Tag Archives: valley

#432880 Google’s Duplex Raises the Question: ...

By now, you’ve probably seen Google’s new Duplex software, which promises to call people on your behalf to book appointments for haircuts and the like. As yet, it only exists in demo form, but already it seems like Google has made a big stride towards capturing a market that plenty of companies have had their eye on for quite some time. This software is impressive, but it raises questions.

Many of you will be familiar with the stilted, robotic conversations you can have with early chatbots that are, essentially, glorified menus. Instead of pressing 1 to confirm or 2 to re-enter, some of these bots would allow for simple commands like “Yes” or “No,” replacing the buttons with limited ability to recognize a few words. Using them was often a far more frustrating experience than attempting to use a menu—there are few things more irritating than a robot saying, “Sorry, your response was not recognized.”

Google Duplex scheduling a hair salon appointment:

Google Duplex calling a restaurant:

Even getting the response recognized is hard enough. After all, there are countless different nuances and accents to baffle voice recognition software, and endless turns of phrase that amount to saying the same thing that can confound natural language processing (NLP), especially if you like your phrasing quirky.

You may think that standard customer-service type conversations all travel the same route, using similar words and phrasing. But when there are over 80,000 ways to order coffee, and making a mistake is frowned upon, even simple tasks require high accuracy over a huge dataset.

Advances in audio processing, neural networks, and NLP, as well as raw computing power, have meant that basic recognition of what someone is trying to say is less of an issue. Soundhound’s virtual assistant prides itself on being able to process complicated requests (perhaps needlessly complicated).

The deeper issue, as with all attempts to develop conversational machines, is one of understanding context. There are so many ways a conversation can go that attempting to construct a conversation two or three layers deep quickly runs into problems. Multiply the thousands of things people might say by the thousands they might say next, and the combinatorics of the challenge runs away from most chatbots, leaving them as either glorified menus, gimmicks, or rather bizarre to talk to.

Yet Google, who surely remembers from Glass the risk of premature debuts for technology, especially the kind that ask you to rethink how you interact with or trust in software, must have faith in Duplex to show it on the world stage. We know that startups like Semantic Machines and x.ai have received serious funding to perform very similar functions, using natural-language conversations to perform computing tasks, schedule meetings, book hotels, or purchase items.

It’s no great leap to imagine Google will soon do the same, bringing us closer to a world of onboard computing, where Lens labels the world around us and their assistant arranges it for us (all the while gathering more and more data it can convert into personalized ads). The early demos showed some clever tricks for keeping the conversation within a fairly narrow realm where the AI should be comfortable and competent, and the blog post that accompanied the release shows just how much effort has gone into the technology.

Yet given the privacy and ethics funk the tech industry finds itself in, and people’s general unease about AI, the main reaction to Duplex’s impressive demo was concern. The voice sounded too natural, bringing to mind Lyrebird and their warnings of deepfakes. You might trust “Do the Right Thing” Google with this technology, but it could usher in an era when automated robo-callers are far more convincing.

A more human-like voice may sound like a perfectly innocuous improvement, but the fact that the assistant interjects naturalistic “umm” and “mm-hm” responses to more perfectly mimic a human rubbed a lot of people the wrong way. This wasn’t just a voice assistant trying to sound less grinding and robotic; it was actively trying to deceive people into thinking they were talking to a human.

Google is running the risk of trying to get to conversational AI by going straight through the uncanny valley.

“Google’s experiments do appear to have been designed to deceive,” said Dr. Thomas King of the Oxford Internet Institute’s Digital Ethics Lab, according to Techcrunch. “Their main hypothesis was ‘can you distinguish this from a real person?’ In this case it’s unclear why their hypothesis was about deception and not the user experience… there should be some kind of mechanism there to let people know what it is they are speaking to.”

From Google’s perspective, being able to say “90 percent of callers can’t tell the difference between this and a human personal assistant” is an excellent marketing ploy, even though statistics about how many interactions are successful might be more relevant.

In fact, Duplex runs contrary to pretty much every major recommendation about ethics for the use of robotics or artificial intelligence, not to mention certain eavesdropping laws. Transparency is key to holding machines (and the people who design them) accountable, especially when it comes to decision-making.

Then there are the more subtle social issues. One prominent effect social media has had is to allow people to silo themselves; in echo chambers of like-minded individuals, it’s hard to see how other opinions exist. Technology exacerbates this by removing the evolutionary cues that go along with face-to-face interaction. Confronted with a pair of human eyes, people are more generous. Confronted with a Twitter avatar or a Facebook interface, people hurl abuse and criticism they’d never dream of using in a public setting.

Now that we can use technology to interact with ever fewer people, will it change us? Is it fair to offload the burden of dealing with a robot onto the poor human at the other end of the line, who might have to deal with dozens of such calls a day? Google has said that if the AI is in trouble, it will put you through to a human, which might help save receptionists from the hell of trying to explain a concept to dozens of dumbfounded AI assistants all day. But there’s always the risk that failures will be blamed on the person and not the machine.

As AI advances, could we end up treating the dwindling number of people in these “customer-facing” roles as the buggiest part of a fully automatic service? Will people start accusing each other of being robots on the phone, as well as on Twitter?

Google has provided plenty of reassurances about how the system will be used. They have said they will ensure that the system is identified, and it’s hardly difficult to resolve this problem; a slight change in the script from their demo would do it. For now, consumers will likely appreciate moves that make it clear whether the “intelligent agents” that make major decisions for us, that we interact with daily, and that hide behind social media avatars or phone numbers are real or artificial.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots

#432691 Is the Secret to Significantly Longer ...

Once upon a time, a powerful Sumerian king named Gilgamesh went on a quest, as such characters often do in these stories of myth and legend. Gilgamesh had witnessed the death of his best friend, Enkidu, and, fearing a similar fate, went in search of immortality. The great king failed to find the secret of eternal life but took solace that his deeds would live well beyond his mortal years.

Fast-forward four thousand years, give or take a century, and Gilgamesh (as famous as any B-list celebrity today, despite the passage of time) would probably be heartened to learn that many others have taken up his search for longevity. Today, though, instead of battling epic monsters and the machinations of fickle gods, those seeking to enhance and extend life are cutting-edge scientists and visionary entrepreneurs who are helping unlock the secrets of human biology.

Chief among them is Aubrey de Grey, a biomedical gerontologist who founded the SENS Research Foundation, a Silicon Valley-based research organization that seeks to advance the application of regenerative medicine to age-related diseases. SENS stands for Strategies for Engineered Negligible Senescence, a term coined by de Grey to describe a broad array (seven, to be precise) of medical interventions that attempt to repair or prevent different types of molecular and cellular damage that eventually lead to age-related diseases like cancer and Alzheimer’s.

Many of the strategies focus on senescent cells, which accumulate in tissues and organs as people age. Not quite dead, senescent cells stop dividing but are still metabolically active, spewing out all sorts of proteins and other molecules that can cause inflammation and other problems. In a young body, that’s usually not a problem (and probably part of general biological maintenance), as a healthy immune system can go to work to put out most fires.

However, as we age, senescent cells continue to accumulate, and at some point the immune system retires from fire watch. Welcome to old age.

Of Mice and Men
Researchers like de Grey believe that treating the cellular underpinnings of aging could not only prevent disease but significantly extend human lifespans. How long? Well, if you’re talking to de Grey, Biblical proportions—on the order of centuries.

De Grey says that science has made great strides toward that end in the last 15 years, such as the ability to copy mitochondrial DNA to the nucleus. Mitochondria serve as the power plant of the cell but are highly susceptible to mutations that lead to cellular degeneration. Copying the mitochondrial DNA into the nucleus would help protect it from damage.

Another achievement occurred about six years ago when scientists first figured out how to kill senescent cells. That discovery led to a spate of new experiments in mice indicating that removing these ticking-time-bomb cells prevented disease and even extended their lifespans. Now the anti-aging therapy is about to be tested in humans.

“As for the next few years, I think the stream of advances is likely to become a flood—once the first steps are made, things get progressively easier and faster,” de Grey tells Singularity Hub. “I think there’s a good chance that we will achieve really dramatic rejuvenation of mice within only six to eight years: maybe taking middle-aged mice and doubling their remaining lifespan, which is an order of magnitude more than can be done today.”

Not Horsing Around
Richard G.A. Faragher, a professor of biogerontology at the University of Brighton in the United Kingdom, recently made discoveries in the lab regarding the rejuvenation of senescent cells with chemical compounds found in foods like chocolate and red wine. He hopes to apply his findings to an animal model in the future—in this case,horses.

“We have been very fortunate in receiving some funding from an animal welfare charity to look at potential treatments for older horses,” he explains to Singularity Hub in an email. “I think this is a great idea. Many aspects of the physiology we are studying are common between horses and humans.”

What Faragher and his colleagues demonstrated in a paper published in BMC Cell Biology last year was that resveralogues, chemicals based on resveratrol, were able to reactivate a protein called a splicing factor that is involved in gene regulation. Within hours, the chemicals caused the cells to rejuvenate and start dividing like younger cells.

“If treatments work in our old pony systems, then I am sure they could be translated into clinical trials in humans,” Faragher says. “How long is purely a matter of money. Given suitable funding, I would hope to see a trial within five years.”

Show Them the Money
Faragher argues that the recent breakthroughs aren’t because a result of emerging technologies like artificial intelligence or the gene-editing tool CRISPR, but a paradigm shift in how scientists understand the underpinnings of cellular aging. Solving the “aging problem” isn’t a question of technology but of money, he says.

“Frankly, when AI and CRISPR have removed cystic fibrosis, Duchenne muscular dystrophy or Gaucher syndrome, I’ll be much more willing to hear tales of amazing progress. Go fix a single, highly penetrant genetic disease in the population using this flashy stuff and then we’ll talk,” he says. “My faith resides in the most potent technological development of all: money.”

De Grey is less flippant about the role that technology will play in the quest to defeat aging. AI, CRISPR, protein engineering, advances in stem cell therapies, and immune system engineering—all will have a part.

“There is not really anything distinctive about the ways in which these technologies will contribute,” he says. “What’s distinctive is that we will need all of these technologies, because there are so many different types of damage to repair and they each require different tricks.”

It’s in the Blood
A startup in the San Francisco Bay Area believes machines can play a big role in discovering the right combination of factors that lead to longer and healthier lives—and then develop drugs that exploit those findings.

BioAge Labs raised nearly $11 million last year for its machine learning platform that crunches big data sets to find blood factors, such as proteins or metabolites, that are tied to a person’s underlying biological age. The startup claims that these factors can predict how long a person will live.

“Our interest in this comes out of research into parabiosis, where joining the circulatory systems of old and young mice—so that they share the same blood—has been demonstrated to make old mice healthier and more robust,” Dr. Eric Morgen, chief medical officer at BioAge, tells Singularity Hub.

Based on that idea, he explains, it should be possible to alter those good or bad factors to produce a rejuvenating effect.

“Our main focus at BioAge is to identify these types of factors in our human cohort data, characterize the important molecular pathways they are involved in, and then drug those pathways,” he says. “This is a really hard problem, and we use machine learning to mine these complex datasets to determine which individual factors and molecular pathways best reflect biological age.”

Saving for the Future
Of course, there’s no telling when any of these anti-aging therapies will come to market. That’s why Forever Labs, a biotechnology startup out of Ann Arbor, Michigan, wants your stem cells now. The company offers a service to cryogenically freeze stem cells taken from bone marrow.

The theory behind the procedure, according to Forever Labs CEO Steven Clausnitzer, is based on research showing that stem cells may be a key component for repairing cellular damage. That’s because stem cells can develop into many different cell types and can divide endlessly to replenish other cells. Clausnitzer notes that there are upwards of a thousand clinical studies looking at using stem cells to treat age-related conditions such as cardiovascular disease.

However, stem cells come with their own expiration date, which usually coincides with the age that most people start experiencing serious health problems. Stem cells harvested from bone marrow at a younger age can potentially provide a therapeutic resource in the future.

“We believe strongly that by having access to your own best possible selves, you’re going to be well positioned to lead healthier, longer lives,” he tells Singularity Hub.

“There’s a compelling argument to be made that if you started to maintain the bone marrow population, the amount of nuclear cells in your bone marrow, and to re-up them so that they aren’t declining with age, it stands to reason that you could absolutely mitigate things like cardiovascular disease and stroke and Alzheimer’s,” he adds.

Clausnitzer notes that the stored stem cells can be used today in developing therapies to treat chronic conditions such as osteoarthritis. However, the more exciting prospect—and the reason he put his own 38-year-old stem cells on ice—is that he believes future stem cell therapies can help stave off the ravages of age-related disease.

“I can start reintroducing them not to treat age-related disease but to treat the decline in the stem-cell niche itself, so that I don’t ever get an age-related disease,” he says. “I don’t think that it equates to immortality, but it certainly is a step in that direction.”

Indecisive on Immortality
The societal implications of a longer-living human species are a guessing game at this point. We do know that by mid-century, the global population of those aged 65 and older will reach 1.6 billion, while those older than 80 will hit nearly 450 million, according to the National Academies of Science. If many of those people could enjoy healthy lives in their twilight years, an enormous medical cost could be avoided.

Faragher is certainly working toward a future where human health is ubiquitous. Human immortality is another question entirely.

“The longer lifespans become, the more heavily we may need to control birth rates and thus we may have fewer new minds. This could have a heavy ‘opportunity cost’ in terms of progress,” he says.

And does anyone truly want to live forever?

“There have been happy moments in my life but I have also suffered some traumatic disappointments. No [drug] will wash those experiences out of me,” Faragher says. “I no longer view my future with unqualified enthusiasm, and I do not think I am the only middle-aged man to feel that way. I don’t think it is an accident that so many ‘immortalists’ are young.

“They should be careful what they wish for.”

Image Credit: Karim Ortiz / Shutterstock.com Continue reading

Posted in Human Robots

#432568 Tech Optimists See a Golden ...

Technology evangelists dream about a future where we’re all liberated from the more mundane aspects of our jobs by artificial intelligence. Other futurists go further, imagining AI will enable us to become superhuman, enhancing our intelligence, abandoning our mortal bodies, and uploading ourselves to the cloud.

Paradise is all very well, although your mileage may vary on whether these scenarios are realistic or desirable. The real question is, how do we get there?

Economist John Maynard Keynes notably argued in favor of active intervention when an economic crisis hits, rather than waiting for the markets to settle down to a more healthy equilibrium in the long run. His rebuttal to critics was, “In the long run, we are all dead.” After all, if it takes 50 years of upheaval and economic chaos for things to return to normality, there has been an immense amount of human suffering first.

Similar problems arise with the transition to a world where AI is intimately involved in our lives. In the long term, automation of labor might benefit the human species immensely. But in the short term, it has all kinds of potential pitfalls, especially in exacerbating inequality within societies where AI takes on a larger role. A new report from the Institute for Public Policy Research has deep concerns about the future of work.

Uneven Distribution
While the report doesn’t foresee the same gloom and doom of mass unemployment that other commentators have considered, the concern is that the gains in productivity and economic benefits from AI will be unevenly distributed. In the UK, jobs that account for £290 billion worth of wages in today’s economy could potentially be automated with current technology. But these are disproportionately jobs held by people who are already suffering from social inequality.

Low-wage jobs are five times more likely to be automated than high-wage jobs. A greater proportion of jobs held by women are likely to be automated. The solution that’s often suggested is that people should simply “retrain”; but if no funding or assistance is provided, this burden is too much to bear. You can’t expect people to seamlessly transition from driving taxis to writing self-driving car software without help. As we have already seen, inequality is exacerbated when jobs that don’t require advanced education (even if they require a great deal of technical skill) are the first to go.

No Room for Beginners
Optimists say algorithms won’t replace humans, but will instead liberate us from the dull parts of our jobs. Lawyers used to have to spend hours trawling through case law to find legal precedents; now AI can identify the most relevant documents for them. Doctors no longer need to look through endless scans and perform diagnostic tests; machines can do this, leaving the decision-making to humans. This boosts productivity and provides invaluable tools for workers.

But there are issues with this rosy picture. If humans need to do less work, the economic incentive is for the boss to reduce their hours. Some of these “dull, routine” parts of the job were traditionally how people getting into the field learned the ropes: paralegals used to look through case law, but AI may render them obsolete. Even in the field of journalism, there’s now software that will rewrite press releases for publication, traditionally something close to an entry-level task. If there are no entry-level jobs, or if entry-level now requires years of training, the result is to exacerbate inequality and reduce social mobility.

Automating Our Biases
The adoption of algorithms into employment has already had negative impacts on equality. Cathy O’Neil, mathematics PhD from Harvard, raises these concerns in her excellent book Weapons of Math Destruction. She notes that algorithms designed by humans often encode the biases of that society, whether they’re racial or based on gender and sexuality.

Google’s search engine advertises more executive-level jobs to users it thinks are male. AI programs predict that black offenders are more likely to re-offend than white offenders; they receive correspondingly longer sentences. It needn’t necessarily be that bias has been actively programmed; perhaps the algorithms just learn from historical data, but this means they will perpetuate historical inequalities.

Take candidate-screening software HireVue, used by many major corporations to assess new employees. It analyzes “verbal and non-verbal cues” of candidates, comparing them to employees that historically did well. Either way, according to Cathy O’Neil, they are “using people’s fear and trust of mathematics to prevent them from asking questions.” With no transparency or understanding of how the algorithm generates its results, and no consensus over who’s responsible for the results, discrimination can occur automatically, on a massive scale.

Combine this with other demographic trends. In rich countries, people are living longer. An increasing burden will be placed on a shrinking tax base to support that elderly population. A recent study said that due to the accumulation of wealth in older generations, millennials stand to inherit more than any previous generation, but it won’t happen until they’re in their 60s. Meanwhile, those with savings and capital will benefit as the economy shifts: the stock market and GDP will grow, but wages and equality will fall, a situation that favors people who are already wealthy.

Even in the most dramatic AI scenarios, inequality is exacerbated. If someone develops a general intelligence that’s near-human or super-human, and they manage to control and monopolize it, they instantly become immensely wealthy and powerful. If the glorious technological future that Silicon Valley enthusiasts dream about is only going to serve to make the growing gaps wider and strengthen existing unfair power structures, is it something worth striving for?

What Makes a Utopia?
We urgently need to redefine our notion of progress. Philosophers worry about an AI that is misaligned—the things it seeks to maximize are not the things we want maximized. At the same time, we measure the development of our countries by GDP, not the quality of life of workers or the equality of opportunity in the society. Growing wealth with increased inequality is not progress.

Some people will take the position that there are always winners and losers in society, and that any attempt to redress the inequalities of our society will stifle economic growth and leave everyone worse off. Some will see this as an argument for a new economic model, based around universal basic income. Any moves towards this will need to take care that it’s affordable, sustainable, and doesn’t lead towards an entrenched two-tier society.

Walter Schiedel’s book The Great Leveller is a huge survey of inequality across all of human history, from the 21st century to prehistoric cave-dwellers. He argues that only revolutions, wars, and other catastrophes have historically reduced inequality: a perfect example is the Black Death in Europe, which (by reducing the population and therefore the labor supply that was available) increased wages and reduced inequality. Meanwhile, our solution to the financial crisis of 2007-8 may have only made the problem worse.

But in a world of nuclear weapons, of biowarfare, of cyberwarfare—a world of unprecedented, complex, distributed threats—the consequences of these “safety valves” could be worse than ever before. Inequality increases the risk of global catastrophe, and global catastrophes could scupper any progress towards the techno-utopia that the utopians dream of. And a society with entrenched inequality is no utopia at all.

Image Credit: OliveTree / Shutterstock.com Continue reading

Posted in Human Robots

#432482 This Week’s Awesome Stories From ...

CYBERNETICS
A Brain-Boosting Prosthesis Moves From Rats to Humans
Robbie Gonzalez | WIRED
“Today, their proof-of-concept prosthetic lives outside a patient’s head and connects to the brain via wires. But in the future, Hampson hopes, surgeons could implant a similar apparatus entirely within a person’s skull, like a neural pacemaker. It could augment all manner of brain functions—not just in victims of dementia and brain injury, but healthy individuals, as well.”

ARTIFICIAL INTELLIGENCE
Here’s How the US Needs to Prepare for the Age of Artificial Intelligence
Will Knight | MIT Technology Review
“The Trump administration has abandoned this vision and has no intention of devising its own AI plan, say those working there. They say there is no need for an AI moonshot, and that minimizing government interference is the best way to make sure the technology flourishes… That looks like a huge mistake. If it essentially ignores such a technological transformation, the US might never make the most of an opportunity to reboot its economy and kick-start both wage growth and job creation. Failure to plan could also cause the birthplace of AI to lose ground to international rivals.”

BIOMIMICRY
Underwater GPS Inspired by Shrimp Eyes
Jeremy Hsu | IEEE Spectrum
“A few years ago, U.S. and Australian researchers developed a special camera inspired by the eyes of mantis shrimp that can see the polarization patterns of light waves, which resemble those in a rope being waved up and down. That means the bio-inspired camera can detect how light polarization patterns change once the light enters the water and gets deflected or scattered.”

POLITICS & TECHNOLOGY
‘The Business of War’: Google Employees Protest Work for the Pentagon
Scott Shane and Daisuke Wakabayashi | The New York Times
“Thousands of Google employees, including dozens of senior engineers, have signed a letter protesting the company’s involvement in a Pentagon program that uses artificial intelligence to interpret video imagery and could be used to improve the targeting of drone strikes.

The letter, which is circulating inside Google and has garnered more than 3,100 signatures, reflects a culture clash between Silicon Valley and the federal government that is likely to intensify as cutting-edge artificial intelligence is increasingly employed for military purposes. ‘We believe that Google should not be in the business of war,’ says the letter, addressed to Sundar Pichai, the company’s chief executive. It asks that Google pull out of Project Maven, a Pentagon pilot program, and announce a policy that it will not ‘ever build warfare technology.’ (Read the text of the letter.)”

CYBERNETICS
MIT’s New Headset Reads the ‘Words in Your Head’
Brian Heater | TechCrunch
“A team at MIT has been working on just such a device, though the hardware design, admittedly, doesn’t go too far toward removing that whole self-consciousness bit from the equation. AlterEgo is a headmounted—or, more properly, jaw-mounted—device that’s capable of reading neuromuscular signals through built-in electrodes. The hardware, as MIT puts it, is capable of reading ‘words in your head.’”



Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#432303 What If the AI Revolution Is Neither ...

Why does everyone assume that the AI revolution will either lead to a fiery apocalypse or a glorious utopia, and not something in between? Of course, part of this is down to the fact that you get more attention by saying “The end is nigh!” or “Utopia is coming!”

But part of it is down to how humans think about change, especially unprecedented change. Millenarianism doesn’t have anything to do with being a “millennial,” being born in the 90s and remembering Buffy the Vampire Slayer. It is a way of thinking about the future that involves a deeply ingrained sense of destiny. A definition might be: “Millenarianism is the expectation that the world as it is will be destroyed and replaced with a perfect world, that a redeemer will come to cast down the evil and raise up the righteous.”

Millenarian beliefs, then, intimately link together the ideas of destruction and creation. They involve the idea of a huge, apocalyptic, seismic shift that will destroy the fabric of the old world and create something entirely new. Similar belief systems exist in many of the world’s major religions, and also the unspoken religion of some atheists and agnostics, which is a belief in technology.

Look at some futurist beliefs around the technological Singularity. In Ray Kurzweil’s vision, the Singularity is the establishment of paradise. Everyone is rendered immortal by biotechnology that can cure our ills; our brains can be uploaded to the cloud; inequality and suffering wash away under the wave of these technologies. The “destruction of the world” is replaced by a Silicon Valley buzzword favorite: disruption. And, as with many millenarian beliefs, your mileage varies on whether this destruction paves the way for a new utopia—or simply ends the world.

There are good reasons to be skeptical and interrogative towards this way of thinking. The most compelling reason is probably that millenarian beliefs seem to be a default mode of how humans think about change; just look at how many variants of this belief have cropped up all over the world.

These beliefs are present in aspects of Christian theology, although they only really became mainstream in their modern form in the 19th and 20th centuries. Ideas like the Tribulations—many years of hardship and suffering—before the Rapture, when the righteous will be raised up and the evil punished. After this destruction, the world will be made anew, or humans will ascend to paradise.

Despite being dogmatically atheist, Marxism has many of the same beliefs. It is all about a deterministic view of history that builds to a crescendo. In the same way as Rapture-believers look for signs that prophecies are beginning to be fulfilled, so Marxists look for evidence that we’re in the late stages of capitalism. They believe that, inevitably, society will degrade and degenerate to a breaking point—just as some millenarian Christians do.

In Marxism, this is when the exploitation of the working class by the rich becomes unsustainable, and the working class bands together and overthrows the oppressors. The “tribulation” is replaced by a “revolution.” Sometimes revolutionary figures, like Lenin, or Marx himself, are heralded as messiahs who accelerate the onset of the Millennium; and their rhetoric involves utterly smashing the old system such that a new world can be built. Of course, there is judgment, when the righteous workers take what’s theirs and the evil bourgeoisie are destroyed.

Even Norse mythology has an element of this, as James Hughes points out in his essay in Nick Bostrom’s book Global Catastrophic Risks. Ragnarok involves men and gods being defeated in a final, apocalyptic battle—but because that was a little bleak, they add in the idea that a new earth will arise where the survivors will live in harmony.

Judgement day is a cultural trope, too. Take the ancient Egyptians and their beliefs around the afterlife; the Lord of the underworld, Osiris, weighs the mortal’s heart against a feather. “Should the heart of the deceased prove to be heavy with wrongdoing, it would be eaten by a demon, and the hope of an afterlife vanished.”

Perhaps in the Singularity, something similar goes on. As our technology and hence our power improve, a final reckoning approaches: our hearts, as humans, will be weighed against a feather. If they prove too heavy with wrongdoing—with misguided stupidity, with arrogance and hubris, with evil—then we will fail the test, and we will destroy ourselves. But if we pass, and emerge from the Singularity and all of its threats and promises unscathed, then we will have paradise. And, like the other belief systems, there’s no room for non-believers; all of society is going to be radically altered, whether you want it to be or not, whether it benefits you or leaves you behind. A technological rapture.

It almost seems like every major development provokes this response. Nuclear weapons did, too. Either this would prove the final straw and we’d destroy ourselves, or the nuclear energy could be harnessed to build a better world. People talked at the dawn of the nuclear age about electricity that was “too cheap to meter.” The scientists who worked on the bomb often thought that with such destructive power in human hands, we’d be forced to cooperate and work together as a species.

When we see the same response over and over again to different circumstances, cropping up in different areas, whether it’s science, religion, or politics, we need to consider human biases. We like millenarian beliefs; and so when the idea of artificial intelligence outstripping human intelligence emerges, these beliefs spring up around it.

We don’t love facts. We don’t love information. We aren’t as rational as we’d like to think. We are creatures of narrative. Physicists observe the world and we weave our observations into narrative theories, stories about little billiard balls whizzing around and hitting each other, or space and time that bend and curve and expand. Historians try to make sense of an endless stream of events. We rely on stories: stories that make sense of the past, justify the present, and prepare us for the future.

And as stories go, the millenarian narrative is a brilliant and compelling one. It can lead you towards social change, as in the case of the Communists, or the Buddhist uprisings in China. It can justify your present-day suffering, if you’re in the tribulation. It gives you hope that your life is important and has meaning. It gives you a sense that things are evolving in a specific direction, according to rules—not just randomly sprawling outwards in a chaotic way. It promises that the righteous will be saved and the wrongdoers will be punished, even if there is suffering along the way. And, ultimately, a lot of the time, the millenarian narrative promises paradise.

We need to be wary of the millenarian narrative when we’re considering technological developments and the Singularity and existential risks in general. Maybe this time is different, but we’ve cried wolf many times before. There is a more likely, less appealing story. Something along the lines of: there are many possibilities, none of them are inevitable, and lots of the outcomes are less extreme than you might think—or they might take far longer than you think to arrive. On the surface, it’s not satisfying. It’s so much easier to think of things as either signaling the end of the world or the dawn of a utopia—or possibly both at once. It’s a narrative we can get behind, a good story, and maybe, a nice dream.

But dig a little below the surface, and you’ll find that the millenarian beliefs aren’t always the most promising ones, because they remove human agency from the equation. If you think that, say, the malicious use of algorithms, or the control of superintelligent AI, are serious and urgent problems that are worth solving, you can’t be wedded to a belief system that insists utopia or dystopia are inevitable. You have to believe in the shades of grey—and in your own ability to influence where we might end up. As we move into an uncertain technological future, we need to be aware of the power—and the limitations—of dreams.

Image Credit: Photobank gallery / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots