Tag Archives: student

#435224 Can AI Save the Internet from Fake News?

There’s an old proverb that says “seeing is believing.” But in the age of artificial intelligence, it’s becoming increasingly difficult to take anything at face value—literally.

The rise of so-called “deepfakes,” in which different types of AI-based techniques are used to manipulate video content, has reached the point where Congress held its first hearing last month on the potential abuses of the technology. The congressional investigation coincided with the release of a doctored video of Facebook CEO Mark Zuckerberg delivering what appeared to be a sinister speech.

View this post on Instagram

‘Imagine this…’ (2019) Mark Zuckerberg reveals the truth about Facebook and who really owns the future… see more @sheffdocfest VDR technology by @cannyai #spectreknows #privacy #democracy #surveillancecapitalism #dataism #deepfake #deepfakes #contemporaryartwork #digitalart #generativeart #newmediaart #codeart #markzuckerberg #artivism #contemporaryart

A post shared by Bill Posters (@bill_posters_uk) on Jun 7, 2019 at 7:15am PDT

Scientists are scrambling for solutions on how to combat deepfakes, while at the same time others are continuing to refine the techniques for less nefarious purposes, such as automating video content for the film industry.

At one end of the spectrum, for example, researchers at New York University’s Tandon School of Engineering have proposed implanting a type of digital watermark using a neural network that can spot manipulated photos and videos.

The idea is to embed the system directly into a digital camera. Many smartphone cameras and other digital devices already use AI to boost image quality and make other corrections. The authors of the study out of NYU say their prototype platform increased the chances of detecting manipulation from about 45 percent to more than 90 percent without sacrificing image quality.

On the other hand, researchers at Carnegie Mellon University recently hit on a technique for automatically and rapidly converting large amounts of video content from one source into the style of another. In one example, the scientists transferred the facial expressions of comedian John Oliver onto the bespectacled face of late night show host Stephen Colbert.

The CMU team says the method could be a boon to the movie industry, such as by converting black and white films to color, though it also conceded that the technology could be used to develop deepfakes.

Words Matter with Fake News
While the current spotlight is on how to combat video and image manipulation, a prolonged trench warfare on fake news is being fought by academia, nonprofits, and the tech industry.

This isn’t the fake news that some have come to use as a knee-jerk reaction to fact-based information that might be less than flattering to the subject of the report. Rather, fake news is deliberately-created misinformation that is spread via the internet.

In a recent Pew Research Center poll, Americans said fake news is a bigger problem than violent crime, racism, and terrorism. Fortunately, many of the linguistic tools that have been applied to determine when people are being deliberately deceitful can be baked into algorithms for spotting fake news.

That’s the approach taken by a team at the University of Michigan (U-M) to develop an algorithm that was better than humans at identifying fake news—76 percent versus 70 percent—by focusing on linguistic cues like grammatical structure, word choice, and punctuation.

For example, fake news tends to be filled with hyperbole and exaggeration, using terms like “overwhelming” or “extraordinary.”

“I think that’s a way to make up for the fact that the news is not quite true, so trying to compensate with the language that’s being used,” Rada Mihalcea, a computer science and engineering professor at U-M, told Singularity Hub.

The paper “Automatic Detection of Fake News” was based on the team’s previous studies on how people lie in general, without necessarily having the intention of spreading fake news, she said.

“Deception is a complicated and complex phenomenon that requires brain power,” Mihalcea noted. “That often results in simpler language, where you have shorter sentences or shorter documents.”

AI Versus AI
While most fake news is still churned out by humans with identifiable patterns of lying, according to Mihalcea, other researchers are already anticipating how to detect misinformation manufactured by machines.

A group led by Yejin Choi, with the Allen Institute of Artificial Intelligence and the University of Washington in Seattle, is one such team. The researchers recently introduced the world to Grover, an AI platform that is particularly good at catching autonomously-generated fake news because it’s equally good at creating it.

“This is due to a finding that is perhaps counterintuitive: strong generators for neural fake news are themselves strong detectors of it,” wrote Rowan Zellers, a PhD student and team member, in a Medium blog post. “A generator of fake news will be most familiar with its own peculiarities, such as using overly common or predictable words, as well as the peculiarities of similar generators.”

The team found that the best current discriminators can classify neural fake news from real, human-created text with 73 percent accuracy. Grover clocks in with 92 percent accuracy based on a training set of 5,000 neural network-generated fake news samples. Zellers wrote that Grover got better at scale, identifying 97.5 percent of made-up machine mumbo jumbo when trained on 80,000 articles.

It performed almost as well against fake news created by a powerful new text-generation system called GPT-2 built by OpenAI, a nonprofit research lab founded by Elon Musk, classifying 96.1 percent of the machine-written articles.

OpenAI had so feared that the platform could be abused that it has only released limited versions of the software. The public can play with a scaled-down version posted by a machine learning engineer named Adam King, where the user types in a short prompt and GPT-2 bangs out a short story or poem based on the snippet of text.

No Silver AI Bullet
While real progress is being made against fake news, the challenges of using AI to detect and correct misinformation are abundant, according to Hugo Williams, outreach manager for Logically, a UK-based startup that is developing different detectors using elements of deep learning and natural language processing, among others. He explained that the Logically models analyze information based on a three-pronged approach.

Publisher metadata: Is the article from a known, reliable, and trustworthy publisher with a history of credible journalism?
Network behavior: Is the article proliferating through social platforms and networks in ways typically associated with misinformation?
Content: The AI scans articles for hundreds of known indicators typically found in misinformation.

“There is no single algorithm which is capable of doing this,” Williams wrote in an email to Singularity Hub. “Even when you have a collection of different algorithms which—when combined—can give you relatively decent indications of what is unreliable or outright false, there will always need to be a human layer in the pipeline.”

The company released a consumer app in India back in February just before that country’s election cycle that was a “great testing ground” to refine its technology for the next app release, which is scheduled in the UK later this year. Users can submit articles for further scrutiny by a real person.

“We see our technology not as replacing traditional verification work, but as a method of simplifying and streamlining a very manual process,” Williams said. “In doing so, we’re able to publish more fact checks at a far quicker pace than other organizations.”

“With heightened analysis and the addition of more contextual information around the stories that our users are reading, we are not telling our users what they should or should not believe, but encouraging critical thinking based upon reliable, credible, and verified content,” he added.

AI may never be able to detect fake news entirely on its own, but it can help us be smarter about what we read on the internet.

Image Credit: Dennis Lytyagin / Shutterstock.com Continue reading

Posted in Human Robots

#434772 Traditional Higher Education Is Losing ...

Should you go to graduate school? If so, why? If not, what are your alternatives? Millions of young adults across the globe—and their parents and mentors—find themselves asking these questions every year.

Earlier this month, I explored how exponential technologies are rising to meet the needs of the rapidly changing workforce.

In this blog, I’ll dive into a highly effective way to build the business acumen and skills needed to make the most significant impact in these exponential times.

To start, let’s dive into the value of graduate school versus apprenticeship—especially during this time of extraordinarily rapid growth, and the micro-diversification of careers.

The True Value of an MBA
All graduate schools are not created equal.

For complex technical trades like medicine, engineering, and law, formal graduate-level training provides a critical foundation for safe, ethical practice (until these trades are fully augmented by artificial intelligence and automation…).

For the purposes of today’s blog, let’s focus on the value of a Master in Business Administration (MBA) degree, compared to acquiring your business acumen through various forms of apprenticeship.

The Waning of Business Degrees
Ironically, business schools are facing a tough business problem. The rapid rate of technological change, a booming job market, and the digitization of education are chipping away at the traditional graduate-level business program.

The data speaks for itself.

The Decline of Graduate School Admissions
Enrollment in two-year, full-time MBA programs in the US fell by more than one-third from 2010 to 2016.

While in previous years, top business schools (e.g. Stanford, Harvard, and Wharton) were safe from the decrease in applications, this year, they also felt the waning interest in MBA programs.

Harvard Business School: 4.5 percent decrease in applications, the school’s biggest drop since 2005.
Wharton: 6.7 percent decrease in applications.
Stanford Graduate School: 4.6 percent decrease in applications.

Another signal of change began unfolding over the past week. You may have read news headlines about an emerging college admissions scam, which implicates highly selective US universities, sports coaches, parents, and students in a conspiracy to game the undergraduate admissions process.

Already, students are filing multibillion-dollar civil lawsuits arguing that the scheme has devalued their degrees or denied them a fair admissions opportunity.

MBA Graduates in the Workforce
To meet today’s business needs, startups and massive companies alike are increasingly hiring technologists, developers, and engineers in place of the MBA graduates they may have preferentially hired in the past.

While 85 percent of US employers expect to hire MBA graduates this year (a decrease from 91 percent in 2017), 52 percent of employers worldwide expect to hire graduates with a master’s in data analytics (an increase from 35 percent last year).

We’re also seeing the waning of MBA degree holders at the CEO level.

For decades, an MBA was the hallmark of upward mobility towards the C-suite of top companies.

But as exponential technologies permeate not only products but every part of the supply chain—from manufacturing and shipping to sales, marketing and customer service—that trend is changing by necessity.

Looking at the Harvard Business Review’s Top 100 CEOs in 2018 list, more CEOs on the list held engineering degrees than MBAs (34 held engineering degrees, while 32 held MBAs).

There’s much more to leading innovative companies than an advanced business degree.

How Are Schools Responding?
With disruption to the advanced business education system already here, some business schools are applying notes from their own innovation classes to brace for change.

Over the past half-decade, we’ve seen schools with smaller MBA programs shut their doors in favor of advanced degrees with more specialization. This directly responds to market demand for skills in data science, supply chain, and manufacturing.

Some degrees resemble the precise skills training of technical trades. Others are very much in line with the apprenticeship models we’ll explore next.

Regardless, this new specialization strategy is working and attracting more new students. Over the past decade (2006 to 2016), enrollment in specialized graduate business programs doubled.

Higher education is also seeing a preference shift toward for-profit trade schools, like coding boot camps. This shift is one of several forces pushing universities to adopt skill-specific advanced degrees.

But some schools are slow to adapt, raising the question: how and when will these legacy programs be disrupted? A survey of over 170 business school deans around the world showed that many programs are operating at a loss.

But if these schools are world-class business institutions, as advertised, why do they keep the doors open even while they lose money? The surveyed deans revealed an important insight: they keep the degree program open because of the program’s prestige.

Why Go to Business School?
Shorthand Credibility, Cognitive Biases, and Prestige
Regardless of what knowledge a person takes away from graduate school, attending one of the world’s most rigorous and elite programs gives grads external validation.

With over 55 percent of MBA applicants applying to just 6 percent of graduate business schools, we have a clear cognitive bias toward the perceived elite status of certain universities.

To the outside world, thanks to the power of cognitive biases, an advanced degree is credibility shorthand for your capabilities.

Simply passing through a top school’s filtration system means that you had some level of abilities and merits.

And startup success statistics tend to back up that perceived enhanced capability. Let’s take, for example, universities with the most startup unicorn founders (see the figure below).

When you consider the 320+ unicorn startups around the world today, these numbers become even more impressive. Stanford’s 18 unicorn companies account for over 5 percent of global unicorns, and Harvard is responsible for producing just under 5 percent.

Combined, just these two universities (out of over 5,000 in the US, and thousands more around the world) account for 1 in 10 of the billion-dollar private companies in the world.

By the numbers, the prestigious reputation of these elite business programs has a firm basis in current innovation success.

While prestige may be inherent to the degree earned by graduates from these business programs, the credibility boost from holding one of these degrees is not a guaranteed path to success in the business world.

For example, you might expect that the Harvard School of Business or Stanford Graduate School of Business would come out on top when tallying up the alma maters of Fortune 500 CEOs.

It turns out that the University of Wisconsin-Madison leads the business school pack with 14 CEOs to Harvard’s 12. Beyond prestige, the success these elite business programs see translates directly into cultivating unmatched networks and relationships.

Relationships
Graduate schools—particularly at the upper echelon—are excellent at attracting sharp students.

At an elite business school, if you meet just five to ten people with extraordinary skill sets, personalities, ideas, or networks, then you have returned your $200,000 education investment.

It’s no coincidence that some 40 percent of Silicon Valley venture capitalists are alumni of either Harvard or Stanford.

From future investors to advisors, friends, and potential business partners, relationships are critical to an entrepreneur’s success.

Apprenticeships
As we saw above, graduate business degree programs are melting away in the current wave of exponential change.

With an increasing $1.5 trillion in student debt, there must be a more impactful alternative to attending graduate school for those starting their careers.

When I think about the most important skills I use today as an entrepreneur, writer, and strategic thinker, they didn’t come from my decade of graduate school at Harvard or MIT… they came from my experiences building real technologies and companies, and working with mentors.

Apprenticeship comes in a variety of forms; here, I’ll cover three top-of-mind approaches:

Real-world business acumen via startup accelerators
A direct apprenticeship model
The 6 D’s of mentorship

Startup Accelerators and Business Practicum
Let’s contrast the shrinking interest in MBA programs with applications to a relatively new model of business education: startup accelerators.

Startup accelerators are short-term (typically three to six months), cohort-based programs focusing on providing startup founders with the resources (capital, mentorship, relationships, and education) needed to refine their entrepreneurial acumen.

While graduate business programs have been condensing, startup accelerators are alive, well, and expanding rapidly.

In the 10 years from 2005 (when Paul Graham founded Y Combinator) through 2015, the number of startup accelerators in the US increased by more than tenfold.

The increase in startup accelerator activity hints at a larger trend: our best and brightest business minds are opting to invest their time and efforts in obtaining hands-on experience, creating tangible value for themselves and others, rather than diving into the theory often taught in business school classrooms.

The “Strike Force” Model
The Strike Force is my elite team of young entrepreneurs who work directly with me across all of my companies, travel by my side, sit in on every meeting with me, and help build businesses that change the world.

Previous Strike Force members have gone on to launch successful companies, including Bold Capital Partners, my $250 million venture capital firm.

Strike Force is an apprenticeship for the next generation of exponential entrepreneurs.

To paraphrase my good friend Tony Robbins: If you want to short-circuit the video game, find someone who’s been there and done that and is now doing something you want to one day do.

Every year, over 500,000 apprentices in the US follow this precise template. These apprentices are learning a craft they wish to master, under the mentorship of experts (skilled metal workers, bricklayers, medical technicians, electricians, and more) who have already achieved the desired result.

What if we more readily applied this model to young adults with aspirations of creating massive value through the vehicles of entrepreneurship and innovation?

For the established entrepreneur: How can you bring young entrepreneurs into your organization to create more value for your company, while also passing on your ethos and lessons learned to the next generation?

For the young, driven millennial: How can you find your mentor and convince him or her to take you on as an apprentice? What value can you create for this person in exchange for their guidance and investment in your professional development?

The 6 D’s of Mentorship
In my last blog on education, I shared how mobile device and internet penetration will transform adult literacy and basic education. Mobile phones and connectivity already create extraordinary value for entrepreneurs and young professionals looking to take their business acumen and skill set to the next level.

For all of human history up until the last decade or so, if you wanted to learn from the best and brightest in business, leadership, or strategy, you either needed to search for a dated book that they wrote at the local library or bookstore, or you had to be lucky enough to meet that person for a live conversation.

Now you can access the mentorship of just about any thought leader on the planet, at any time, for free.

Thanks to the power of the internet, mentorship has digitized, demonetized, dematerialized, and democratized.

What do you want to learn about?

Investing? Leadership? Technology? Marketing? Project management?

You can access a near-infinite stream of cutting-edge tools, tactics, and lessons from thousands of top performers from nearly every field—instantaneously, and for free.

For example, every one of Warren Buffett’s letters to his Berkshire Hathaway investors over the past 40 years is available for free on a device that fits in your pocket.

The rise of audio—particularly podcasts and audiobooks—is another underestimated driving force away from traditional graduate business programs and toward apprenticeships.

Over 28 million podcast episodes are available for free. Once you identify the strong signals in the noise, you’re still left with thousands of hours of long-form podcast conversation from which to learn valuable lessons.

Whenever and wherever you want, you can learn from the world’s best. In the future, mentorship and apprenticeship will only become more personalized. Imagine accessing a high-fidelity, AI-powered avatar of Bill Gates, Richard Branson, or Arthur C. Clarke (one of my early mentors) to help guide you through your career.

Virtual mentorship and coaching are powerful education forces that are here to stay.

Bringing It All Together
The education system is rapidly changing. Traditional master’s programs for business are ebbing away in the tides of exponential technologies. Apprenticeship models are reemerging as an effective way to train tomorrow’s leaders.

In a future blog, I’ll revisit the concept of apprenticeships and other effective business school alternatives.

If you are a young, ambitious entrepreneur (or the parent of one), remember that you live in the most abundant time ever in human history to refine your craft.

Right now, you have access to world-class mentorship and cutting-edge best-practices—literally in the palm of your hand. What will you do with this extraordinary power?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: fongbeerredhot / Shutterstock.com Continue reading

Posted in Human Robots

#434685 How Tech Will Let You Learn Anything, ...

Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.

Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.

And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.

Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.

With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.

Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.

Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.

Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.

In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.

We’ll discuss:

Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning

Let’s dive in.

Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.

Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.

To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.

Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.

Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.

To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.

Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.

Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.

But while both mobile apps have recruited initial piloting populations, the key to success is scale.

Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.

Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.

While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.

Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.

And what better to scale these benefits than AI and immersive virtual environments?

In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.

As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.

Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.

Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.

Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.

As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.

By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.

Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.

As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.

Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.

Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.

Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.

As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading

Posted in Human Robots

#433852 How Do We Teach Autonomous Cars To Drive ...

Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.

Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.

What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?

Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.

At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.

Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.

Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.

The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.

Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.

We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.

A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.

The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.

Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.

Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading

Posted in Human Robots

#433785 DeepMind’s Eerie Reimagination of the ...

If a recent project using Google’s DeepMind were a recipe, you would take a pair of AI systems, images of animals, and a whole lot of computing power. Mix it all together, and you’d get a series of imagined animals dreamed up by one of the AIs. A look through the research paper about the project—or this open Google Folder of images it produced—will likely lead you to agree that the results are a mix of impressive and downright eerie.

But the eerie factor doesn’t mean the project shouldn’t be considered a success and a step forward for future uses of AI.

From GAN To BigGAN
The team behind the project consists of Andrew Brock, a PhD student at Edinburgh Center for Robotics, and DeepMind intern and researcher Jeff Donahue and Karen Simonyan.

They used a so-called Generative Adversarial Network (GAN) to generate the images. In a GAN, two AI systems collaborate in a game-like manner. One AI produces images of an object or creature. The human equivalent would be drawing pictures of, for example, a dog—without necessarily knowing what a dog exactly looks like. Those images are then shown to the second AI, which has already been fed images of dogs. The second AI then tells the first one how far off its efforts were. The first one uses this information to improve its images. The two go back and forth in an iterative process, and the goal is for the first AI to become so good at creating images of dogs that the second can’t tell the difference between its creations and actual pictures of dogs.

The team was able to draw on Google’s vast vaults of computational power to create images of a quality and life-like nature that were beyond almost anything seen before. In part, this was achieved by feeding the GAN with more images than is usually the case. According to IFLScience, the standard is to feed about 64 images per subject into the GAN. In this case, the research team fed about 2,000 images per subject into the system, leading to it being nicknamed BigGAN.

Their results showed that feeding the system with more images and using masses of raw computer power markedly increased the GAN’s precision and ability to create life-like renditions of the subjects it was trained to reproduce.

“The main thing these models need is not algorithmic improvements, but computational ones. […] When you increase model capacity and you increase the number of images you show at every step, you get this twofold combined effect,” Andrew Brock told Fast Company.

The Power Drain
The team used 512 of Google’s AI-focused Tensor Processing Units (TPU) to generate 512-pixel images. Each experiment took between 24 and 48 hours to run.

That kind of computing power needs a lot of electricity. As artist and Innovator-In-Residence at the Library of Congress Jer Thorp tongue-in-cheek put it on Twitter: “The good news is that AI can now give you a more believable image of a plate of spaghetti. The bad news is that it used roughly enough energy to power Cleveland for the afternoon.”

Thorp added that a back-of-the-envelope calculation showed that the computations to produce the images would require about 27,000 square feet of solar panels to have adequate power.

BigGAN’s images have been hailed by researchers, with Oriol Vinyals, research scientist at DeepMind, rhetorically asking if these were the ‘Best GAN samples yet?’

However, they are still not perfect. The number of legs on a given creature is one example of where the BigGAN seemed to struggle. The system was good at recognizing that something like a spider has a lot of legs, but seemed unable to settle on how many ‘a lot’ was supposed to be. The same applied to dogs, especially if the images were supposed to show said dogs in motion.

Those eerie images are contrasted by other renditions that show such lifelike qualities that a human mind has a hard time identifying them as fake. Spaniels with lolling tongues, ocean scenery, and butterflies were all rendered with what looks like perfection. The same goes for an image of a hamburger that was good enough to make me stop writing because I suddenly needed lunch.

The Future Use Cases
GAN networks were first introduced in 2014, and given their relative youth, researchers and companies are still busy trying out possible use cases.

One possible use is image correction—making pixillated images clearer. Not only does this help your future holiday snaps, but it could be applied in industries such as space exploration. A team from the University of Michigan and the Max Planck Institute have developed a method for GAN networks to create images from text descriptions. At Berkeley, a research group has used GAN to create an interface that lets users change the shape, size, and design of objects, including a handbag.

For anyone who has seen a film like Wag the Dog or read 1984, the possibilities are also starkly alarming. GANs could, in other words, make fake news look more real than ever before.

For now, it seems that while not all GANs require the computational and electrical power of the BigGAN, there is still some way to reach these potential use cases. However, if there’s one lesson from Moore’s Law and exponential technology, it is that today’s technical roadblock quickly becomes tomorrow’s minor issue as technology progresses.

Image Credit: Ondrej Prosicky/Shutterstock Continue reading

Posted in Human Robots