinks a universal number four should look like—think a Picasso-esque rendition.
But here’s where the learning occurs: the algorithm compares the output with the ideal output, and computes the difference between the two (dubbed “error”). This error is then “backpropagated” throughout the entire network, telling each neuron: hey, this is how far off you were, so try adjusting your computation closer to the ideal.
Millions of examples and tweakings later, the network inches closer to the desired output and becomes highly proficient at the trained task.
This error signal is crucial for learning. Without efficient “backprop,” the network doesn’t know which of its neurons are off kilter. By assigning blame, the AI can better itself.
The brain does this too. How? We have no clue.
Biological No-Go
What’s clear, though, is that the deep learning solution doesn’t work.
Backprop is a pretty needy function. It requires a very specific infrastructure for it to work as expected.
For one, each neuron in the network has to receive the error feedback. But in the brain, neurons are only connected to a few downstream partners (if that). For backprop to work in the brain, early-level neurons need to be able to receive information from billions of connections in their downstream circuits—a biological impossibility.
And while certain deep learning algorithms adapt a more local form of backprop— essentially between neurons—it requires their connection forwards and backwards to be symmetric. This hardly ever occurs in the brain’s synapses.
More recent algorithms adapt a slightly different strategy, in that they implement a separate feedback pathway that helps the neurons to figure out errors locally. While it’s more biologically plausible, the brain doesn’t have a separate computational network dedicated to the blame game.
What it does have are neurons with intricate structures, unlike the uniform “balls” that are currently applied in deep learning.
Branching Networks
The team took inspiration from pyramidal cells that populate the human cortex.
“Most of these neurons are shaped like trees, with ‘roots’ deep in the brain and ‘branches’ close to the surface,” says Richards. “What’s interesting is that these roots receive a different set of inputs than the branches that are way up at the top of the tree.”
This is an illustration of a multi-compartment neural network model for deep learning. Left: Reconstruction of pyramidal neurons from mouse primary visual cortex. Right: Illustration of simplified pyramidal neuron models. Image Credit: CIFAR
Curiously, the structure of neurons often turn out be “just right” for efficiently cracking a computational problem. Take the processing of sensations: the bottoms of pyramidal neurons are right smack where they need to be to receive sensory input, whereas the tops are conveniently placed to transmit feedback errors.
Could this intricate structure be evolution’s solution to channeling the error signal?
The team set up a multi-layered neural network based on previous algorithms. But rather than having uniform neurons, they gave those in middle layers—sandwiched between the input and output—compartments, just like real neurons.
When trained with hand-written digits, the algorithm performed much better than a single-layered network, despite lacking a way to perform classical backprop. The cell-like structure itself was sufficient to assign error: the error signals at one end of the neuron are naturally kept separate from input at the other end.
Then, at the right moment, the neuron brings both sources of information together to find the best solution.
There’s some biological evidence for this: neuroscientists have long known that the neuron’s input branches perform local computations, which can be integrated with signals that propagate backwards from the so-called output branch.
However, we don’t yet know if this is the brain’s way of dealing blame—a question that Richards urges neuroscientists to test out.
What’s more, the network parsed the problem in a way eerily similar to traditional deep learning algorithms: it took advantage of its multi-layered structure to extract progressively more abstract “ideas” about each number.
“[This is] the hallmark of deep learning,” the authors explain.
The Deep Learning Brain
Without doubt, there will be more twists and turns to the story as computer scientists incorporate more biological details into AI algorithms.
One aspect that Richards and team are already eyeing is a top-down predictive function, in which signals from higher levels directly influence how lower levels respond to input.
Feedback from upper levels doesn’t just provide error signals; it could also be nudging lower processing neurons towards a “better” activity pattern in real-time, says Richards.
The network doesn’t yet outperform other non-biologically derived (but “brain-inspired”) deep networks. But that’s not the point.
“Deep learning has had a huge impact on AI, but, to date, its impact on neuroscience has been limited,” the authors say.
Now neuroscientists have a lead they could experimentally test: that the structure of neurons underlie nature’s own deep learning algorithm.
“What we might see in the next decade or so is a real virtuous cycle of research between neuroscience and AI, where neuroscience discoveries help us to develop new AI and AI can help us interpret and understand our experimental data in neuroscience,” says Richards.
Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431828 This Self-Driving AI Is Learning to ...

I don’t have to open the doors of AImotive’s white 2015 Prius to see that it’s not your average car. This particular Prius has been christened El Capitan, the name written below the rear doors, and two small cameras are mounted on top of the car. Bundles of wire snake out from them, as well as from the two additional cameras on the car’s hood and trunk.
Inside is where things really get interesting, though. The trunk holds a computer the size of a microwave, and a large monitor covers the passenger glove compartment and dashboard. The center console has three switches labeled “Allowed,” “Error,” and “Active.”
Budapest-based AImotive is working to provide scalable self-driving technology alongside big players like Waymo and Uber in the autonomous vehicle world. On a highway test ride with CEO Laszlo Kishonti near the company’s office in Mountain View, California, I got a glimpse of just how complex that world is.
Camera-Based Feedback System
AImotive’s approach to autonomous driving is a little different from that of some of the best-known systems. For starters, they’re using cameras, not lidar, as primary sensors. “The traffic system is visual and the cost of cameras is low,” Kishonti said. “A lidar can recognize when there are people near the car, but a camera can differentiate between, say, an elderly person and a child. Lidar’s resolution isn’t high enough to recognize the subtle differences of urban driving.”
Image Credit: AImotive
The company’s aiDrive software uses data from the camera sensors to feed information to its algorithms for hierarchical decision-making, grouped under four concurrent activities: recognition, location, motion, and control.
Kishonti pointed out that lidar has already gotten more cost-efficient, and will only continue to do so.
“Ten years ago, lidar was best because there wasn’t enough processing power to do all the calculations by AI. But the cost of running AI is decreasing,” he said. “In our approach, computer vision and AI processing are key, and for safety, we’ll have fallback sensors like radar or lidar.”
aiDrive currently runs on Nvidia chips, which Kishonti noted were originally designed for graphics, and are not terribly efficient given how power-hungry they are. “We’re planning to substitute lower-cost, lower-energy chips in the next six months,” he said.
Testing in Virtual Reality
Waymo recently announced its fleet has now driven four million miles autonomously. That’s a lot of miles, and hard to compete with. But AImotive isn’t trying to compete, at least not by logging more real-life test miles. Instead, the company is doing 90 percent of its testing in virtual reality. “This is what truly differentiates us from competitors,” Kishonti said.
He outlined the three main benefits of VR testing: it can simulate scenarios too dangerous for the real world (such as hitting something), too costly (not every company has Waymo’s funds to run hundreds of cars on real roads), or too time-consuming (like waiting for rain, snow, or other weather conditions to occur naturally and repeatedly).
“Real-world traffic testing is very skewed towards the boring miles,” he said. “What we want to do is test all the cases that are hard to solve.”
On a screen that looked not unlike multiple games of Mario Kart, he showed me the simulator. Cartoon cars cruised down winding streets, outfitted with all the real-world surroundings: people, trees, signs, other cars. As I watched, a furry kangaroo suddenly hopped across one screen. “Volvo had an issue in Australia,” Kishonti explained. “A kangaroo’s movement is different than other animals since it hops instead of running.” Talk about cases that are hard to solve.
AImotive is currently testing around 1,000 simulated scenarios every night, with a steadily-rising curve of successful tests. These scenarios are broken down into features, and the car’s behavior around those features fed into a neural network. As the algorithms learn more features, the level of complexity the vehicles can handle goes up.
On the Road
After Kishonti and his colleagues filled me in on the details of their product, it was time to test it out. A safety driver sat in the driver’s seat, a computer operator in the passenger seat, and Kishonti and I in back. The driver maintained full control of the car until we merged onto the highway. Then he flicked the “Allowed” switch, his copilot pressed the “Active” switch, and he took his hands off the wheel.
What happened next, you ask?
A few things. El Capitan was going exactly the speed limit—65 miles per hour—which meant all the other cars were passing us. When a car merged in front of us or cut us off, El Cap braked accordingly (if a little abruptly). The monitor displayed the feed from each of the car’s cameras, plus multiple data fields and a simulation where a blue line marked the center of the lane, measured by the cameras tracking the lane markings on either side.
I noticed El Cap wobbling out of our lane a bit, but it wasn’t until two things happened in a row that I felt a little nervous: first we went under a bridge, then a truck pulled up next to us, both bridge and truck casting a complete shadow over our car. At that point El Cap lost it, and we swerved haphazardly to the right, narrowly missing the truck’s rear wheels. The safety driver grabbed the steering wheel and took back control of the car.
What happened, Kishonti explained, was that the shadows made it hard for the car’s cameras to see the lane markings. This was a new scenario the algorithm hadn’t previously encountered. If we’d only gone under a bridge or only been next to the truck for a second, El Cap may not have had so much trouble, but the two events happening in a row really threw the car for a loop—almost literally.
“This is a new scenario we’ll add to our testing,” Kishonti said. He added that another way for the algorithm to handle this type of scenario, rather than basing its speed and positioning on the lane markings, is to mimic nearby cars. “The human eye would see that other cars are still moving at the same speed, even if it can’t see details of the road,” he said.
After another brief—and thankfully uneventful—hands-off cruise down the highway, the safety driver took over, exited the highway, and drove us back to the office.
Driving into the Future
I climbed out of the car feeling amazed not only that self-driving cars are possible, but that driving is possible at all. I squint when driving into a tunnel, swerve to avoid hitting a stray squirrel, and brake gradually at stop signs—all without consciously thinking to do so. On top of learning to steer, brake, and accelerate, self-driving software has to incorporate our brains’ and bodies’ unconscious (but crucial) reactions, like our pupils dilating to let in more light so we can see in a tunnel.
Despite all the progress of machine learning, artificial intelligence, and computing power, I have a wholly renewed appreciation for the thing that’s been in charge of driving up till now: the human brain.
Kishonti seemed to feel similarly. “I don’t think autonomous vehicles in the near future will be better than the best drivers,” he said. “But they’ll be better than the average driver. What we want to achieve is safe, good-quality driving for everyone, with scalability.”
AImotive is currently working with American tech firms and with car and truck manufacturers in Europe, China, and Japan.
Image Credit: Alex Oakenman / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment