Tag Archives: video

#431987 OptoForce Industrial Robot Sensors

OptoForce Sensors Providing Industrial Robots with

a “Sense of Touch” to Advance Manufacturing Automation

Global efforts to expand the capabilities of industrial robots are on the rise, as the demand from manufacturing companies to strengthen their operations and improve performance grows.

Hungary-based OptoForce, with a North American office in Charlotte, North Carolina, is one company that continues to support organizations with new robotic capabilities, as evidenced by its several new applications released in 2017.

The company, a leading robotics technology provider of multi-axis force and torque sensors, delivers 6 degrees of freedom force and torque measurement for industrial automation, and provides sensors for most of the currently-used industrial robots.

It recently developed and brought to market three new applications for KUKA industrial robots.

The new applications are hand guiding, presence detection, and center pointing and will be utilized by both end users and systems integrators. Each application is summarized below and what they provide for KUKA robots, along with video demonstrations to show how they operate.

Photo By: www.optoforce.com

Hand Guiding: With OptoForce’s Hand Guiding application, KUKA robots can easily and smoothly move in an assigned direction and selected route. This video shows specifically how to program the robot for hand guiding.

Presence Detection: This application allows KUKA robots to detect the presence of a specific object and to find the object even if it has moved. Visit here to learn more about presence detection.
Center Pointing: With this application, the OptoForce sensor helps the KUKA robot find the center point of an object by providing the robot with a sense of touch. This solution also works with glossy metal objects where a vision system would not be able to define its position. This video shows in detail how the center pointing application works.

The company’s CEO explained how these applications help KUKA robots and industrial automation.

Photo By: www.optoforce.com
“OptoForce’s new applications for KUKA robots pave the way for substantial improvements in industrial automation for both end users and systems integrators,” said Ákos Dömötör, CEO of OptoForce. “Our 6-axis force/torque sensors are combined with highly functional hardware and a comprehensive software package, which include the pre-programmed industrial applications. Essentially, we’re adding a ‘sense of touch’ to KUKA robot arms, enabling these robots to have abilities similar to a human hand, and opening up numerous new capabilities in industrial automation.”

Along with these new applications recently released for KUKA robots, OptoForce sensors are also being used by various companies on numerous industrial robots and manufacturing automation projects around the world. Examples of other uses include: path recording, polishing plastic and metal, box insertion, placing pins in holes, stacking/destacking, palletizing, and metal part sanding.

Specifically, some of the projects current underway by companies include: a plastic parting line removal; an obstacle detection for a major car manufacturing company; and a center point insertion application for a car part supplier, where the task of the robot is to insert a mirror, completely centered, onto a side mirror housing.

For more information, visit www.optoforce.com.

This post was provided by: OptoForce

The post OptoForce Industrial Robot Sensors appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431958 The Next Generation of Cameras Might See ...

You might be really pleased with the camera technology in your latest smartphone, which can recognize your face and take slow-mo video in ultra-high definition. But these technological feats are just the start of a larger revolution that is underway.

The latest camera research is shifting away from increasing the number of mega-pixels towards fusing camera data with computational processing. By that, we don’t mean the Photoshop style of processing where effects and filters are added to a picture, but rather a radical new approach where the incoming data may not actually look like at an image at all. It only becomes an image after a series of computational steps that often involve complex mathematics and modeling how light travels through the scene or the camera.

This additional layer of computational processing magically frees us from the chains of conventional imaging techniques. One day we may not even need cameras in the conventional sense any more. Instead we will use light detectors that only a few years ago we would never have considered any use for imaging. And they will be able to do incredible things, like see through fog, inside the human body and even behind walls.

Single Pixel Cameras
One extreme example is the single pixel camera, which relies on a beautifully simple principle. Typical cameras use lots of pixels (tiny sensor elements) to capture a scene that is likely illuminated by a single light source. But you can also do things the other way around, capturing information from many light sources with a single pixel.

To do this you need a controlled light source, for example a simple data projector that illuminates the scene one spot at a time or with a series of different patterns. For each illumination spot or pattern, you then measure the amount of light reflected and add everything together to create the final image.

Clearly the disadvantage of taking a photo in this is way is that you have to send out lots of illumination spots or patterns in order to produce one image (which would take just one snapshot with a regular camera). But this form of imaging would allow you to create otherwise impossible cameras, for example that work at wavelengths of light beyond the visible spectrum, where good detectors cannot be made into cameras.

These cameras could be used to take photos through fog or thick falling snow. Or they could mimic the eyes of some animals and automatically increase an image’s resolution (the amount of detail it captures) depending on what’s in the scene.

It is even possible to capture images from light particles that have never even interacted with the object we want to photograph. This would take advantage of the idea of “quantum entanglement,” that two particles can be connected in a way that means whatever happens to one happens to the other, even if they are a long distance apart. This has intriguing possibilities for looking at objects whose properties might change when lit up, such as the eye. For example, does a retina look the same when in darkness as in light?

Multi-Sensor Imaging
Single-pixel imaging is just one of the simplest innovations in upcoming camera technology and relies, on the face of it, on the traditional concept of what forms a picture. But we are currently witnessing a surge of interest for systems that use lots of information but traditional techniques only collect a small part of it.

This is where we could use multi-sensor approaches that involve many different detectors pointed at the same scene. The Hubble telescope was a pioneering example of this, producing pictures made from combinations of many different images taken at different wavelengths. But now you can buy commercial versions of this kind of technology, such as the Lytro camera that collects information about light intensity and direction on the same sensor, to produce images that can be refocused after the image has been taken.

The next generation camera will probably look something like the Light L16 camera, which features ground-breaking technology based on more than ten different sensors. Their data are combined using a computer to provide a 50 MB, re-focusable and re-zoomable, professional-quality image. The camera itself looks like a very exciting Picasso interpretation of a crazy cell-phone camera.

Yet these are just the first steps towards a new generation of cameras that will change the way in which we think of and take images. Researchers are also working hard on the problem of seeing through fog, seeing behind walls, and even imaging deep inside the human body and brain.

All of these techniques rely on combining images with models that explain how light travels through through or around different substances.

Another interesting approach that is gaining ground relies on artificial intelligence to “learn” to recognize objects from the data. These techniques are inspired by learning processes in the human brain and are likely to play a major role in future imaging systems.

Single photon and quantum imaging technologies are also maturing to the point that they can take pictures with incredibly low light levels and videos with incredibly fast speeds reaching a trillion frames per second. This is enough to even capture images of light itself traveling across as scene.

Some of these applications might require a little time to fully develop, but we now know that the underlying physics should allow us to solve these and other problems through a clever combination of new technology and computational ingenuity.

This article was originally published on The Conversation. Read the original article.

Image Credit: Sylvia Adams / Shutterstock.com Continue reading

Posted in Human Robots

#431733 Why Humanoid Robots Are Still So Hard to ...

Picture a robot. In all likelihood, you just pictured a sleek metallic or chrome-white humanoid. Yet the vast majority of robots in the world around us are nothing like this; instead, they’re specialized for specific tasks. Our cultural conception of what robots are dates back to the coining of the term robots in the Czech play, Rossum’s Universal Robots, which originally envisioned them as essentially synthetic humans.
The vision of a humanoid robot is tantalizing. There are constant efforts to create something that looks like the robots of science fiction. Recently, an old competitor in this field returned with a new model: Toyota has released what they call the T-HR3. As humanoid robots go, it appears to be pretty dexterous and have a decent grip, with a number of degrees of freedom making the movements pleasantly human.
This humanoid robot operates mostly via a remote-controlled system that allows the user to control the robot’s limbs by exerting different amounts of pressure on a framework. A VR headset completes the picture, allowing the user to control the robot’s body and teleoperate the machine. There’s no word on a price tag, but one imagines a machine with a control system this complicated won’t exactly be on your Christmas list, unless you’re a billionaire.

Toyota is no stranger to robotics. They released a series of “Partner Robots” that had a bizarre affinity for instrument-playing but weren’t often seen doing much else. Given that they didn’t seem to have much capability beyond the automaton that Leonardo da Vinci made hundreds of years ago, they promptly vanished. If, as the name suggests, the T-HR3 is a sequel to these robots, which came out shortly after ASIMO back in 2003, it’s substantially better.
Slightly less humanoid (and perhaps the more useful for it), Toyota’s HSR-2 is a robot base on wheels with a simple mechanical arm. It brings to mind earlier machines produced by dream-factory startup Willow Garage like the PR-2. The idea of an affordable robot that could simply move around on wheels and pick up and fetch objects, and didn’t harbor too-lofty ambitions to do anything else, was quite successful.
So much so that when Robocup, the international robotics competition, looked for a platform for their robot-butler competition @Home, they chose HSR-2 for its ability to handle objects. HSR-2 has been deployed in trial runs to care for the elderly and injured, but has yet to be widely adopted for these purposes five years after its initial release. It’s telling that arguably the most successful multi-purpose humanoid robot isn’t really humanoid at all—and it’s curious that Toyota now seems to want to return to a more humanoid model a decade after they gave up on the project.
What’s unclear, as is often the case with humanoid robots, is what, precisely, the T-HR3 is actually for. The teleoperation gets around the complex problem of control by simply having the machine controlled remotely by a human. That human then handles all the sensory perception, decision-making, planning, and manipulation; essentially, the hardest problems in robotics.
There may not be a great deal of autonomy for the T-HR3, but by sacrificing autonomy, you drastically cut down the uses of the robot. Since it can’t act alone, you need a convincing scenario where you need a teleoperated humanoid robot that’s less precise and vastly more expensive than just getting a person to do the same job. Perhaps someday more autonomy will be developed for the robot, and the master maneuvering system that allows humans to control it will only be used in emergencies to control the robot if it gets stuck.
Toyota’s press release says it is “a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.” In reality, it’s difficult to see such a robot being affordable or even that useful in the home or in medical facilities (unless it’s substantially stronger than humans). Equally, it certainly doesn’t seem robust enough to be deployed in disaster zones or outer space. These tasks have been mooted for robots for a very long time and few have proved up to the challenge.
Toyota’s third generation humanoid robot, the T-HR3. Image Credit: Toyota
Instead, the robot seems designed to work alongside humans. Its design, standing 1.5 meters tall, weighing 75 kilograms, and possessing 32 degrees of freedom in its body, suggests it is built to closely mimic a person, rather than a robot like ATLAS which is robust enough that you can imagine it being useful in a war zone. In this case, it might be closer to the model of the collaborative robots or co-bots developed by Rethink Robotics, whose tons of safety features, including force-sensitive feedback for the user, reduce the risk of terrible PR surrounding killer robots.
Instead the emphasis is on graceful precision engineering: in the promo video, the robot can be seen balancing on one leg before showing off a few poised, yoga-like poses. This perhaps suggests that an application in elderly care, which Toyota has ventured into before and which was the stated aim of their simple HSR-2, might be more likely than deployment to a disaster zone.
The reason humanoid robots remain so elusive and so tempting is probably because of a simple cognitive mistake. We make two bad assumptions. First, we assume that if you build a humanoid robot, give its joints enough flexibility, throw in a little AI and perhaps some pre-programmed behaviors, then presto, it will be able to do everything humans can. When you see a robot that moves well and looks humanoid, it seems like the hardest part is done; surely this robot could do anything. The reality is never so simple.

We also make the reverse assumption: we assume that when we are finally replaced, it will be by perfect replicas of our own bodies and brains that can fulfill all the functions we used to fulfill. Perhaps, in reality, the future of robots and AI is more like its present: piecemeal, with specialized algorithms and specialized machines gradually learning to outperform humans at every conceivable task without ever looking convincingly human.
It may well be that the T-HR3 is angling towards this concept of machine learning as a platform for future research. Rather than trying to program an omni-capable robot out of the box, it will gradually learn from its human controllers. In this way, you could see the platform being used to explore the limits of what humans can teach robots to do simply by having them mimic sequences of our bodies’ motion, in the same way the exploitation of neural networks is testing the limits of training algorithms on data. No one machine will be able to perform everything a human can, but collectively, they will vastly outperform us at anything you’d want one to do.
So when you see a new android like Toyota’s, feel free to marvel at its technical abilities and indulge in the speculation about whether it’s a PR gimmick or a revolutionary step forward along the road to human replacement. Just remember that, human-level bots or not, we’re already strolling down that road.
Image Credit: Toyota Continue reading

Posted in Human Robots

#431641 Elon Musk: Say ‘Sweet ...

Elon Musk has once again sounded the alarm about killer robots, this time in response to a video of a humanoid robot doing a backflip.
Continue reading

Posted in Human Robots

#431559 Drug Discovery AI to Scour a Universe of ...

On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]

In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading

Posted in Human Robots