Tag Archives: virtual reality

#434685 How Tech Will Let You Learn Anything, ...

Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.

Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.

And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.

Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.

With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.

Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.

Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.

Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.

In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.

We’ll discuss:

Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning

Let’s dive in.

Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.

Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.

To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.

Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.

Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.

To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.

Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.

Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.

But while both mobile apps have recruited initial piloting populations, the key to success is scale.

Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.

Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.

While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.

Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.

And what better to scale these benefits than AI and immersive virtual environments?

In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.

As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.

Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.

Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.

Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.

As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.

By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.

Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.

As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.

Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.

Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.

Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.

As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading

Posted in Human Robots

#434492 Black Mirror’s ‘Bandersnatch’ ...

When was the last time you watched a movie where you could control the plot?

Bandersnatch is the first interactive film in the sci fi anthology series Black Mirror. Written by series creator Charlie Brooker and directed by David Slade, the film tells the story of young programmer Stefan Butler, who is adapting a fantasy choose-your-own-adventure novel called Bandersnatch into a video game. Throughout the film, viewers are given the power to influence Butler’s decisions, leading to diverging plots with different endings.

Like many Black Mirror episodes, this film is mind-bending, dark, and thought-provoking. In addition to innovating cinema as we know it, it is a fascinating rumination on free will, parallel realities, and emerging technologies.

Pick Your Own Adventure
With a non-linear script, Bandersnatch is a viewing experience like no other. Throughout the film viewers are given the option of making a decision for the protagonist. In these instances, they have 10 seconds to make a decision until a default decision is made. For example, in the early stage of the plot, Butler is given the choice of accepting or rejecting Tuckersoft’s offer to develop a video game and the viewer gets to decide what he does. The decision then shapes the plot accordingly.

The video game Butler is developing involves moving through a graphical maze of corridors while avoiding a creature called the Pax, and at times making choices through an on-screen instruction (sound familiar?). In other words, it’s a pick-your-own-adventure video game in a pick-your-own-adventure movie.

Many viewers have ended up spending hours exploring all the different branches of the narrative (though the average viewing is 90 minutes). One user on reddit has mapped out an entire flowchart, showing how all the different decisions (and pseudo-decisions) lead to various endings.

However, over time, Butler starts to question his own free will. It’s almost as if he’s beginning to realize that the audience is controlling him. In one branch of the narrative, he is confronted by this reality when the audience indicates to him that he is being controlled in a Netflix show: “I am watching you on Netflix. I make all the decisions for you”. Butler, as you can imagine, is horrified by this message.

But Butler isn’t the only one who has an illusion of choice. We, the seemingly powerful viewers, also appear to operate under the illusion of choice. Despite there being five main endings to the film, they are all more or less the same.

The Science Behind Bandersnatch
The premise of Bandersnatch isn’t based on fantasy, but hard science. Free will has always been a widely-debated issue in neuroscience, with reputable scientists and studies demonstrating that the whole concept may be an illusion.

In the 1970s, a psychologist named Benjamin Libet conducted a series of experiments that studied voluntary decision making in humans. He found that brain activity imitating an action, such as moving your wrist, preceded the conscious awareness of the action.

Psychologist Malcom Gladwell theorizes that while we like to believe we spend a lot of time thinking about our decisions, our mental processes actually work rapidly, automatically, and often subconsciously, from relatively little information. In addition to this, thinking and making decisions are usually a byproduct of several different brain systems, such as the hippocampus, amygdala, and prefrontal cortex working together. You are more conscious of some information processes in the brain than others.

As neuroscientist and philosopher Sam Harris points out in his book Free Will, “You did not pick your parents or the time and place of your birth. You didn’t choose your gender or most of your life experiences. You had no control whatsoever over your genome or the development of your brain. And now your brain is making choices on the basis of preferences and beliefs that have been hammered into it over a lifetime.” Like Butler, we may believe we are operating under full agency of our abilities, but we are at the mercy of many internal and external factors that influence our decisions.

Beyond free will, Bandersnatch also taps into the theory of parallel universes, a facet of the astronomical theory of the multiverse. In astrophysics, there is a theory that there are parallel universes other than our own, where all the choices you made are played out in alternate realities. For instance, if today you had the option of having cereal or eggs for breakfast, and you chose eggs, in a parallel universe, you chose cereal. Human history and our lives may have taken different paths in these parallel universes.

The Future of Cinema
In the future, the viewing experience will no longer be a passive one. Bandersnatch is just a glimpse into how technology is revolutionizing film as we know it and making it a more interactive and personalized experience. All the different scenarios and branches of the plot were scripted and filmed, but in the future, they may be adapted real-time via artificial intelligence.

Virtual reality may allow us to play an even more active role by making us participants or characters in the film. Data from your history of preferences and may be used to create a unique version of the plot that is optimized for your viewing experience.

Let’s also not underestimate the social purpose of advancing film and entertainment. Science fiction gives us the ability to create simulations of the future. Different narratives can allow us to explore how powerful technologies combined with human behavior can result in positive or negative scenarios. Perhaps in the future, science fiction will explore implications of technologies and observe human decision making in novel contexts, via AI-powered films in the virtual world.

Image Credit: andrey_l / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#434336 These Smart Seafaring Robots Have a ...

Drones. Self-driving cars. Flying robo taxis. If the headlines of the last few years are to be believed, terrestrial transportation in the future will someday be filled with robotic conveyances and contraptions that will require little input from a human other than to download an app.

But what about the other 70 percent of the planet’s surface—the part that’s made up of water?

Sure, there are underwater drones that can capture 4K video for the next BBC documentary. Remotely operated vehicles (ROVs) are capable of diving down thousands of meters to investigate ocean vents or repair industrial infrastructure.

Yet most of the robots on or below the water today still lean heavily on the human element to operate. That’s not surprising given the unstructured environment of the seas and the poor communication capabilities for anything moving below the waves. Autonomous underwater vehicles (AUVs) are probably the closest thing today to smart cars in the ocean, but they generally follow pre-programmed instructions.

A new generation of seafaring robots—leveraging artificial intelligence, machine vision, and advanced sensors, among other technologies—are beginning to plunge into the ocean depths. Here are some of the latest and most exciting ones.

The Transformer of the Sea
Nic Radford, chief technology officer of Houston Mechatronics Inc. (HMI), is hesitant about throwing around the word “autonomy” when talking about his startup’s star creation, Aquanaut. He prefers the term “shared control.”

Whatever you want to call it, Aquanaut seems like something out of the script of a Transformers movie. The underwater robot begins each mission in a submarine-like shape, capable of autonomously traveling up to 200 kilometers on battery power, depending on the assignment.

When Aquanaut reaches its destination—oil and gas is the primary industry HMI hopes to disrupt to start—its four specially-designed and built linear actuators go to work. Aquanaut then unfolds into a robot with a head, upper torso, and two manipulator arms, all while maintaining proper buoyancy to get its job done.

The lightbulb moment of how to engineer this transformation from submarine to robot came one day while Aquanaut’s engineers were watching the office’s stand-up desks bob up and down. The answer to the engineering challenge of the hull suddenly seemed obvious.

“We’re just gonna build a big, gigantic, underwater stand-up desk,” Radford told Singularity Hub.

Hardware wasn’t the only problem the team, comprised of veteran NASA roboticists like Radford, had to solve. In order to ditch the expensive support vessels and large teams of humans required to operate traditional ROVs, Aquanaut would have to be able to sense its environment in great detail and relay that information back to headquarters using an underwater acoustics communications system that harkens back to the days of dial-up internet connections.

To tackle that problem of low bandwidth, HMI equipped Aquanaut with a machine vision system comprised of acoustic, optical, and laser-based sensors. All of that dense data is compressed using in-house designed technology and transmitted to a single human operator who controls Aquanaut with a few clicks of a mouse. In other words, no joystick required.

“I don’t know of anyone trying to do this level of autonomy as it relates to interacting with the environment,” Radford said.

HMI got $20 million earlier this year in Series B funding co-led by Transocean, one of the world’s largest offshore drilling contractors. That should be enough money to finish the Aquanaut prototype, which Radford said is about 99.8 percent complete. Some “high-profile” demonstrations are planned for early next year, with commercial deployments as early as 2020.

“What just gives us an incredible advantage here is that we have been born and bred on doing robotic systems for remote locations,” Radford noted. “This is my life, and I’ve bet the farm on it, and it takes this kind of fortitude and passion to see these things through, because these are not easy problems to solve.”

On Cruise Control
Meanwhile, a Boston-based startup is trying to solve the problem of making ships at sea autonomous. Sea Machines is backed by about $12.5 million in capital venture funding, with Toyota AI joining the list of investors in a $10 million Series A earlier this month.

Sea Machines is looking to the self-driving industry for inspiration, developing what it calls “vessel intelligence” systems that can be retrofitted on existing commercial vessels or installed on newly-built working ships.

For instance, the startup announced a deal earlier this year with Maersk, the world’s largest container shipping company, to deploy a system of artificial intelligence, computer vision, and LiDAR on the Danish company’s new ice-class container ship. The technology works similar to advanced driver-assistance systems found in automobiles to avoid hazards. The proof of concept will lay the foundation for a future autonomous collision avoidance system.

It’s not just startups making a splash in autonomous shipping. Radford noted that Rolls Royce—yes, that Rolls Royce—is leading the way in the development of autonomous ships. Its Intelligence Awareness system pulls in nearly every type of hyped technology on the market today: neural networks, augmented reality, virtual reality, and LiDAR.

In augmented reality mode, for example, a live feed video from the ship’s sensors can detect both static and moving objects, overlaying the scene with details about the types of vessels in the area, as well as their distance, heading, and other pertinent data.

While safety is a primary motivation for vessel automation—more than 1,100 ships have been lost over the past decade—these new technologies could make ships more efficient and less expensive to operate, according to a story in Wired about the Rolls Royce Intelligence Awareness system.

Sea Hunt Meets Science
As Singularity Hub noted in a previous article, ocean robots can also play a critical role in saving the seas from environmental threats. One poster child that has emerged—or, invaded—is the spindly lionfish.

A venomous critter endemic to the Indo-Pacific region, the lionfish is now found up and down the east coast of North America and beyond. And it is voracious, eating up to 30 times its own stomach volume and reducing juvenile reef fish populations by nearly 90 percent in as little as five weeks, according to the Ocean Support Foundation.

That has made the colorful but deadly fish Public Enemy No. 1 for many marine conservationists. Both researchers and startups are developing autonomous robots to hunt down the invasive predator.

At the Worcester Polytechnic Institute, for example, students are building a spear-carrying robot that uses machine learning and computer vision to distinguish lionfish from other aquatic species. The students trained the algorithms on thousands of different images of lionfish. The result: a lionfish-killing machine that boasts an accuracy of greater than 95 percent.

Meanwhile, a small startup called the American Marine Research Corporation out of Pensacola, Florida is applying similar technology to seek and destroy lionfish. Rather than spearfishing, the AMRC drone would stun and capture the lionfish, turning a profit by selling the creatures to local seafood restaurants.

Lionfish: It’s what’s for dinner.

Water Bots
A new wave of smart, independent robots are diving, swimming, and cruising across the ocean and its deepest depths. These autonomous systems aren’t necessarily designed to replace humans, but to venture where we can’t go or to improve safety at sea. And, perhaps, these latest innovations may inspire the robots that will someday plumb the depths of watery planets far from Earth.

Image Credit: Houston Mechatronics, Inc. Continue reading

Posted in Human Robots

#434256 Singularity Hub’s Top Articles of the ...

2018 was a big year for science and technology. The first gene-edited babies were born, as were the first cloned monkeys. SpaceX successfully launched the Falcon Heavy, and NASA’s InSight lander placed a seismometer on Mars. Bitcoin’s value plummeted, as did the cost of renewable energy. The world’s biggest neuromorphic supercomputer was switched on, and quantum communication made significant progress.

As 2018 draws to a close and we start anticipating the developments that will happen in 2019, here’s a look back at our ten most-read articles of the year.

This 3D Printed House Goes Up in a Day for Under $10,000
Vanessa Bates Ramirez | 3/18/18
“ICON and New Story’s vision is one of 3D printed houses acting as a safe, affordable housing alternative for people in need. New Story has already built over 800 homes in Haiti, El Salvador, Bolivia, and Mexico, partnering with the communities they serve to hire local labor and purchase local materials rather than shipping everything in from abroad.”

Machines Teaching Each Other Could Be the Biggest Exponential Trend in AI
Aaron Frank | 1/21/18
“Data is the fuel of machine learning, but even for machines, some data is hard to get—it may be risky, slow, rare, or expensive. In those cases, machines can share experiences or create synthetic experiences for each other to augment or replace data. It turns out that this is not a minor effect, it actually is self-amplifying, and therefore exponential.”

Low-Cost Soft Robot Muscles Can Lift 200 Times Their Weight and Self-Heal
Edd Gent | 1/11/18
“Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.”

These Are the Most Exciting Industries and Jobs of the Future
Raya Bidshahri | 1/29/18
“Technological trends are giving rise to what many thought leaders refer to as the “imagination economy.” This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.”

Inside a $1 Billion Real Estate Company Operating Entirely in VR
Aaron Frank | 4/8/18
“Incredibly, this growth is largely the result of eXp Realty’s use of an online virtual world similar to Second Life. That means every employee, contractor, and the thousands of agents who work at the company show up to work—team meetings, training seminars, onboarding sessions—all inside a virtual reality campus.To be clear, this is a traditional real estate brokerage helping people buy and sell physical homes—but they use a virtual world as their corporate offices.”

How Fast Is AI Progressing? Stanford’s New Report Card for Artificial Intelligence
Thomas Hornigold | 1/18/18
“Progress in AI over the next few years is far more likely to resemble a gradual rising tide—as more and more tasks can be turned into algorithms and accomplished by software—rather than the tsunami of a sudden intelligence explosion or general intelligence breakthrough. Perhaps measuring the ability of an AI system to learn and adapt to the work routines of humans in office-based tasks could be possible.”

When Will We Finally Achieve True Artificial Intelligence?
Thomas Hornigold | 1/1/18
“The issue with trying to predict the exact date of human-level AI is that we don’t know how far is left to go. This is unlike Moore’s Law. Moore’s Law, the doubling of processing power roughly every couple of years, makes a very concrete prediction about a very specific phenomenon. We understand roughly how to get there—improved engineering of silicon wafers—and we know we’re not at the fundamental limits of our current approach. You cannot say the same about artificial intelligence.”

IBM’s New Computer Is the Size of a Grain of Salt and Costs Less Than 10 Cents
Edd Gent | 3/26/18
“Costing less than 10 cents to manufacture, the company envisions the device being embedded into products as they move around the supply chain. The computer’s sensing, processing, and communicating capabilities mean it could effectively turn every item in the supply chain into an Internet of Things device, producing highly granular supply chain data that could streamline business operations.”

Why the Rise of Self-Driving Vehicles Will Actually Increase Car Ownership
Melba Kurman and Hod Lipson / 2/14/18
“When people predict the demise of car ownership, they are overlooking the reality that the new autonomous automotive industry is not going to be just a re-hash of today’s car industry with driverless vehicles. Instead, the automotive industry of the future will be selling what could be considered an entirely new product: a wide variety of intelligent, self-guiding transportation robots. When cars become a widely used type of transportation robot, they will be cheap, ubiquitous, and versatile.”

A Model for the Future of Education
Peter Diamandis | 9/12/18
“I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires. From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want. In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?”

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#434246 How AR and VR Will Shape the Future of ...

How we work and play is about to transform.

After a prolonged technology “winter”—or what I like to call the ‘deceptive growth’ phase of any exponential technology—the hardware and software that power virtual (VR) and augmented reality (AR) applications are accelerating at an extraordinary rate.

Unprecedented new applications in almost every industry are exploding onto the scene.

Both VR and AR, combined with artificial intelligence, will significantly disrupt the “middleman” and make our lives “auto-magical.” The implications will touch every aspect of our lives, from education and real estate to healthcare and manufacturing.

The Future of Work
How and where we work is already changing, thanks to exponential technologies like artificial intelligence and robotics.

But virtual and augmented reality are taking the future workplace to an entirely new level.

Virtual Reality Case Study: eXp Realty

I recently interviewed Glenn Sanford, who founded eXp Realty in 2008 (imagine: a real estate company on the heels of the housing market collapse) and is the CEO of eXp World Holdings.

Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, three Canadian provinces, and 400 MLS market areas… all without a single traditional staffed office.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.

Real estate agents, managers, and even clients gather in a unique virtual campus, replete with a sports field, library, and lobby. It’s all accessible via head-mounted displays, but most agents join with a computer browser. Surprisingly, the campus-style setup enables the same type of water-cooler conversations I see every day at the XPRIZE headquarters.

With this centralized VR campus, eXp Realty has essentially thrown out overhead costs and entered a lucrative market without the same constraints of brick-and-mortar businesses.

Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

As a leader, what happens when you can scalably expand and connect your workforce, not to mention your customer base, without the excess overhead of office space and furniture? Your organization can run faster and farther than your competition.

But beyond the indefinite scalability achieved through digitizing your workplace, VR’s implications extend to the lives of your employees and even the future of urban planning:

Home Prices: As virtual headquarters and office branches take hold of the 21st-century workplace, those who work on campuses like eXp Realty’s won’t need to commute to work. As a result, VR has the potential to dramatically influence real estate prices—after all, if you don’t need to drive to an office, your home search isn’t limited to a specific set of neighborhoods anymore.

Transportation: In major cities like Los Angeles and San Francisco, the implications are tremendous. Analysts have revealed that it’s already cheaper to use ride-sharing services like Uber and Lyft than to own a car in many major cities. And once autonomous “Car-as-a-Service” platforms proliferate, associated transportation costs like parking fees, fuel, and auto repairs will no longer fall on the individual, if not entirely disappear.

Augmented Reality: Annotate and Interact with Your Workplace

As I discussed in a recent Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high-rises.

Enter a professional world electrified by augmented reality.

Our workplaces are practically littered with information. File cabinets abound with archival data and relevant documents, and company databases continue to grow at a breakneck pace. And, as all of us are increasingly aware, cybersecurity and robust data permission systems remain a major concern for CEOs and national security officials alike.

What if we could link that information to specific locations, people, time frames, and even moving objects?

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imagine showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Or better yet, imagine precise and high-dexterity work environments populated with interactive annotations that guide an artisan, surgeon, or engineer through meticulous handiwork.

Take, for instance, AR service 3D4Medical, which annotates virtual anatomy in midair. And as augmented reality hardware continues to advance, we might envision a future wherein surgeons perform operations on annotated organs and magnified incision sites, or one in which quantum computer engineers can magnify and annotate mechanical parts, speeding up reaction times and vastly improving precision.

The Future of Free Time and Play
In Abundance, I wrote about today’s rapidly demonetizing cost of living. In 2011, almost 75 percent of the average American’s income was spent on housing, transportation, food, personal insurance, health, and entertainment. What the headlines don’t mention: this is a dramatic improvement over the last 50 years. We’re spending less on basic necessities and working fewer hours than previous generations.

Chart depicts the average weekly work hours for full-time production employees in non-agricultural activities. Source: Diamandis.com data
Technology continues to change this, continues to take care of us and do our work for us. One phrase that describes this is “technological socialism,” where it’s technology, not the government, that takes care of us.

Extrapolating from the data, I believe we are heading towards a post-scarcity economy. Perhaps we won’t need to work at all, because we’ll own and operate our own fleet of robots or AI systems that do our work for us.

As living expenses demonetize and workplace automation increases, what will we do with this abundance of time? How will our children and grandchildren connect and find their purpose if they don’t have to work for a living?

As I write this on a Saturday afternoon and watch my two seven-year-old boys immersed in Minecraft, building and exploring worlds of their own creation, I can’t help but imagine that this future is about to enter its disruptive phase.

Exponential technologies are enabling a new wave of highly immersive games, virtual worlds, and online communities. We’ve likely all heard of the Oasis from Ready Player One. But far beyond what we know today as ‘gaming,’ VR is fast becoming a home to immersive storytelling, interactive films, and virtual world creation.

Within the virtual world space, let’s take one of today’s greatest precursors, the aforementioned game Minecraft.

For reference, Minecraft is over eight times the size of planet Earth. And in their free time, my kids would rather build in Minecraft than almost any other activity. I think of it as their primary passion: to create worlds, explore worlds, and be challenged in worlds.

And in the near future, we’re all going to become creators of or participants in virtual worlds, each populated with assets and storylines interoperable with other virtual environments.

But while the technological methods are new, this concept has been alive and well for generations. Whether you got lost in the world of Heidi or Harry Potter, grew up reading comic books or watching television, we’ve all been playing in imaginary worlds, with characters and story arcs populating our minds. That’s the nature of childhood.

In the past, however, your ability to edit was limited, especially if a given story came in some form of 2D media. I couldn’t edit where Tom Sawyer was going or change what Iron Man was doing. But as a slew of new software advancements underlying VR and AR allow us to interact with characters and gain (albeit limited) agency (for now), both new and legacy stories will become subjects of our creation and playgrounds for virtual interaction.

Take VR/AR storytelling startup Fable Studio’s Wolves in the Walls film. Debuting at the 2018 Sundance Film Festival, Fable’s immersive story is adapted from Neil Gaiman’s book and tracks the protagonist, Lucy, whose programming allows her to respond differently based on what her viewers do.

And while Lucy can merely hand virtual cameras to her viewers among other limited tasks, Fable Studio’s founder Edward Saatchi sees this project as just the beginning.

Imagine a virtual character—either in augmented or virtual reality—geared with AI capabilities, that now can not only participate in a fictional storyline but interact and dialogue directly with you in a host of virtual and digitally overlayed environments.

Or imagine engaging with a less-structured environment, like the Star Wars cantina, populated with strangers and friends to provide an entirely novel social media experience.

Already, we’ve seen characters like that of Pokémon brought into the real world with Pokémon Go, populating cities and real spaces with holograms and tasks. And just as augmented reality has the power to turn our physical environments into digital gaming platforms, advanced AR could bring on a new era of in-home entertainment.

Imagine transforming your home into a narrative environment for your kids or overlaying your office interior design with Picasso paintings and gothic architecture. As computer vision rapidly grows capable of identifying objects and mapping virtual overlays atop them, we might also one day be able to project home theaters or live sports within our homes, broadcasting full holograms that allow us to zoom into the action and place ourselves within it.

Increasingly honed and commercialized, augmented and virtual reality are on the cusp of revolutionizing the way we play, tell stories, create worlds, and interact with both fictional characters and each other.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: nmedia / Shutterstock.com Continue reading

Posted in Human Robots