Tag Archives: touch

#431987 OptoForce Industrial Robot Sensors

OptoForce Sensors Providing Industrial Robots with

a “Sense of Touch” to Advance Manufacturing Automation

Global efforts to expand the capabilities of industrial robots are on the rise, as the demand from manufacturing companies to strengthen their operations and improve performance grows.

Hungary-based OptoForce, with a North American office in Charlotte, North Carolina, is one company that continues to support organizations with new robotic capabilities, as evidenced by its several new applications released in 2017.

The company, a leading robotics technology provider of multi-axis force and torque sensors, delivers 6 degrees of freedom force and torque measurement for industrial automation, and provides sensors for most of the currently-used industrial robots.

It recently developed and brought to market three new applications for KUKA industrial robots.

The new applications are hand guiding, presence detection, and center pointing and will be utilized by both end users and systems integrators. Each application is summarized below and what they provide for KUKA robots, along with video demonstrations to show how they operate.

Photo By: www.optoforce.com

Hand Guiding: With OptoForce’s Hand Guiding application, KUKA robots can easily and smoothly move in an assigned direction and selected route. This video shows specifically how to program the robot for hand guiding.

Presence Detection: This application allows KUKA robots to detect the presence of a specific object and to find the object even if it has moved. Visit here to learn more about presence detection.
Center Pointing: With this application, the OptoForce sensor helps the KUKA robot find the center point of an object by providing the robot with a sense of touch. This solution also works with glossy metal objects where a vision system would not be able to define its position. This video shows in detail how the center pointing application works.

The company’s CEO explained how these applications help KUKA robots and industrial automation.

Photo By: www.optoforce.com
“OptoForce’s new applications for KUKA robots pave the way for substantial improvements in industrial automation for both end users and systems integrators,” said Ákos Dömötör, CEO of OptoForce. “Our 6-axis force/torque sensors are combined with highly functional hardware and a comprehensive software package, which include the pre-programmed industrial applications. Essentially, we’re adding a ‘sense of touch’ to KUKA robot arms, enabling these robots to have abilities similar to a human hand, and opening up numerous new capabilities in industrial automation.”

Along with these new applications recently released for KUKA robots, OptoForce sensors are also being used by various companies on numerous industrial robots and manufacturing automation projects around the world. Examples of other uses include: path recording, polishing plastic and metal, box insertion, placing pins in holes, stacking/destacking, palletizing, and metal part sanding.

Specifically, some of the projects current underway by companies include: a plastic parting line removal; an obstacle detection for a major car manufacturing company; and a center point insertion application for a car part supplier, where the task of the robot is to insert a mirror, completely centered, onto a side mirror housing.

For more information, visit www.optoforce.com.

This post was provided by: OptoForce

The post OptoForce Industrial Robot Sensors appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431669 Technologically enhanced humans—a look ...

What exactly do we mean by an "enhanced" human? When this possibility is brought up, what is generally being referred to is the addition of human and machine-based performances (expanding on the figure of the cyborg popularised by science fiction). But enhanced in relation to what? According to which reference values and criteria? How, for example, can happiness be measured? A good life? Sensations, like smells or touch which connect us to the world? How happy we feel when we are working? All these dimensions that make life worth living. We must be careful here not to give in to the magic of figures. A plus can hide a minus; something gained may conceal something lost. What is gained or lost, however, is difficult to identify as it is neither quantifiable nor measurable. Continue reading

Posted in Human Robots

#431603 What We Can Learn From the Second Life ...

For every new piece of technology that gets developed, you can usually find people saying it will never be useful. The president of the Michigan Savings Bank in 1903, for example, said, “The horse is here to stay but the automobile is only a novelty—a fad.” It’s equally easy to find people raving about whichever new technology is at the peak of the Gartner Hype Cycle, which tracks the buzz around these newest developments and attempts to temper predictions. When technologies emerge, there are all kinds of uncertainties, from the actual capacity of the technology to its use cases in real life to the price tag.
Eventually the dust settles, and some technologies get widely adopted, to the extent that they can become “invisible”; people take them for granted. Others fall by the wayside as gimmicky fads or impractical ideas. Picking which horses to back is the difference between Silicon Valley millions and Betamax pub-quiz-question obscurity. For a while, it seemed that Google had—for once—backed the wrong horse.
Google Glass emerged from Google X, the ubiquitous tech giant’s much-hyped moonshot factory, where highly secretive researchers work on the sci-fi technologies of the future. Self-driving cars and artificial intelligence are the more mundane end for an organization that apparently once looked into jetpacks and teleportation.
The original smart glasses, Google began selling Google Glass in 2013 for $1,500 as prototypes for their acolytes, around 8,000 early adopters. Users could control the glasses with a touchpad, or, activated by tilting the head back, with voice commands. Audio relay—as with several wearable products—is via bone conduction, which transmits sound by vibrating the skull bones of the user. This was going to usher in the age of augmented reality, the next best thing to having a chip implanted directly into your brain.
On the surface, it seemed to be a reasonable proposition. People had dreamed about augmented reality for a long time—an onboard, JARVIS-style computer giving you extra information and instant access to communications without even having to touch a button. After smartphone ubiquity, it looked like a natural step forward.
Instead, there was a backlash. People may be willing to give their data up to corporations, but they’re less pleased with the idea that someone might be filming them in public. The worst aspect of smartphones is trying to talk to people who are distractedly scrolling through their phones. There’s a famous analogy in Revolutionary Road about an old couple’s loveless marriage: the husband tunes out his wife’s conversation by turning his hearing aid down to zero. To many, Google Glass seemed to provide us with a whole new way to ignore each other in favor of our Twitter feeds.
Then there’s the fact that, regardless of whether it’s because we’re not used to them, or if it’s a more permanent feature, people wearing AR tech often look very silly. Put all this together with a lack of early functionality, the high price (do you really feel comfortable wearing a $1,500 computer?), and a killer pun for the users—Glassholes—and the final recipe wasn’t great for Google.
Google Glass was quietly dropped from sale in 2015 with the ominous slogan posted on Google’s website “Thanks for exploring with us.” Reminding the Glass users that they had always been referred to as “explorers”—beta-testing a product, in many ways—it perhaps signaled less enthusiasm for wearables than the original, Google Glass skydive might have suggested.
In reality, Google went back to the drawing board. Not with the technology per se, although it has improved in the intervening years, but with the uses behind the technology.
Under what circumstances would you actually need a Google Glass? When would it genuinely be preferable to a smartphone that can do many of the same things and more? Beyond simply being a fashion item, which Google Glass decidedly was not, even the most tech-evangelical of us need a convincing reason to splash $1,500 on a wearable computer that’s less socially acceptable and less easy to use than the machine you’re probably reading this on right now.
Enter the Google Glass Enterprise Edition.
Piloted in factories during the years that Google Glass was dormant, and now roaring back to life and commercially available, the Google Glass relaunch got under way in earnest in July of 2017. The difference here was the specific audience: workers in factories who need hands-free computing because they need to use their hands at the same time.
In this niche application, wearable computers can become invaluable. A new employee can be trained with pre-programmed material that explains how to perform actions in real time, while instructions can be relayed straight into a worker’s eyeline without them needing to check a phone or switch to email.
Medical devices have long been a dream application for Google Glass. You can imagine a situation where people receive real-time information during surgery, or are augmented by artificial intelligence that provides additional diagnostic information or questions in response to a patient’s symptoms. The quest to develop a healthcare AI, which can provide recommendations in response to natural language queries, is on. The famously untidy doctor’s handwriting—and the associated death toll—could be avoided if the glasses could take dictation straight into a patient’s medical records. All of this is far more useful than allowing people to check Facebook hands-free while they’re riding the subway.
Google’s “Lens” application indicates another use for Google Glass that hadn’t quite matured when the original was launched: the Lens processes images and provides information about them. You can look at text and have it translated in real time, or look at a building or sign and receive additional information. Image processing, either through neural networks hooked up to a cloud database or some other means, is the frontier that enables driverless cars and similar technology to exist. Hook this up to a voice-activated assistant relaying information to the user, and you have your killer application: real-time annotation of the world around you. It’s this functionality that just wasn’t ready yet when Google launched Glass.
Amazon’s recent announcement that they want to integrate Alexa into a range of smart glasses indicates that the tech giants aren’t ready to give up on wearables yet. Perhaps, in time, people will become used to voice activation and interaction with their machines, at which point smart glasses with bone conduction will genuinely be more convenient than a smartphone.
But in many ways, the real lesson from the initial failure—and promising second life—of Google Glass is a simple question that developers of any smart technology, from the Internet of Things through to wearable computers, must answer. “What can this do that my smartphone can’t?” Find your answer, as the Enterprise Edition did, as Lens might, and you find your product.
Image Credit: Hattanas / Shutterstock.com Continue reading

Posted in Human Robots

#431543 China Is an Entrepreneurial Hotbed That ...

Last week, Eric Schmidt, chairman of Alphabet, predicted that China will rapidly overtake the US in artificial intelligence…in as little as five years.
Last month, China announced plans to open a $10 billion quantum computing research center in 2020.
Bottom line, China is aggressively investing in exponential technologies, pursuing a bold goal of becoming the global AI superpower by 2030.
Based on what I’ve observed from China’s entrepreneurial scene, I believe they have a real shot of hitting that goal.
As I described in a previous tech blog, I recently traveled to China with a group of my Abundance 360 members, where I was hosted by my friend Kai-Fu Lee, the founder, chairman, and CEO of Sinovation Ventures.
On one of our first nights, Kai-Fu invited us to a special dinner at Da Dong Roast, which specializes in Peking duck, where we shared an 18-course meal.
The meal was amazing, and Kai-Fu’s dinner conversation provided us priceless insights on Chinese entrepreneurs.
Three topics opened my eyes. Here’s the wisdom I’d like to share with you.
1. The Entrepreneurial Culture in China
Chinese entrepreneurship has exploded onto the scene and changed significantly over the past 10 years.
In my opinion, one significant way that Chinese entrepreneurs vary from their American counterparts is in work ethic. The mantra I found in the startups I visited in Beijing and Shanghai was “9-9-6”—meaning the employees only needed to work from 9 am to 9 pm, 6 days a week.
Another concept Kai-Fu shared over dinner was the almost ‘dictatorial’ leadership of the founder/CEO. In China, it’s not uncommon for the Founder/CEO to own the majority of the company, or at least 30–40 percent. It’s also the case that what the CEO says is gospel. Period, no debate. There is no minority or dissenting opinion. When the CEO says “march,” the company asks, “which way?”
When Kai-Fu started Sinovation (his $1 billion+ venture fund), there were few active angel investors. Today, China has a rich ecosystem of angel, venture capital, and government-funded innovation parks.
As venture capital in China has evolved, so too has the mindset of the entrepreneur.
Kai -Fu recalled an early investment he made in which, after an unfortunate streak, the entrepreneur came to him, almost in tears, apologizing for losing his money and promising he would earn it back for him in another way. Kai-Fu comforted the entrepreneur and said there was no such need.
Only a few years later, the situation was vastly different. An entrepreneur who was going through a similar unfortunate streak came to Kai Fu and told him he only had $2 million left of his initial $12 million investment. He informed him he saw no value in returning the money and instead was going to take the last $2 million and use it as a final push to see if the company could succeed. He then promised Kai-Fu if he failed, he would remember what Kai-Fu did for him and, as such, possibly give Sinovation an opportunity to invest in him with his next company.
2. Chinese Companies Are No Longer Just ‘Copycats’
During dinner, Kai-Fu lamented that 10 years ago, it would be fair to call Chinese companies copycats of American companies. Five years ago, the claim would be controversial. Today, however, Kai-Fu is clear that claim is entirely false.
While smart Chinese startups will still look at what American companies are doing and build on trends, today it’s becoming a wise business practice for American tech giants to analyze Chinese companies. If you look at many new features of Facebook’s Messenger, it seems to very closely mirror TenCent’s WeChat.
Interestingly, tight government controls in China have actually spurred innovation. Take TV, for example, a highly regulated industry. Because of this regulation, most entertainment in China is consumed on the internet or by phone. Game shows, reality shows, and more will be entirely centered online.
Kai-Fu told us about one of his investments in a company that helps create Chinese singing sensations. They take girls in from a young age, school them, and regardless of talent, help build their presence and brand as singers. Once ready, these singers are pushed across all the available platforms, and superstars are born. The company recognizes its role in this superstar status, though, which is why it takes a 50 percent cut of all earnings.
This company is just one example of how Chinese entrepreneurs take advantage of China’s unique position, market, and culture.
3. China’s Artificial Intelligence Play
Kai-Fu wrapped up his talk with a brief introduction into the expansive AI industry in China. I previously discussed Face++, a Sinovation investment, which is creating radically efficient facial recognition technology. Face++ is light years ahead of anyone else globally at recognition in live videos. However, Face++ is just one of the incredible advances in AI coming out of China.
Baidu, one of China’s most valuable tech companies, started out as just a search company. However, they now run one of the country’s leading self-driving car programs.
Baidu’s goal is to create a software suite atop existing hardware that will control all self-driving aspects of a vehicle but also be able to provide additional services such as HD mapping and more.
Another interesting application came from another of Sinovation’s investments, Smart Finance Group (SFG). Given most payments are mobile (through WeChat or Alipay), only ~20 percent of the population in China have a credit history. This makes it very difficult for individuals in China to acquire a loan.
SFG’s mobile application takes in user data (as much as the user allows) and, based on the information provided, uses an AI agent to create a financial profile with the power to offer an instant loan. This loan can be deposited directly into their WeChat or Alipay account and is typically approved in minutes. Unlike American loan companies, they avoid default and long-term debt by only providing a one-month loan with 10% interest. Borrow $200, and you pay back $220 by the following month.
Artificial intelligence is exploding in China, and Kai-Fu believes it will touch every single industry.
The only constant is change, and the rate of change is constantly increasing.
In the next 10 years, we’ll see tremendous changes on the geopolitical front and the global entrepreneurial scene caused by technological empowerment.
China is an entrepreneurial hotbed that cannot be ignored. I’m monitoring it closely. Are you?
Image Credit: anekoho / Shutterstock.com Continue reading

Posted in Human Robots

#431424 A ‘Google Maps’ for the Mouse Brain ...

Ask any neuroscientist to draw you a neuron, and it’ll probably look something like a star with two tails: one stubby with extensive tree-like branches, the other willowy, lengthy and dotted with spindly spikes.
While a decent abstraction, this cartoonish image hides the uncomfortable truth that scientists still don’t know much about what many neurons actually look like, not to mention the extent of their connections.
But without untangling the jumbled mess of neural wires that zigzag across the brain, scientists are stumped in trying to answer one of the most fundamental mysteries of the brain: how individual neuronal threads carry and assemble information, which forms the basis of our thoughts, memories, consciousness, and self.
What if there was a way to virtually trace and explore the brain’s serpentine fibers, much like the way Google Maps allows us to navigate the concrete tangles of our cities’ highways?
Thanks to an interdisciplinary team at Janelia Research Campus, we’re on our way. Meet MouseLight, the most extensive map of the mouse brain ever attempted. The ongoing project has an ambitious goal: reconstructing thousands—if not more—of the mouse’s 70 million neurons into a 3D map. (You can play with it here!)
With map in hand, neuroscientists around the world can begin to answer how neural circuits are organized in the brain, and how information flows from one neuron to another across brain regions and hemispheres.
The first release, presented Monday at the Society for Neuroscience Annual Conference in Washington, DC, contains information about the shape and sizes of 300 neurons.
And that’s just the beginning.
“MouseLight’s new dataset is the largest of its kind,” says Dr. Wyatt Korff, director of project teams. “It’s going to change the textbook view of neurons.”

http://mouselight.janelia.org/assets/carousel/ML-Movie.mp4
Brain Atlas
MouseLight is hardly the first rodent brain atlasing project.
The Mouse Brain Connectivity Atlas at the Allen Institute for Brain Science in Seattle tracks neuron activity across small circuits in an effort to trace a mouse’s connectome—a complete atlas of how the firing of one neuron links to the next.
MICrONS (Machine Intelligence from Cortical Networks), the $100 million government-funded “moonshot” hopes to distill brain computation into algorithms for more powerful artificial intelligence. Its first step? Brain mapping.
What makes MouseLight stand out is its scope and level of detail.
MICrONS, for example, is focused on dissecting a cubic millimeter of the mouse visual processing center. In contrast, MouseLight involves tracing individual neurons across the entire brain.
And while connectomics outlines the major connections between brain regions, the birds-eye view entirely misses the intricacies of each individual neuron. This is where MouseLight steps in.
Slice and Dice
With a width only a fraction of a human hair, neuron projections are hard to capture in their native state. Tug or squeeze the brain too hard, and the long, delicate branches distort or even shred into bits.
In fact, previous attempts at trying to reconstruct neurons at this level of detail topped out at just a dozen, stymied by technological hiccups and sky-high costs.
A few years ago, the MouseLight team set out to automate the entire process, with a few time-saving tweaks. Here’s how it works.
After injecting a mouse with a virus that causes a handful of neurons to produce a green-glowing protein, the team treated the brain with a sugar alcohol solution. This step “clears” the brain, transforming the beige-colored organ to translucent, making it easier for light to penetrate and boosting the signal-to-background noise ratio. The brain is then glued onto a small pedestal and ready for imaging.
Building upon an established method called “two-photon microscopy,” the team then tweaked several parameters to reduce imaging time from days (or weeks) down to a fraction of that. Endearingly known as “2P” by the experts, this type of laser microscope zaps the tissue with just enough photos to light up a single plane without damaging the tissue—sharper plane, better focus, crisper image.
After taking an image, the setup activates its vibrating razor and shaves off the imaged section of the brain—a waspy slice about 200 micrometers thick. The process is repeated until the whole brain is imaged.
This setup increased imaging speed by 16 to 48 times faster than conventional microscopy, writes team leader Dr. Jayaram Chandrashekar, who published a version of the method early last year in eLife.
The resulting images strikingly highlight every crook and cranny of a neuronal branch, popping out against a pitch-black background. But pretty pictures come at a hefty data cost: each image takes up a whopping 20 terabytes of data—roughly the storage space of 4,000 DVDs, or 10,000 hours of movies.
Stitching individual images back into 3D is an image-processing nightmare. The MouseLight team used a combination of computational power and human prowess to complete this final step.
The reconstructed images are handed off to a mighty team of seven trained neuron trackers. With the help of tracing algorithms developed in-house and a keen eye, each member can track roughly a neuron a day—significantly less time than the week or so previously needed.
A Numbers Game
Even with just 300 fully reconstructed neurons, MouseLight has already revealed new secrets of the brain.
While it’s widely accepted that axons, the neurons’ outgoing projection, can span the entire length of the brain, these extra-long connections were considered relatively rare. (In fact, one previously discovered “giant neuron” was thought to link to consciousness because of its expansive connections).
Images captured from two-photon microscopy show an axon and dendrites protruding from a neuron’s cell body (sphere in center). Image Credit: Janelia Research Center, MouseLight project team
MouseLight blows that theory out of the water.
The data clearly shows that “giant neurons” are far more common than previously thought. For example, four neurons normally associated with taste had wiry branches that stretched all the way into brain areas that control movement and process touch.
“We knew that different regions of the brain talked to each other, but seeing it in 3D is different,” says Dr. Eve Marder at Brandeis University.
“The results are so stunning because they give you a really clear view of how the whole brain is connected.”
With a tested and true system in place, the team is now aiming to add 700 neurons to their collection within a year.
But appearance is only part of the story.
We can’t tell everything about a person simply by how they look. Neurons are the same: scientists can only infer so much about a neuron’s function by looking at their shape and positions. The team also hopes to profile the gene expression patterns of each neuron, which could provide more hints to their roles in the brain.
MouseLight essentially dissects the neural infrastructure that allows information traffic to flow through the brain. These anatomical highways are just the foundation. Just like Google Maps, roads form only the critical first layer of the map. Street view, traffic information and other add-ons come later for a complete look at cities in flux.
The same will happen for understanding our ever-changing brain.
Image Credit: Janelia Research Campus, MouseLight project team Continue reading

Posted in Human Robots