Tag Archives: tell

#431925 How the Science of Decision-Making Will ...

Neuroscientist Brie Linkenhoker believes that leaders must be better prepared for future strategic challenges by continually broadening their worldviews.
As the director of Worldview Stanford, Brie and her team produce multimedia content and immersive learning experiences to make academic research and insights accessible and useable by curious leaders. These future-focused topics are designed to help curious leaders understand the forces shaping the future.
Worldview Stanford has tackled such interdisciplinary topics as the power of minds, the science of decision-making, environmental risk and resilience, and trust and power in the age of big data.
We spoke with Brie about why understanding our biases is critical to making better decisions, particularly in a time of increasing change and complexity.

Lisa Kay Solomon: What is Worldview Stanford?
Brie Linkenhoker: Leaders and decision makers are trying to navigate this complex hairball of a planet that we live on and that requires keeping up on a lot of diverse topics across multiple fields of study and research. Universities like Stanford are where that new knowledge is being created, but it’s not getting out and used as readily as we would like, so that’s what we’re working on.
Worldview is designed to expand our individual and collective worldviews about important topics impacting our future. Your worldview is not a static thing, it’s constantly changing. We believe it should be informed by lots of different perspectives, different cultures, by knowledge from different domains and disciplines. This is more important now than ever.
At Worldview, we create learning experiences that are an amalgamation of all of those things.
LKS: One of your marquee programs is the Science of Decision Making. Can you tell us about that course and why it’s important?
BL: We tend to think about decision makers as being people in leadership positions, but every person who works in your organization, every member of your family, every member of the community is a decision maker. You have to decide what to buy, who to partner with, what government regulations to anticipate.
You have to think not just about your own decisions, but you have to anticipate how other people make decisions too. So, when we set out to create the Science of Decision Making, we wanted to help people improve their own decisions and be better able to predict, understand, anticipate the decisions of others.

“I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them.”

We realized that the only way to do that was to combine a lot of different perspectives, so we recruited experts from economics, psychology, neuroscience, philosophy, biology, and religion. We also brought in cutting-edge research on artificial intelligence and virtual reality and explored conversations about how technology is changing how we make decisions today and how it might support our decision-making in the future.
There’s no single set of answers. There are as many unanswered questions as there are answered questions.
LKS: One of the other things you explore in this course is the role of biases and heuristics. Can you explain the importance of both in decision-making?
BL: When I was a strategy consultant, executives would ask me, “How do I get rid of the biases in my decision-making or my organization’s decision-making?” And my response would be, “Good luck with that. It isn’t going to happen.”
As human beings we make, probably, thousands of decisions every single day. If we had to be actively thinking about each one of those decisions, we wouldn’t get out of our house in the morning, right?
We have to be able to do a lot of our decision-making essentially on autopilot to free up cognitive resources for more difficult decisions. So, we’ve evolved in the human brain a set of what we understand to be heuristics or rules of thumb.
And heuristics are great in, say, 95 percent of situations. It’s that five percent, or maybe even one percent, that they’re really not so great. That’s when we have to become aware of them because in some situations they can become biases.
For example, it doesn’t matter so much that we’re not aware of our rules of thumb when we’re driving to work or deciding what to make for dinner. But they can become absolutely critical in situations where a member of law enforcement is making an arrest or where you’re making a decision about a strategic investment or even when you’re deciding who to hire.
Let’s take hiring for a moment.
How many years is a hire going to impact your organization? You’re potentially looking at 5, 10, 15, 20 years. Having the right person in a role could change the future of your business entirely. That’s one of those areas where you really need to be aware of your own heuristics and biases—and we all have them. There’s no getting rid of them.
LKS: We seem to be at a time when the boundaries between different disciplines are starting to blend together. How has the advancement of neuroscience help us become better leaders? What do you see happening next?
BL: Heuristics and biases are very topical these days, thanks in part to Michael Lewis’s fantastic book, The Undoing Project, which is the story of the groundbreaking work that Nobel Prize winner Danny Kahneman and Amos Tversky did in the psychology and biases of human decision-making. Their work gave rise to the whole new field of behavioral economics.
In the last 10 to 15 years, neuroeconomics has really taken off. Neuroeconomics is the combination of behavioral economics with neuroscience. In behavioral economics, they use economic games and economic choices that have numbers associated with them and have real-world application.
For example, they ask, “How much would you spend to buy A versus B?” Or, “If I offered you X dollars for this thing that you have, would you take it or would you say no?” So, it’s trying to look at human decision-making in a format that’s easy to understand and quantify within a laboratory setting.
Now you bring neuroscience into that. You can have people doing those same kinds of tasks—making those kinds of semi-real-world decisions—in a brain scanner, and we can now start to understand what’s going on in the brain while people are making decisions. You can ask questions like, “Can I look at the signals in someone’s brain and predict what decision they’re going to make?” That can help us build a model of decision-making.
I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them. That’s very exciting for a neuroscientist.
Image Credit: Black Salmon / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431873 Why the World Is Still Getting ...

If you read or watch the news, you’ll likely think the world is falling to pieces. Trends like terrorism, climate change, and a growing population straining the planet’s finite resources can easily lead you to think our world is in crisis.
But there’s another story, a story the news doesn’t often report. This story is backed by data, and it says we’re actually living in the most peaceful, abundant time in history, and things are likely to continue getting better.
The News vs. the Data
The reality that’s often clouded by a constant stream of bad news is we’re actually seeing a massive drop in poverty, fewer deaths from violent crime and preventable diseases. On top of that, we’re the most educated populace to ever walk the planet.
“Violence has been in decline for thousands of years, and today we may be living in the most peaceful era in the existence of our species.” –Steven Pinker
In the last hundred years, we’ve seen the average human life expectancy nearly double, the global GDP per capita rise exponentially, and childhood mortality drop 10-fold.

That’s pretty good progress! Maybe the world isn’t all gloom and doom.If you’re still not convinced the world is getting better, check out the charts in this article from Vox and on Peter Diamandis’ website for a lot more data.
Abundance for All Is Possible
So now that you know the world isn’t so bad after all, here’s another thing to think about: it can get much better, very soon.
In their book Abundance: The Future Is Better Than You Think, Steven Kotler and Peter Diamandis suggest it may be possible for us to meet and even exceed the basic needs of all the people living on the planet today.
“In the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.”
This means making sure every single person in the world has adequate food, water and shelter, as well as a good education, access to healthcare, and personal freedom.
This might seem unimaginable, especially if you tend to think the world is only getting worse. But given how much progress we’ve already made in the last few hundred years, coupled with the recent explosion of information sharing and new, powerful technologies, abundance for all is not as out of reach as you might believe.
Throughout history, we’ve seen that in the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.
Napoleon III
In Abundance, Diamandis and Kotler tell the story of how aluminum went from being one of the rarest metals on the planet to being one of the most abundant…
In the 1800s, aluminum was more valuable than silver and gold because it was rarer. So when Napoleon III entertained the King of Siam, the king and his guests were honored by being given aluminum utensils, while the rest of the dinner party ate with gold.
But aluminum is not really rare.
In fact, aluminum is the third most abundant element in the Earth’s crust, making up 8.3% of the weight of our planet. But it wasn’t until chemists Charles Martin Hall and Paul Héroult discovered how to use electrolysis to cheaply separate aluminum from surrounding materials that the element became suddenly abundant.
The problems keeping us from achieving a world where everyone’s basic needs are met may seem like resource problems — when in reality, many are accessibility problems.
The Engine Driving Us Toward Abundance: Exponential Technology
History is full of examples like the aluminum story. The most powerful one of the last few decades is information technology. Think about all the things that computers and the internet made abundant that were previously far less accessible because of cost or availability … Here are just a few examples:

Easy access to the world’s information
Ability to share information freely with anyone and everyone
Free/cheap long-distance communication
Buying and selling goods/services regardless of location

Less than two decades ago, when someone reached a certain level of economic stability, they could spend somewhere around $10K on stereos, cameras, entertainment systems, etc — today, we have all that equipment in the palm of our hand.
Now, there is a new generation of technologies heavily dependant on information technology and, therefore, similarly riding the wave of exponential growth. When put to the right use, emerging technologies like artificial intelligence, robotics, digital manufacturing, nano-materials and digital biology make it possible for us to drastically raise the standard of living for every person on the planet.

These are just some of the innovations which are unlocking currently scarce resources:

IBM’s Watson Health is being trained and used in medical facilities like the Cleveland Clinic to help doctors diagnose disease. In the future, it’s likely we’ll trust AI just as much, if not more than humans to diagnose disease, allowing people all over the world to have access to great diagnostic tools regardless of whether there is a well-trained doctor near them.

Solar power is now cheaper than fossil fuels in some parts of the world, and with advances in new materials and storage, the cost may decrease further. This could eventually lead to nearly-free, clean energy for people across the world.

Google’s GMNT network can now translate languages as well as a human, unlocking the ability for people to communicate globally as we never have before.

Self-driving cars are already on the roads of several American cities and will be coming to a road near you in the next couple years. Considering the average American spends nearly two hours driving every day, not having to drive would free up an increasingly scarce resource: time.

The Change-Makers
Today’s innovators can create enormous change because they have these incredible tools—which would have once been available only to big organizations—at their fingertips. And, as a result of our hyper-connected world, there is an unprecedented ability for people across the planet to work together to create solutions to some of our most pressing problems today.
“In today’s hyperlinked world, solving problems anywhere, solves problems everywhere.” –Peter Diamandis and Steven Kotler, Abundance
According to Diamandis and Kotler, there are three groups of people accelerating positive change.

DIY InnovatorsIn the 1970s and 1980s, the Homebrew Computer Club was a meeting place of “do-it-yourself” computer enthusiasts who shared ideas and spare parts. By the 1990s and 2000s, that little club became known as an inception point for the personal computer industry — dozens of companies, including Apple Computer, can directly trace their origins back to Homebrew. Since then, we’ve seen the rise of the social entrepreneur, the Maker Movement and the DIY Bio movement, which have similar ambitions to democratize social reform, manufacturing, and biology, the way Homebrew democratized computers. These are the people who look for new opportunities and aren’t afraid to take risks to create something new that will change the status-quo.
Techno-PhilanthropistsUnlike the robber barons of the 19th and early 20th centuries, today’s “techno-philanthropists” are not just giving away some of their wealth for a new museum, they are using their wealth to solve global problems and investing in social entrepreneurs aiming to do the same. The Bill and Melinda Gates Foundation has given away at least $28 billion, with a strong focus on ending diseases like polio, malaria, and measles for good. Jeff Skoll, after cashing out of eBay with $2 billion in 1998, went on to create the Skoll Foundation, which funds social entrepreneurs across the world. And last year, Mark Zuckerberg and Priscilla Chan pledged to give away 99% of their $46 billion in Facebook stock during their lifetimes.
The Rising BillionCisco estimates that by 2020, there will be 4.1 billion people connected to the internet, up from 3 billion in 2015. This number might even be higher, given the efforts of companies like Facebook, Google, Virgin Group, and SpaceX to bring internet access to the world. That’s a billion new people in the next several years who will be connected to the global conversation, looking to learn, create and better their own lives and communities.In his book, Fortune at the Bottom of the Pyramid, C.K. Pahalad writes that finding co-creative ways to serve this rising market can help lift people out of poverty while creating viable businesses for inventive companies.

The Path to Abundance
Eager to create change, innovators armed with powerful technologies can accomplish incredible feats. Kotler and Diamandis imagine that the path to abundance occurs in three tiers:

Basic Needs (food, water, shelter)
Tools of Growth (energy, education, access to information)
Ideal Health and Freedom

Of course, progress doesn’t always happen in a straight, logical way, but having a framework to visualize the needs is helpful.
Many people don’t believe it’s possible to end the persistent global problems we’re facing. However, looking at history, we can see many examples where technological tools have unlocked resources that previously seemed scarce.
Technological solutions are not always the answer, and we need social change and policy solutions as much as we need technology solutions. But we have seen time and time again, that powerful tools in the hands of innovative, driven change-makers can make the seemingly impossible happen.

You can download the full “Path to Abundance” infographic here. It was created under a CC BY-NC-ND license. If you share, please attribute to Singularity University.
Image Credit: janez volmajer / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431869 When Will We Finally Achieve True ...

The field of artificial intelligence goes back a long way, but many consider it was officially born when a group of scientists at Dartmouth College got together for a summer, back in 1956. Computers had, over the last few decades, come on in incredible leaps and bounds; they could now perform calculations far faster than humans. Optimism, given the incredible progress that had been made, was rational. Genius computer scientist Alan Turing had already mooted the idea of thinking machines just a few years before. The scientists had a fairly simple idea: intelligence is, after all, just a mathematical process. The human brain was a type of machine. Pick apart that process, and you can make a machine simulate it.
The problem didn’t seem too hard: the Dartmouth scientists wrote, “We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.” This research proposal, by the way, contains one of the earliest uses of the term artificial intelligence. They had a number of ideas—maybe simulating the human brain’s pattern of neurons could work and teaching machines the abstract rules of human language would be important.
The scientists were optimistic, and their efforts were rewarded. Before too long, they had computer programs that seemed to understand human language and could solve algebra problems. People were confidently predicting there would be a human-level intelligent machine built within, oh, let’s say, the next twenty years.
It’s fitting that the industry of predicting when we’d have human-level intelligent AI was born at around the same time as the AI industry itself. In fact, it goes all the way back to Turing’s first paper on “thinking machines,” where he predicted that the Turing Test—machines that could convince humans they were human—would be passed in 50 years, by 2000. Nowadays, of course, people are still predicting it will happen within the next 20 years, perhaps most famously Ray Kurzweil. There are so many different surveys of experts and analyses that you almost wonder if AI researchers aren’t tempted to come up with an auto reply: “I’ve already predicted what your question will be, and no, I can’t really predict that.”
The issue with trying to predict the exact date of human-level AI is that we don’t know how far is left to go. This is unlike Moore’s Law. Moore’s Law, the doubling of processing power roughly every couple of years, makes a very concrete prediction about a very specific phenomenon. We understand roughly how to get there—improved engineering of silicon wafers—and we know we’re not at the fundamental limits of our current approach (at least, not until you’re trying to work on chips at the atomic scale). You cannot say the same about artificial intelligence.
Common Mistakes
Stuart Armstrong’s survey looked for trends in these predictions. Specifically, there were two major cognitive biases he was looking for. The first was the idea that AI experts predict true AI will arrive (and make them immortal) conveniently just before they’d be due to die. This is the “Rapture of the Nerds” criticism people have leveled at Kurzweil—his predictions are motivated by fear of death, desire for immortality, and are fundamentally irrational. The ability to create a superintelligence is taken as an article of faith. There are also criticisms by people working in the AI field who know first-hand the frustrations and limitations of today’s AI.
The second was the idea that people always pick a time span of 15 to 20 years. That’s enough to convince people they’re working on something that could prove revolutionary very soon (people are less impressed by efforts that will lead to tangible results centuries down the line), but not enough for you to be embarrassingly proved wrong. Of the two, Armstrong found more evidence for the second one—people were perfectly happy to predict AI after they died, although most didn’t, but there was a clear bias towards “15–20 years from now” in predictions throughout history.
Measuring Progress
Armstrong points out that, if you want to assess the validity of a specific prediction, there are plenty of parameters you can look at. For example, the idea that human-level intelligence will be developed by simulating the human brain does at least give you a clear pathway that allows you to assess progress. Every time we get a more detailed map of the brain, or successfully simulate another part of it, we can tell that we are progressing towards this eventual goal, which will presumably end in human-level AI. We may not be 20 years away on that path, but at least you can scientifically evaluate the progress.
Compare this to those that say AI, or else consciousness, will “emerge” if a network is sufficiently complex, given enough processing power. This might be how we imagine human intelligence and consciousness emerged during evolution—although evolution had billions of years, not just decades. The issue with this is that we have no empirical evidence: we have never seen consciousness manifest itself out of a complex network. Not only do we not know if this is possible, we cannot know how far away we are from reaching this, as we can’t even measure progress along the way.
There is an immense difficulty in understanding which tasks are hard, which has continued from the birth of AI to the present day. Just look at that original research proposal, where understanding human language, randomness and creativity, and self-improvement are all mentioned in the same breath. We have great natural language processing, but do our computers understand what they’re processing? We have AI that can randomly vary to be “creative,” but is it creative? Exponential self-improvement of the kind the singularity often relies on seems far away.
We also struggle to understand what’s meant by intelligence. For example, AI experts consistently underestimated the ability of AI to play Go. Many thought, in 2015, it would take until 2027. In the end, it took two years, not twelve. But does that mean AI is any closer to being able to write the Great American Novel, say? Does it mean it’s any closer to conceptually understanding the world around it? Does it mean that it’s any closer to human-level intelligence? That’s not necessarily clear.
Not Human, But Smarter Than Humans
But perhaps we’ve been looking at the wrong problem. For example, the Turing test has not yet been passed in the sense that AI cannot convince people it’s human in conversation; but of course the calculating ability, and perhaps soon the ability to perform other tasks like pattern recognition and driving cars, far exceed human levels. As “weak” AI algorithms make more decisions, and Internet of Things evangelists and tech optimists seek to find more ways to feed more data into more algorithms, the impact on society from this “artificial intelligence” can only grow.
It may be that we don’t yet have the mechanism for human-level intelligence, but it’s also true that we don’t know how far we can go with the current generation of algorithms. Those scary surveys that state automation will disrupt society and change it in fundamental ways don’t rely on nearly as many assumptions about some nebulous superintelligence.
Then there are those that point out we should be worried about AI for other reasons. Just because we can’t say for sure if human-level AI will arrive this century, or never, it doesn’t mean we shouldn’t prepare for the possibility that the optimistic predictors could be correct. We need to ensure that human values are programmed into these algorithms, so that they understand the value of human life and can act in “moral, responsible” ways.
Phil Torres, at the Project for Future Human Flourishing, expressed it well in an interview with me. He points out that if we suddenly decided, as a society, that we had to solve the problem of morality—determine what was right and wrong and feed it into a machine—in the next twenty years…would we even be able to do it?
So, we should take predictions with a grain of salt. Remember, it turned out the problems the AI pioneers foresaw were far more complicated than they anticipated. The same could be true today. At the same time, we cannot be unprepared. We should understand the risks and take our precautions. When those scientists met in Dartmouth in 1956, they had no idea of the vast, foggy terrain before them. Sixty years later, we still don’t know how much further there is to go, or how far we can go. But we’re going somewhere.
Image Credit: Ico Maker / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431592 Reactive Content Will Get to Know You ...

The best storytellers react to their audience. They look for smiles, signs of awe, or boredom; they simultaneously and skillfully read both the story and their sitters. Kevin Brooks, a seasoned storyteller working for Motorola’s Human Interface Labs, explains, “As the storyteller begins, they must tune in to… the audience’s energy. Based on this energy, the storyteller will adjust their timing, their posture, their characterizations, and sometimes even the events of the story. There is a dialog between audience and storyteller.”
Shortly after I read the script to Melita, the latest virtual reality experience from Madrid-based immersive storytelling company Future Lighthouse, CEO Nicolas Alcalá explained to me that the piece is an example of “reactive content,” a concept he’s been working on since his days at Singularity University.

For the first time in history, we have access to technology that can merge the reactive and affective elements of oral storytelling with the affordances of digital media, weaving stunning visuals, rich soundtracks, and complex meta-narratives in a story arena that has the capability to know you more intimately than any conventional storyteller could.
It’s no understatement to say that the storytelling potential here is phenomenal.
In short, we can refer to content as reactive if it reads and reacts to users based on their body rhythms, emotions, preferences, and data points. Artificial intelligence is used to analyze users’ behavior or preferences to sculpt unique storylines and narratives, essentially allowing for a story that changes in real time based on who you are and how you feel.
The development of reactive content will allow those working in the industry to go one step further than simply translating the essence of oral storytelling into VR. Rather than having a narrative experience with a digital storyteller who can read you, reactive content has the potential to create an experience with a storyteller who knows you.
This means being able to subtly insert minor personal details that have a specific meaning to the viewer. When we talk to our friends we often use experiences we’ve shared in the past or knowledge of our audience to give our story as much resonance as possible. Targeting personal memories and aspects of our lives is a highly effective way to elicit emotions and aid in visualizing narratives. When you can do this with the addition of visuals, music, and characters—all lifted from someone’s past—you have the potential for overwhelmingly engaging and emotionally-charged content.
Future Lighthouse inform me that for now, reactive content will rely primarily on biometric feedback technology such as breathing, heartbeat, and eye tracking sensors. A simple example would be a story in which parts of the environment or soundscape change in sync with the user’s heartbeat and breathing, or characters who call you out for not paying attention.
The next step would be characters and situations that react to the user’s emotions, wherein algorithms analyze biometric information to make inferences about states of emotional arousal (“why are you so nervous?” etc.). Another example would be implementing the use of “arousal parameters,” where the audience can choose what level of “fear” they want from a VR horror story before algorithms modulate the experience using information from biometric feedback devices.
The company’s long-term goal is to gather research on storytelling conventions and produce a catalogue of story “wireframes.” This entails distilling the basic formula to different genres so they can then be fleshed out with visuals, character traits, and soundtracks that are tailored for individual users based on their deep data, preferences, and biometric information.
The development of reactive content will go hand in hand with a renewed exploration of diverging, dynamic storylines, and multi-narratives, a concept that hasn’t had much impact in the movie world thus far. In theory, the idea of having a story that changes and mutates is captivating largely because of our love affair with serendipity and unpredictability, a cultural condition theorist Arthur Kroker refers to as the “hypertextual imagination.” This feeling of stepping into the unknown with the possibility of deviation from the habitual translates as a comforting reminder that our own lives can take exciting and unexpected turns at any moment.
The inception of the concept into mainstream culture dates to the classic Choose Your Own Adventure book series that launched in the late 70s, which in its literary form had great success. However, filmic takes on the theme have made somewhat less of an impression. DVDs like I’m Your Man (1998) and Switching (2003) both use scene selection tools to determine the direction of the storyline.
A more recent example comes from Kino Industries, who claim to have developed the technology to allow filmmakers to produce interactive films in which viewers can use smartphones to quickly vote on which direction the narrative takes at numerous decision points throughout the film.
The main problem with diverging narrative films has been the stop-start nature of the interactive element: when I’m immersed in a story I don’t want to have to pick up a controller or remote to select what’s going to happen next. Every time the audience is given the option to take a new path (“press this button”, “vote on X, Y, Z”) the narrative— and immersion within that narrative—is temporarily halted, and it takes the mind a while to get back into this state of immersion.
Reactive content has the potential to resolve these issues by enabling passive interactivity—that is, input and output without having to pause and actively make decisions or engage with the hardware. This will result in diverging, dynamic narratives that will unfold seamlessly while being dependent on and unique to the specific user and their emotions. Passive interactivity will also remove the game feel that can often be a symptom of interactive experiences and put a viewer somewhere in the middle: still firmly ensconced in an interactive dynamic narrative, but in a much subtler way.
While reading the Melita script I was particularly struck by a scene in which the characters start to engage with the user and there’s a synchronicity between the user’s heartbeat and objects in the virtual world. As the narrative unwinds and the words of Melita’s character get more profound, parts of the landscape, which seemed to be flashing and pulsating at random, come together and start to mimic the user’s heartbeat.
In 2013, Jane Aspell of Anglia Ruskin University (UK) and Lukas Heydrich of the Swiss Federal Institute of Technology proved that a user’s sense of presence and identification with a virtual avatar could be dramatically increased by syncing the on-screen character with the heartbeat of the user. The relationship between bio-digital synchronicity, immersion, and emotional engagement is something that will surely have revolutionary narrative and storytelling potential.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431559 Drug Discovery AI to Scour a Universe of ...

On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]

In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment