Tag Archives: student

#433852 How Do We Teach Autonomous Cars To Drive ...

Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.

Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.

What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?

Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.

At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.

Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.

Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.

The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.

Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.

We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.

A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.

The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.

Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.

Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading

Posted in Human Robots

#433785 DeepMind’s Eerie Reimagination of the ...

If a recent project using Google’s DeepMind were a recipe, you would take a pair of AI systems, images of animals, and a whole lot of computing power. Mix it all together, and you’d get a series of imagined animals dreamed up by one of the AIs. A look through the research paper about the project—or this open Google Folder of images it produced—will likely lead you to agree that the results are a mix of impressive and downright eerie.

But the eerie factor doesn’t mean the project shouldn’t be considered a success and a step forward for future uses of AI.

From GAN To BigGAN
The team behind the project consists of Andrew Brock, a PhD student at Edinburgh Center for Robotics, and DeepMind intern and researcher Jeff Donahue and Karen Simonyan.

They used a so-called Generative Adversarial Network (GAN) to generate the images. In a GAN, two AI systems collaborate in a game-like manner. One AI produces images of an object or creature. The human equivalent would be drawing pictures of, for example, a dog—without necessarily knowing what a dog exactly looks like. Those images are then shown to the second AI, which has already been fed images of dogs. The second AI then tells the first one how far off its efforts were. The first one uses this information to improve its images. The two go back and forth in an iterative process, and the goal is for the first AI to become so good at creating images of dogs that the second can’t tell the difference between its creations and actual pictures of dogs.

The team was able to draw on Google’s vast vaults of computational power to create images of a quality and life-like nature that were beyond almost anything seen before. In part, this was achieved by feeding the GAN with more images than is usually the case. According to IFLScience, the standard is to feed about 64 images per subject into the GAN. In this case, the research team fed about 2,000 images per subject into the system, leading to it being nicknamed BigGAN.

Their results showed that feeding the system with more images and using masses of raw computer power markedly increased the GAN’s precision and ability to create life-like renditions of the subjects it was trained to reproduce.

“The main thing these models need is not algorithmic improvements, but computational ones. […] When you increase model capacity and you increase the number of images you show at every step, you get this twofold combined effect,” Andrew Brock told Fast Company.

The Power Drain
The team used 512 of Google’s AI-focused Tensor Processing Units (TPU) to generate 512-pixel images. Each experiment took between 24 and 48 hours to run.

That kind of computing power needs a lot of electricity. As artist and Innovator-In-Residence at the Library of Congress Jer Thorp tongue-in-cheek put it on Twitter: “The good news is that AI can now give you a more believable image of a plate of spaghetti. The bad news is that it used roughly enough energy to power Cleveland for the afternoon.”

Thorp added that a back-of-the-envelope calculation showed that the computations to produce the images would require about 27,000 square feet of solar panels to have adequate power.

BigGAN’s images have been hailed by researchers, with Oriol Vinyals, research scientist at DeepMind, rhetorically asking if these were the ‘Best GAN samples yet?’

However, they are still not perfect. The number of legs on a given creature is one example of where the BigGAN seemed to struggle. The system was good at recognizing that something like a spider has a lot of legs, but seemed unable to settle on how many ‘a lot’ was supposed to be. The same applied to dogs, especially if the images were supposed to show said dogs in motion.

Those eerie images are contrasted by other renditions that show such lifelike qualities that a human mind has a hard time identifying them as fake. Spaniels with lolling tongues, ocean scenery, and butterflies were all rendered with what looks like perfection. The same goes for an image of a hamburger that was good enough to make me stop writing because I suddenly needed lunch.

The Future Use Cases
GAN networks were first introduced in 2014, and given their relative youth, researchers and companies are still busy trying out possible use cases.

One possible use is image correction—making pixillated images clearer. Not only does this help your future holiday snaps, but it could be applied in industries such as space exploration. A team from the University of Michigan and the Max Planck Institute have developed a method for GAN networks to create images from text descriptions. At Berkeley, a research group has used GAN to create an interface that lets users change the shape, size, and design of objects, including a handbag.

For anyone who has seen a film like Wag the Dog or read 1984, the possibilities are also starkly alarming. GANs could, in other words, make fake news look more real than ever before.

For now, it seems that while not all GANs require the computational and electrical power of the BigGAN, there is still some way to reach these potential use cases. However, if there’s one lesson from Moore’s Law and exponential technology, it is that today’s technical roadblock quickly becomes tomorrow’s minor issue as technology progresses.

Image Credit: Ondrej Prosicky/Shutterstock Continue reading

Posted in Human Robots

#433594 Technology and Compassion: A ...

From how we get around to how we spend our time to how we manage our health, technology is changing our lives—not to mention economies, governments, and cities around the world. Tech has brought good to individuals and societies by, for example, democratizing access to information and lowering the cost of many products and services. But it’s also brought less-desirable effects we can’t ignore, like a rise in mental health problems and greater wealth inequality.

To keep pushing tech in a direction that will benefit humanity as a whole—rather than benefiting a select few—we must encourage open dialogues about these topics among leading figures in business, government, and spirituality.

To that end, SingularityU The Netherlands recently hosted a dialogue about compassion and technology with His Holiness the Dalai Lama. The event was attended by students and tech innovators, ambassadors, members of the Dutch royal family, and other political and business leaders.

The first half of the conversation focused on robotics, telepresence, and artificial intelligence. His Holiness spoke with Tilly Lockey, a British student helping tech companies create bionic limbs, Karen Dolva, CEO of telepresence company No Isolation, and Maarten Steinbuch, faculty chair of robotics at SingularityU the Netherlands and a professor of systems and control at TU Eindhoven.

When asked what big tech companies could be doing to help spread good around the world, His Holiness pointed out that while technology has changed many aspects of life in developed countries, there is still immense suffering in less-developed nations, and tech companies should pay more attention to the poorer communities around the world.

In the second half of the event, focus switched to sickness, aging, and death. Speakers included Liz Parrish, CEO of BioViva Sciences, Kris Verburgh, faculty chair of health and medicine at SingularityU the Netherlands, Jeantine Lunshof, a bio-ethicist at MIT Media Lab, and Selma Boulmalf, a religious studies student at University of Amsterdam. Among other topics, they talked with His Holiness about longevity research and the drawbacks of trying to extend our lifespans or achieve immortality.

Both sessions were moderated by Christa Meindersma, founder and chair of the Himalaya Initiative for Culture and Society. The event served as the ceremonial opening of an exhibition called The Life of the Buddha, Path to the Present, on display in Amsterdam’s 15-century De Nieuwe Kerk church through February 2019.

In the 21st century, His Holiness said, “There is real possibility to create a happier world, peaceful world. So now we need vision. A peaceful world on the basis of a sense of oneness of humanity.”

Technology’s role in that world is being developed and refined every day, and we must maintain an ongoing awareness of its positive and negative repercussions—on everyone.

Image Credit: vipflash / Shutterstock.com Continue reading

Posted in Human Robots

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots

#433400 A Model for the Future of Education, and ...

As kids worldwide head back to school, I’d like to share my thoughts on the future of education.

Bottom line, how we educate our kids needs to radically change given the massive potential of exponential tech (e.g. artificial intelligence and virtual reality).

Without question, the number one driver for education is inspiration. As such, if you have a kid age 8–18, you’ll want to get your hands on an incredibly inspirational novel written by my dear friend Ray Kurzweil called Danielle: Chronicles of a Superheroine.

Danielle offers boys and girls a role model of a young woman who uses smart technologies and super-intelligence to partner with her friends to solve some of the world’s greatest challenges. It’s perfect to inspire anyone to pursue their moonshot.

Without further ado, let’s dive into the future of educating kids, and a summary of my white paper thoughts….

Just last year, edtech (education technology) investments surpassed a record high of 9.5 billion USD—up 30 percent from the year before.

Already valued at over half a billion USD, the AI in education market is set to surpass 6 billion USD by 2024.

And we’re now seeing countless new players enter the classroom, from a Soul Machines AI teacher specializing in energy use and sustainability to smart “lab schools” with personalized curricula.

As my two boys enter 1st grade, I continue asking myself, given the fact that most elementary schools haven’t changed in many decades (perhaps a century), what do I want my kids to learn? How do I think about elementary school during an exponential era?

This post covers five subjects related to elementary school education:

Five Issues with Today’s Elementary Schools
Five Guiding Principles for Future Education
An Elementary School Curriculum for the Future
Exponential Technologies in our Classroom
Mindsets for the 21st Century

Excuse the length of this post, but if you have kids, the details might be meaningful. If you don’t, then next week’s post will return to normal length and another fun subject.

Also, if you’d like to see my detailed education “white paper,” you can view or download it here.

Let’s dive in…

Five Issues With Today’s Elementary Schools
There are probably lots of issues with today’s traditional elementary schools, but I’ll just choose a few that bother me most.

Grading: In the traditional education system, you start at an “A,” and every time you get something wrong, your score gets lower and lower. At best it’s demotivating, and at worst it has nothing to do with the world you occupy as an adult. In the gaming world (e.g. Angry Birds), it’s just the opposite. You start with zero and every time you come up with something right, your score gets higher and higher.
Sage on the Stage: Most classrooms have a teacher up in front of class lecturing to a classroom of students, half of whom are bored and half of whom are lost. The one-teacher-fits-all model comes from an era of scarcity where great teachers and schools were rare.
Relevance: When I think back to elementary and secondary school, I realize how much of what I learned was never actually useful later in life, and how many of my critical lessons for success I had to pick up on my own (I don’t know about you, but I haven’t ever actually had to factor a polynomial in my adult life).
Imagination, Coloring inside the Lines: Probably of greatest concern to me is the factory-worker, industrial-era origin of today’s schools. Programs are so structured with rote memorization that it squashes the originality from most children. I’m reminded that “the day before something is truly a breakthrough, it’s a crazy idea.” Where do we pursue crazy ideas in our schools? Where do we foster imagination?
Boring: If learning in school is a chore, boring, or emotionless, then the most important driver of human learning, passion, is disengaged. Having our children memorize facts and figures, sit passively in class, and take mundane standardized tests completely defeats the purpose.

An average of 7,200 students drop out of high school each day, totaling 1.3 million each year. This means only 69 percent of students who start high school finish four years later. And over 50 percent of these high school dropouts name boredom as the number one reason they left.

Five Guiding Principles for Future Education
I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires.

From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want.

In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?

For me it’s about passion, curiosity, imagination, critical thinking, and grit.

Passion: You’d be amazed at how many people don’t have a mission in life… A calling… something to jolt them out of bed every morning. The most valuable resource for humanity is the persistent and passionate human mind, so creating a future of passionate kids is so very important. For my 7-year-old boys, I want to support them in finding their passion or purpose… something that is uniquely theirs. In the same way that the Apollo program and Star Trek drove my early love for all things space, and that passion drove me to learn and do.
Curiosity: Curiosity is something innate in kids, yet something lost by most adults during the course of their life. Why? In a world of Google, robots, and AI, raising a kid that is constantly asking questions and running “what if” experiments can be extremely valuable. In an age of machine learning, massive data, and a trillion sensors, it will be the quality of your questions that will be most important.
Imagination: Entrepreneurs and visionaries imagine the world (and the future) they want to live in, and then they create it. Kids happen to be some of the most imaginative humans around… it’s critical that they know how important and liberating imagination can be.
Critical Thinking: In a world flooded with often-conflicting ideas, baseless claims, misleading headlines, negative news, and misinformation, learning the skill of critical thinking helps find the signal in the noise. This principle is perhaps the most difficult to teach kids.
Grit/Persistence: Grit is defined as “passion and perseverance in pursuit of long-term goals,” and it has recently been widely acknowledged as one of the most important predictors of and contributors to success.

Teaching your kids not to give up, to keep trying, and to keep trying new ideas for something that they are truly passionate about achieving is extremely critical. Much of my personal success has come from such stubbornness. I joke that both XPRIZE and the Zero Gravity Corporation were “overnight successes after 10 years of hard work.”

So given those five basic principles, what would an elementary school curriculum look like? Let’s take a look…

An Elementary School Curriculum for the Future
Over the last 30 years, I’ve had the pleasure of starting two universities, International Space University (1987) and Singularity University (2007). My favorite part of co-founding both institutions was designing and implementing the curriculum. Along those lines, the following is my first shot at the type of curriculum I’d love my own boys to be learning.

I’d love your thoughts, I’ll be looking for them here: https://www.surveymonkey.com/r/DDRWZ8R

For the purpose of illustration, I’ll speak about ‘courses’ or ‘modules,’ but in reality these are just elements that would ultimately be woven together throughout the course of K-6 education.

Module 1: Storytelling/Communications

When I think about the skill that has served me best in life, it’s been my ability to present my ideas in the most compelling fashion possible, to get others onboard, and support birth and growth in an innovative direction. In my adult life, as an entrepreneur and a CEO, it’s been my ability to communicate clearly and tell compelling stories that has allowed me to create the future. I don’t think this lesson can start too early in life. So imagine a module, year after year, where our kids learn the art and practice of formulating and pitching their ideas. The best of oration and storytelling. Perhaps children in this class would watch TED presentations, or maybe they’d put together their own TEDx for kids. Ultimately, it’s about practice and getting comfortable with putting yourself and your ideas out there and overcoming any fears of public speaking.

Module 2: Passions

A modern school should help our children find and explore their passion(s). Passion is the greatest gift of self-discovery. It is a source of interest and excitement, and is unique to each child.

The key to finding passion is exposure. Allowing kids to experience as many adventures, careers, and passionate adults as possible. Historically, this was limited by the reality of geography and cost, implemented by having local moms and dads presenting in class about their careers. “Hi, I’m Alan, Billy’s dad, and I’m an accountant. Accountants are people who…”

But in a world of YouTube and virtual reality, the ability for our children to explore 500 different possible careers or passions during their K-6 education becomes not only possible but compelling. I imagine a module where children share their newest passion each month, sharing videos (or VR experiences) and explaining what they love and what they’ve learned.

Module 3: Curiosity & Experimentation

Einstein famously said, “I have no special talent. I am only passionately curious.” Curiosity is innate in children, and many times lost later in life. Arguably, it can be said that curiosity is responsible for all major scientific and technological advances; it’s the desire of an individual to know the truth.

Coupled with curiosity is the process of experimentation and discovery. The process of asking questions, creating and testing a hypothesis, and repeated experimentation until the truth is found. As I’ve studied the most successful entrepreneurs and entrepreneurial companies, from Google and Amazon to Uber, their success is significantly due to their relentless use of experimentation to define their products and services.

Here I imagine a module which instills in children the importance of curiosity and gives them permission to say, “I don’t know, let’s find out.”

Further, a monthly module that teaches children how to design and execute valid and meaningful experiments. Imagine children who learn the skill of asking a question, proposing a hypothesis, designing an experiment, gathering the data, and then reaching a conclusion.

Module 4: Persistence/Grit

Doing anything big, bold, and significant in life is hard work. You can’t just give up when the going gets rough. The mindset of persistence, of grit, is a learned behavior I believe can be taught at an early age, especially when it’s tied to pursuing a child’s passion.

I imagine a curriculum that, each week, studies the career of a great entrepreneur and highlights their story of persistence. It would highlight the individuals and companies that stuck with it, iterated, and ultimately succeeded.

Further, I imagine a module that combines persistence and experimentation in gameplay, such as that found in Dean Kamen’s FIRST LEGO league, where 4th graders (and up) research a real-world problem such as food safety, recycling, energy, and so on, and are challenged to develop a solution. They also must design, build, and program a robot using LEGO MINDSTORMS®, then compete on a tabletop playing field.

Module 5: Technology Exposure

In a world of rapidly accelerating technology, understanding how technologies work, what they do, and their potential for benefiting society is, in my humble opinion, critical to a child’s future. Technology and coding (more on this below) are the new “lingua franca” of tomorrow.

In this module, I imagine teaching (age appropriate) kids through play and demonstration. Giving them an overview of exponential technologies such as computation, sensors, networks, artificial intelligence, digital manufacturing, genetic engineering, augmented/virtual reality, and robotics, to name a few. This module is not about making a child an expert in any technology, it’s more about giving them the language of these new tools, and conceptually an overview of how they might use such a technology in the future. The goal here is to get them excited, give them demonstrations that make the concepts stick, and then to let their imaginations run.

Module 6: Empathy

Empathy, defined as “the ability to understand and share the feelings of another,” has been recognized as one of the most critical skills for our children today. And while there has been much written, and great practices for instilling this at home and in school, today’s new tools accelerate this.

Virtual reality isn’t just about video games anymore. Artists, activists, and journalists now see the technology’s potential to be an empathy engine, one that can shine spotlights on everything from the Ebola epidemic to what it’s like to live in Gaza. And Jeremy Bailenson has been at the vanguard of investigating VR’s power for good.

For more than a decade, Bailenson’s lab at Stanford has been studying how VR can make us better people. Through the power of VR, volunteers at the lab have felt what it is like to be Superman (to see if it makes them more helpful), a cow (to reduce meat consumption), and even a coral (to learn about ocean acidification).

Silly as they might seem, these sorts of VR scenarios could be more effective than the traditional public service ad at making people behave. Afterwards, they waste less paper. They save more money for retirement. They’re nicer to the people around them. And this could have consequences in terms of how we teach and train everyone from cliquey teenagers to high court judges.

Module 7: Ethics/Moral Dilemmas

Related to empathy, and equally important, is the goal of infusing kids with a moral compass. Over a year ago, I toured a special school created by Elon Musk (the Ad Astra school) for his five boys (age 9 to 14). One element that is persistent in that small school of under 40 kids is the conversation about ethics and morals, a conversation manifested by debating real-world scenarios that our kids may one day face.

Here’s an example of the sort of gameplay/roleplay that I heard about at Ad Astra, that might be implemented in a module on morals and ethics. Imagine a small town on a lake, in which the majority of the town is employed by a single factory. But that factory has been polluting the lake and killing all the life. What do you do? It’s posed that shutting down the factory would mean that everyone loses their jobs. On the other hand, keeping the factory open means the lake is destroyed and the lake dies. This kind of regular and routine conversation/gameplay allows the children to see the world in a critically important fashion.

Module 8: The 3R Basics (Reading, wRiting & aRithmetic)

There’s no question that young children entering kindergarten need the basics of reading, writing, and math. The only question is what’s the best way for them to get it? We all grew up in the classic mode of a teacher at the chalkboard, books, and homework at night. But I would argue that such teaching approaches are long outdated, now replaced with apps, gameplay, and the concept of the flip classroom.

Pioneered by high school teachers Jonathan Bergman and Aaron Sams in 2007, the flipped classroom reverses the sequence of events from that of the traditional classroom.

Students view lecture materials, usually in the form of video lectures, as homework prior to coming to class. In-class time is reserved for activities such as interactive discussions or collaborative work, all performed under the guidance of the teacher.

The benefits are clear:

Students can consume lectures at their own pace, viewing the video again and again until they get the concept, or fast-forwarding if the information is obvious.
The teacher is present while students apply new knowledge. Doing the homework into class time gives teachers insight into which concepts, if any, that their students are struggling with and helps them adjust the class accordingly.
The flipped classroom produces tangible results: 71 percent of teachers who flipped their classes noticed improved grades, and 80 percent reported improved student attitudes as a result.

Module 9: Creative Expression & Improvisation

Every single one of us is creative. It’s human nature to be creative… the thing is that we each might have different ways of expressing our creativity.

We must encourage kids to discover and to develop their creative outlets early. In this module, imagine showing kids the many different ways creativity is expressed, from art to engineering to music to math, and then guiding them as they choose the area (or areas) they are most interested in. Critically, teachers (or parents) can then develop unique lessons for each child based on their interests, thanks to open education resources like YouTube and the Khan Academy. If my child is interested in painting and robots, a teacher or AI could scour the web and put together a custom lesson set from videos/articles where the best painters and roboticists in the world share their skills.

Adapting to change is critical for success, especially in our constantly changing world today. Improvisation is a skill that can be learned, and we need to be teaching it early.

In most collegiate “improv” classes, the core of great improvisation is the “Yes, and…” mindset. When acting out a scene, one actor might introduce a new character or idea, completely changing the context of the scene. It’s critical that the other actors in the scene say “Yes, and…” accept the new reality, then add something new of their own.

Imagine playing similar role-play games in elementary schools, where a teacher gives the students a scene/context and constantly changes variables, forcing them to adapt and play.

Module 10: Coding

Computer science opens more doors for students than any other discipline in today’s world. Learning even the basics will help students in virtually any career, from architecture to zoology.

Coding is an important tool for computer science, in the way that arithmetic is a tool for doing mathematics and words are a tool for English. Coding creates software, but computer science is a broad field encompassing deep concepts that go well beyond coding.

Every 21st century student should also have a chance to learn about algorithms, how to make an app, or how the internet works. Computational thinking allows preschoolers to grasp concepts like algorithms, recursion and heuristics. Even if they don’t understand the terms, they’ll learn the basic concepts.

There are more than 500,000 open jobs in computing right now, representing the number one source of new wages in the US, and these jobs are projected to grow at twice the rate of all other jobs.

Coding is fun! Beyond the practical reasons for learning how to code, there’s the fact that creating a game or animation can be really fun for kids.

Module 11: Entrepreneurship & Sales

At its core, entrepreneurship is about identifying a problem (an opportunity), developing a vision on how to solve it, and working with a team to turn that vision into reality. I mentioned Elon’s school, Ad Astra: here, again, entrepreneurship is a core discipline where students create and actually sell products and services to each other and the school community.

You could recreate this basic exercise with a group of kids in lots of fun ways to teach them the basic lessons of entrepreneurship.

Related to entrepreneurship is sales. In my opinion, we need to be teaching sales to every child at an early age. Being able to “sell” an idea (again related to storytelling) has been a critical skill in my career, and it is a competency that many people simply never learned.

The lemonade stand has been a classic, though somewhat meager, lesson in sales from past generations, where a child sits on a street corner and tries to sell homemade lemonade for $0.50 to people passing by. I’d suggest we step the game up and take a more active approach in gamifying sales, and maybe having the classroom create a Kickstarter, Indiegogo or GoFundMe campaign. The experience of creating a product or service and successfully selling it will create an indelible memory and give students the tools to change the world.

Module 12: Language

A little over a year ago, I spent a week in China meeting with parents whose focus on kids’ education is extraordinary. One of the areas I found fascinating is how some of the most advanced parents are teaching their kids new languages: through games. On the tablet, the kids are allowed to play games, but only in French. A child’s desire to win fully engages them and drives their learning rapidly.

Beyond games, there’s virtual reality. We know that full immersion is what it takes to become fluent (at least later in life). A semester abroad in France or Italy, and you’ve got a great handle on the language and the culture. But what about for an eight-year-old?

Imagine a module where for an hour each day, the children spend their time walking around Italy in a VR world, hanging out with AI-driven game characters who teach them, engage them, and share the culture and the language in the most personalized and compelling fashion possible.

Exponential Technologies for Our Classrooms
If you’ve attended Abundance 360 or Singularity University, or followed my blogs, you’ll probably agree with me that the way our children will learn is going to fundamentally transform over the next decade.

Here’s an overview of the top five technologies that will reshape the future of education:

Tech 1: Virtual Reality (VR) can make learning truly immersive. Research has shown that we remember 20 percent of what we hear, 30 percent of what we see, and up to 90 percent of what we do or simulate. Virtual reality yields the latter scenario impeccably. VR enables students to simulate flying through the bloodstream while learning about different cells they encounter, or travel to Mars to inspect the surface for life.

To make this a reality, Google Cardboard just launched its Pioneer Expeditions product. Under this program, thousands of schools around the world have gotten a kit containing everything a teacher needs to take his or her class on a virtual trip. While data on VR use in K-12 schools and colleges have yet to be gathered, the steady growth of the market is reflected in the surge of companies (including zSpace, Alchemy VR and Immersive VR Education) solely dedicated to providing schools with packaged education curriculum and content.

Add to VR a related technology called augmented reality (AR), and experiential education really comes alive. Imagine wearing an AR headset that is able to superimpose educational lessons on top of real-world experiences. Interested in botany? As you walk through a garden, the AR headset superimposes the name and details of every plant you see.

Tech 2: 3D Printing is allowing students to bring their ideas to life. Never mind the computer on every desktop (or a tablet for every student), that’s a given. In the near future, teachers and students will want or have a 3D printer on the desk to help them learn core science, technology, engineering and mathematics (STEM) principles. Bre Pettis, of MakerBot Industries, in a grand but practical vision, sees a 3D printer on every school desk in America. “Imagine if you had a 3D printer instead of a LEGO set when you were a kid; what would life be like now?” asks Mr. Pettis. You could print your own mini-figures, your own blocks, and you could iterate on new designs as quickly as your imagination would allow. MakerBots are now in over 5,000 K-12 schools across the US.

Taking this one step further, you could imagine having a 3D file for most entries in Wikipedia, allowing you to print out and study an object you can only read about or visualize in VR.

Tech 3: Sensors & Networks. An explosion of sensors and networks are going to connect everyone at gigabit speeds, making access to rich video available at all times. At the same time, sensors continue to miniaturize and reduce in power, becoming embedded in everything. One benefit will be the connection of sensor data with machine learning and AI (below), such that knowledge of a child’s attention drifting, or confusion, can be easily measured and communicated. The result would be a representation of the information through an alternate modality or at a different speed.

Tech 4: Machine Learning is making learning adaptive and personalized. No two students are identical—they have different modes of learning (by reading, seeing, hearing, doing), come from different educational backgrounds, and have different intellectual capabilities and attention spans. Advances in machine learning and the surging adaptive learning movement are seeking to solve this problem. Companies like Knewton and Dreambox have over 15 million students on their respective adaptive learning platforms. Soon, every education application will be adaptive, learning how to personalize the lesson for a specific student. There will be adaptive quizzing apps, flashcard apps, textbook apps, simulation apps and many more.

Tech 5: Artificial Intelligence or “An AI Teaching Companion.” Neil Stephenson’s book The Diamond Age presents a fascinating piece of educational technology called “A Young Lady’s Illustrated Primer.”

As described by Beat Schwendimann, “The primer is an interactive book that can answer a learner’s questions (spoken in natural language), teach through allegories that incorporate elements of the learner’s environment, and presents contextual just-in-time information.

“The primer includes sensors that monitor the learner’s actions and provide feedback. The learner is in a cognitive apprenticeship with the book: The primer models a certain skill (through allegorical fairy tale characters), which the learner then imitates in real life.

“The primer follows a learning progression with increasingly more complex tasks. The educational goals of the primer are humanist: To support the learner to become a strong and independently thinking person.”

The primer, an individualized AI teaching companion is the result of technological convergence and is beautifully described by YouTuber CGP Grey in his video: Digital Aristotle: Thoughts on the Future of Education.

Your AI companion will have unlimited access to information on the cloud and will deliver it at the optimal speed to each student in an engaging, fun way. This AI will demonetize and democratize education, be available to everyone for free (just like Google), and offering the best education to the wealthiest and poorest children on the planet equally.

This AI companion is not a tutor who spouts facts, figures and answers, but a player on the side of the student, there to help him or her learn, and in so doing, learn how to learn better. The AI is always alert, watching for signs of frustration and boredom that may precede quitting, for signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and mastery, which might indicate a successful learning experience.

Ultimately, we’re heading towards a vastly more educated world. We are truly living during the most exciting time to be alive.

Mindsets for the 21st Century
Finally, it’s important for me to discuss mindsets. How we think about the future colors how we learn and what we do. I’ve written extensively about the importance of an abundance and exponential mindset for entrepreneurs and CEOs. I also think that attention to mindset in our elementary schools, when a child is shaping the mental “operating system” for the rest of their life, is even more important.

As such, I would recommend that a school adopt a set of principles that teach and promote a number of mindsets in the fabric of their programs.

Many “mindsets” are important to promote. Here are a couple to consider:

Nurturing Optimism & An Abundance Mindset:
We live in a competitive world, and kids experience a significant amount of pressure to perform. When they fall short, they feel deflated. We all fail at times; that’s part of life. If we want to raise “can-do” kids who can work through failure and come out stronger for it, it’s wise to nurture optimism. Optimistic kids are more willing to take healthy risks, are better problem-solvers, and experience positive relationships. You can nurture optimism in your school by starting each day by focusing on gratitude (what each child is grateful for), or a “positive focus” in which each student takes 30 seconds to talk about what they are most excited about, or what recent event was positively impactful to them. (NOTE: I start every meeting inside my Strike Force team with a positive focus.)

Finally, helping students understand (through data and graphs) that the world is in fact getting better (see my first book: Abundance: The Future is Better Than You Think) will help them counter the continuous flow of negative news flowing through our news media.

When kids feel confident in their abilities and excited about the world, they are willing to work harder and be more creative.

Tolerance for Failure:
Tolerating failure is a difficult lesson to learn and a difficult lesson to teach. But it is critically important to succeeding in life.

Astro Teller, who runs Google’s innovation branch “X,” talks a lot about encouraging failure. At X, they regularly try to “kill” their ideas. If they are successful in killing an idea, and thus “failing,” they save lots of time, money and resources. The ideas they can’t kill survive and develop into billion-dollar businesses. The key is that each time an idea is killed, Astro rewards the team, literally, with cash bonuses. Their failure is celebrated and they become a hero.

This should be reproduced in the classroom: kids should try to be critical of their best ideas (learn critical thinking), then they should be celebrated for ‘successfully failing,’ perhaps with cake, balloons, confetti, and lots of Silly String.

Join Me & Get Involved!
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: sakkarin sapu / Shutterstock.com Continue reading

Posted in Human Robots