Tag Archives: tesla

#439831 Tesla’s Tesla Bot

Here’s Elon Musk hyping “Tesla Bot”, said to be a general purpose, bi-pedal, humanoid robot that will perform “unsafe, repetitive or boring” tasks.

Posted in Human Robots

#439646 Elon Musk Has No Idea What He’s Doing ...

Yesterday, at the end of
Tesla's AI Day, Elon Musk introduced a concept for “Tesla Bot,” a 125 lb, 5'8″ tall electromechanically actuated autonomous bipedal “general purpose” humanoid robot. By “concept,” I mean that Musk showed some illustrations and talked about his vision for the robot, which struck me as, let's say, somewhat naïve. Based on the content of a six-minute long presentation, it seems as though Musk believes that someone (Tesla, suddenly?) should just go make an autonomous humanoid robot already—like, the technology exists, so why not do it?

To be fair, Musk did go out and do more or less much exactly that for electric cars and reusable rockets. But humanoid robots are much different, and much more complicated. With rockets, well, we already had rockets. And with electric cars, we already had cars, batteries, sensors, and the
DARPA competitions to build on. I don't say this to minimize what Musk has done with SpaceX and Tesla, but rather to emphasize that humanoid robotics is a very different challenge.

Unlike rockets or cars, humanoid robots aren't an existing technology that needs an ambitious vision plus a team of clever people plus sustained financial investment. With humanoid robotics, there are many more problems to solve, the problems are harder, and we're much farther away from practical solutions. Lots of very smart people have been actively working on these things for decades, and there's still a laundry list of fundamental breakthroughs in hardware and especially software that are probably necessary to make Musk's vision happen.

Are these fundamental breakthroughs impossible for Tesla? Not impossible, no. But from listening to what Elon Musk said today, I don't think he has any idea what getting humanoid robots to do useful stuff actually involves. Let's talk about why.

Watch the presentation if you haven't yet, and then let's go through what Musk talks about.

Okay, here we go!
“Our cars are semi-sentient robots on wheels.”

I don't know what that even means. Semi-sentient? Sure, whatever, a cockroach is semi-sentient I guess, although the implicit suggestion that these robots are therefore somehow part of the way towards actual sentience is ridiculous. Besides, autonomous cars live in a highly constrained action space within a semi-constrained environment, and Tesla cars in particular have plenty of well-known issues with their autonomy.

“With the full self-driving computer, essentially the inference engine on the car (which we'll keep evolving, obviously) and Dojo, and all the neural nets recognizing the world, understanding how to navigate through the world, it kind of makes sense to put that onto a humanoid form.”
Yes, because that's totally how it works. Look, the neural networks in a Tesla (the car) are trained to recognize the world from a car's perspective. They look for things that cars need to understand, and they have absolutely no idea about anything else, which can cause all kinds of problems for them. Same with navigation: autonomous cars navigate through a world that consists of roads and road-related stuff. You can't just “put that” onto a humanoid robot and have any sort of expectation that it'll be useful, unless all you want it to do is walk down the middle of the street and obey traffic lights. Also, the suggestion here seems to be that “AI for general purpose robotics” can be solved by just throwing enough computing power at it, which as far as I'm aware is not even remotely how that works, especially with physical robots.

“[Tesla] is also quite good at sensors and batteries and actuators. So, we think we'll probably have a prototype sometime next year.”
It's plausible that by spending enough money, Tesla could construct a humanoid robot with batteries, actuators, and computers in a similar design to what Musk has described. Can Tesla do it by sometime next year like Musk says they can? Sure, why not. But the hard part is not building a robot, it's getting that robot to do useful stuff, and I think Musk is way out of his depth here. People without a lot of experience in robotics often seem to think that once you've built the robot, you've solved most of the problem, so they focus on mechanical things like actuators and what it'll look like and how much it can lift and whatever. But that's backwards, and the harder problems come after you've got a robot that's mechanically functional.

What the heck does “human-level hands” mean?

“It's intended to navigate through a world built for humans…”
This is one of the few good reasons to make a humanoid robot, and I'm not even sure that by itself, it's a good enough reason to do so. But in any case, the word “intended” is doing a lot of heavy lifting here. The implications of a world built for humans includes an almost infinite variety of different environments, full of all kinds of robot-unfriendly things, not to mention the safety aspects of an inherently unstable 125 lb robot.

I feel like I have a pretty good handle on the current state of the art in humanoid robotics, and if you visit this site regularly, you probably do too. Companies like Boston Dynamics and Agility Robotics have been working on robots that can navigate through human environments for literally decades, and it's still a super hard problem. I don't know why Musk thinks that he can suddenly do better.

For anyone wondering why I Tweeted “Elon Musk has no idea what getting humanoid robots to do useful stuff actually… https://t.co/5uei4LIpyF
— Evan Ackerman (@BotJunkie)
1629446537.0

The “human-level hands” that you see annotated in Musk's presentation above are a good example of why I think Musk doesn't really grasp how much work this robot is going to be. What does “human-level hands” even mean? If we're talking about five-fingered hands with human-equivalent sensing and dexterity, those do exist (sort of), although they're generally fragile and expensive. It would take an enormous engineering effort to make hands like that into something practical just from a hardware perspective, which is why nobody has bothered—most robots use much simpler, much more robust two or three finger grippers instead. Could Tesla solve this problem? I have no doubt that they could, given enough time and money. But they've also got every other part of the robot to deal with. And even if you can make the hardware robust enough to be useful, you've still got to come up with all of the software to make it work. Again, we're talking about huge problems within huge problems at a scale that it seems like Musk hasn't considered.

“…And eliminate dangerous, repetitive, and boring tasks.”

Great. This is what robots should be doing. But as Musk himself knows, it's easy to say that robots will eliminate dangerous, repetitive, and boring tasks, and much more difficult to actually get them to do it—not because the robots aren't capable, but because humans are far more capable. We set a very high bar for performance and versatility in ways that aren't always obvious, and even when they are obvious, robots may not be able to replicate them effectively.

[Musk makes jokes about robots going rogue.]

Uh, okay.

“Things I think that are hard about having a really useful humanoid robot are, can it navigate through the world without being explicitly trained, without explicit line-by-line instructions? Can you talk to it and say, 'please pick up that bolt and attach it to the car with that wrench?' 'Please go to the store and get me the following groceries?' That kind of thing.”
Robots can already navigate through the world without “explicit line-by-line instructions” when they have a pretty good idea of what “the world” consists of. If the world is “roads” or “my apartment” or “this specific shopping mall,” that's probably a 95%+ solved problem, keeping in mind that the last 5% gets ridiculously complicated. But if you start talking about “my apartment plus any nearby grocery store along with everything between my apartment and that grocery store,” that's a whole lot of not necessarily well structured or predictable space.

And part of that challenge is just physically moving through those spaces. Are there stairs? Heavy doors? Crosswalks? Lots of people? These are complicated enough environments for those small wheeled sidewalk delivery robots with humans in the loop, never mind a (hypothetical) fully autonomous bipedal humanoid that is also carrying objects. And going into a crowded grocery store and picking things up off of shelves and putting them into a basket or a cart that then has to be pushed safely? These are cutting edge unsolved robotics problems, and we've barely seen this kind of thing happen with industrial arms on wheeled bases, even in a research context. Heck, even “pick up that bolt” is not an easy thing for a robot to do right now, if it wasn't specifically designed for that task.

“This I think will be quite profound, because what is the economy—at the foundation, it is labor. So, what happens when there is no shortage of labor? This is why I think long term there will need to be universal basic income. But not right now, because this robot doesn't work.”

Economics is well beyond my area of expertise, but as Musk says, until the robot works, this is all moot.

“AI for General Purpose Robotics.” Sure.

It's possible, even likely, that Tesla will build some sort of Tesla Bot by sometime next year, as Musk says. I think that it won't look all that much like the concept images in this presentation. I think that it'll be able to stand up, and perhaps walk. Maybe withstand a shove or two and do some basic object recognition and grasping. And I think after that, progress will be slow. I don't think Tesla will catch up with Boston Dynamics or Agility Robotics. Maybe they'll end up with the equivalent of Asimo, with a PR tool that can do impressive demos but is ultimately not all that useful.

Part of what bothers me so much about all this is how Musk's vision for the Tesla Bot implies that he's going to just casually leapfrog all of the roboticists who have been working towards useful humanoids for decades. Musk assumes that he will be able to wander into humanoid robot development and do what nobody else has yet been able to do: build a useful general purpose humanoid. I doubt Musk intended it this way, but I feel like he's backhandedly suggesting that the challenges with humanoids aren't actually that hard, and that if other people were cleverer, or worked harder, or threw more money at the problem, then we would have had general purpose humanoids already.
I think he's wrong. But if Tesla ends up investing time and money into solving some really hard robotics problems, perhaps they'll have some success that will help move the entire field forward. And I'd call that a win. Continue reading

Posted in Human Robots

#439640 Elon Musk says Tesla’s robot will ...

After dominating the electric vehicle market and throwing his hat into the billionaire space race, Tesla boss Elon Musk announced the latest frontier he's aiming to conquer: humanoid robots. Continue reading

Posted in Human Robots

#437224 This Week’s Awesome Tech Stories From ...

VIRTUAL REALITY
How Holographic Tech Is Shrinking VR Displays to the Size of Sunglasses
Kyle Orland | Ars Technica
“…researchers at Facebook Reality Labs are using holographic film to create a prototype VR display that looks less like ski goggles and more like lightweight sunglasses. With a total thickness less than 9mm—and without significant compromises on field of view or resolution—these displays could one day make today’s bulky VR headset designs completely obsolete.”

TRANSPORTATION
Stock Surge Makes Tesla the World’s Most Valuable Automaker
Timothy B. Lee | Ars Technica
“It’s a remarkable milestone for a company that sells far fewer cars than its leading rivals. …But Wall Street is apparently very optimistic about Tesla’s prospects for future growth and profits. Many experts expect a global shift to battery electric vehicles over the next decade or two, and Tesla is leading that revolution.”

FUTURE OF FOOD
These Plant-Based Steaks Come Out of a 3D Printer
Adele Peters | Fast Company
“The startup, launched by cofounders who met while developing digital printers at HP, created custom 3D printers that aim to replicate meat by printing layers of what they call ‘alt-muscle,’ ‘alt-fat,’ and ‘alt-blood,’ forming a complex 3D model.”

AUTOMATION
The US Air Force Is Turning Old F-16s Into AI-Powered Fighters
Amit Katwala | Wired UK
“Maverick’s days are numbered. The long-awaited sequel to Top Gun is due to hit cinemas in December, but the virtuoso fighter pilots at its heart could soon be a thing of the past. The trustworthy wingman will soon be replaced by artificial intelligence, built into a drone, or an existing fighter jet with no one in the cockpit.”

ROBOTICS
NASA Wants to Build a Steam-Powered Hopping Robot to Explore Icy Worlds
Georgina Torbet | Digital Trends
“A bouncing, ball-like robot that’s powered by steam sounds like something out of a steampunk fantasy, but it could be the ideal way to explore some of the distant, icy environments of our solar system. …This round robot would be the size of a soccer ball, with instruments held in the center of a metal cage, and it would use steam-powered thrusters to make jumps from one area of terrain to the next.”

FUTURE
Could Teleporting Ever Work?
Daniel Kolitz | Gizmodo
“Have the major airlines spent decades suppressing teleportation research? Have a number of renowned scientists in the field of teleportation studies disappeared under mysterious circumstances? Is there a cork board at the FBI linking Delta Airlines, shady foreign security firms, and dozens of murdered research professors? …No. None of that is the case. Which begs the question: why doesn’t teleportation exist yet?”

ENERGY
Nuclear ‘Power Balls’ Could Make Meltdowns a Thing of the Past
Daniel Oberhaus | Wired
“Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.”

TECHNOLOGY
A Plan to Redesign the Internet Could Make Apps That No One Controls
Will Douglas Heaven | MIT Techology Review
“[John Perry] Barlow’s ‘home of Mind’ is ruled today by the likes of Google, Facebook, Amazon, Alibaba, Tencent, and Baidu—a small handful of the biggest companies on earth. Yet listening to the mix of computer scientists and tech investors speak at an online event on June 30 hosted by the Dfinity Foundation…it is clear that a desire for revolution is brewing.”

IMPACT
To Save the World, the UN Is Turning It Into a Computer Simulation
Will Bedingfield | Wired
“The UN has now announced its new secret recipe to achieve [its 17 sustainable development goals or SDGs]: a computer simulation called Policy Priority Inference (PPI). …PPI is a budgeting software—it simulates a government and its bureaucrats as they allocate money on projects that might move a country closer to an SDG.”

Image credit: Benjamin Suter / Unsplash Continue reading

Posted in Human Robots

#437145 3 Major Materials Science ...

Few recognize the vast implications of materials science.

To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.

That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.

As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.

And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.

Let’s dive in.

The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.

By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.

This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.

Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.

Let’s unpack some of the leading materials science breakthroughs of the past decade.

(1) Lithium-ion batteries

The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.

An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.

But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.

Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.

Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.

(2) Graphene

Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.

Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.

As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.

(3) Perovskite

Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.

Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.

Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.

Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.

Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.

Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.

Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.

And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.

On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.

The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.

Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.

And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.

Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.

Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.

(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Anand Kumar from Pixabay Continue reading

Posted in Human Robots