Tag Archives: speak

#432519 Robot Cities: Three Urban Prototypes for ...

Before I started working on real-world robots, I wrote about their fictional and historical ancestors. This isn’t so far removed from what I do now. In factories, labs, and of course science fiction, imaginary robots keep fueling our imagination about artificial humans and autonomous machines.

Real-world robots remain surprisingly dysfunctional, although they are steadily infiltrating urban areas across the globe. This fourth industrial revolution driven by robots is shaping urban spaces and urban life in response to opportunities and challenges in economic, social, political, and healthcare domains. Our cities are becoming too big for humans to manage.

Good city governance enables and maintains smooth flow of things, data, and people. These include public services, traffic, and delivery services. Long queues in hospitals and banks imply poor management. Traffic congestion demonstrates that roads and traffic systems are inadequate. Goods that we increasingly order online don’t arrive fast enough. And the WiFi often fails our 24/7 digital needs. In sum, urban life, characterized by environmental pollution, speedy life, traffic congestion, connectivity and increased consumption, needs robotic solutions—or so we are led to believe.

Is this what the future holds? Image Credit: Photobank gallery / Shutterstock.com
In the past five years, national governments have started to see automation as the key to (better) urban futures. Many cities are becoming test beds for national and local governments for experimenting with robots in social spaces, where robots have both practical purpose (to facilitate everyday life) and a very symbolic role (to demonstrate good city governance). Whether through autonomous cars, automated pharmacists, service robots in local stores, or autonomous drones delivering Amazon parcels, cities are being automated at a steady pace.

Many large cities (Seoul, Tokyo, Shenzhen, Singapore, Dubai, London, San Francisco) serve as test beds for autonomous vehicle trials in a competitive race to develop “self-driving” cars. Automated ports and warehouses are also increasingly automated and robotized. Testing of delivery robots and drones is gathering pace beyond the warehouse gates. Automated control systems are monitoring, regulating and optimizing traffic flows. Automated vertical farms are innovating production of food in “non-agricultural” urban areas around the world. New mobile health technologies carry promise of healthcare “beyond the hospital.” Social robots in many guises—from police officers to restaurant waiters—are appearing in urban public and commercial spaces.

Vertical indoor farm. Image Credit: Aisyaqilumaranas / Shutterstock.com
As these examples show, urban automation is taking place in fits and starts, ignoring some areas and racing ahead in others. But as yet, no one seems to be taking account of all of these various and interconnected developments. So, how are we to forecast our cities of the future? Only a broad view allows us to do this. To give a sense, here are three examples: Tokyo, Dubai, and Singapore.

Tokyo
Currently preparing to host the Olympics 2020, Japan’s government also plans to use the event to showcase many new robotic technologies. Tokyo is therefore becoming an urban living lab. The institution in charge is the Robot Revolution Realization Council, established in 2014 by the government of Japan.

Tokyo: city of the future. Image Credit: ESB Professional / Shutterstock.com
The main objectives of Japan’s robotization are economic reinvigoration, cultural branding, and international demonstration. In line with this, the Olympics will be used to introduce and influence global technology trajectories. In the government’s vision for the Olympics, robot taxis transport tourists across the city, smart wheelchairs greet Paralympians at the airport, ubiquitous service robots greet customers in 20-plus languages, and interactively augmented foreigners speak with the local population in Japanese.

Tokyo shows us what the process of state-controlled creation of a robotic city looks like.

Singapore
Singapore, on the other hand, is a “smart city.” Its government is experimenting with robots with a different objective: as physical extensions of existing systems to improve management and control of the city.

In Singapore, the techno-futuristic national narrative sees robots and automated systems as a “natural” extension of the existing smart urban ecosystem. This vision is unfolding through autonomous delivery robots (the Singapore Post’s delivery drone trials in partnership with AirBus helicopters) and driverless bus shuttles from Easymile, EZ10.

Meanwhile, Singapore hotels are employing state-subsidized service robots to clean rooms and deliver linen and supplies, and robots for early childhood education have been piloted to understand how robots can be used in pre-schools in the future. Health and social care is one of the fastest growing industries for robots and automation in Singapore and globally.

Dubai
Dubai is another emerging prototype of a state-controlled smart city. But rather than seeing robotization simply as a way to improve the running of systems, Dubai is intensively robotizing public services with the aim of creating the “happiest city on Earth.” Urban robot experimentation in Dubai reveals that authoritarian state regimes are finding innovative ways to use robots in public services, transportation, policing, and surveillance.

National governments are in competition to position themselves on the global politico-economic landscape through robotics, and they are also striving to position themselves as regional leaders. This was the thinking behind the city’s September 2017 test flight of a flying taxi developed by the German drone firm Volocopter—staged to “lead the Arab world in innovation.” Dubai’s objective is to automate 25% of its transport system by 2030.

It is currently also experimenting with Barcelona-based PAL Robotics’ humanoid police officer and Singapore-based vehicle OUTSAW. If the experiments are successful, the government has announced it will robotize 25% of the police force by 2030.

While imaginary robots are fueling our imagination more than ever—from Ghost in the Shell to Blade Runner 2049—real-world robots make us rethink our urban lives.

These three urban robotic living labs—Tokyo, Singapore, Dubai—help us gauge what kind of future is being created, and by whom. From hyper-robotized Tokyo to smartest Singapore and happy, crime-free Dubai, these three comparisons show that, no matter what the context, robots are perceived as a means to achieve global futures based on a specific national imagination. Just like the films, they demonstrate the role of the state in envisioning and creating that future.

This article was originally published on The Conversation. Read the original article.

Image Credit: 3000ad / Shutterstock.com Continue reading

Posted in Human Robots

#432324 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
China Wants to Shape the Global Future of Artificial Intelligence
Will Knight | MIT Technology Review
“China’s booming AI industry and massive government investment in the technology have raised fears in the US and elsewhere that the nation will overtake international rivals in a fundamentally important technology. In truth, it may be possible for both the US and the Chinese economies to benefit from AI. But there may be more rivalry when it comes to influencing the spread of the technology worldwide. ‘I think this is the first technology area where China has a real chance to set the rules of the game,’ says Ding.”

SPACE
Astronaut’s Gene Expression No Longer Same as His Identical Twin, NASA Finds
Susan Scutti | CNN
“Preliminary results from NASA’s Twins Study reveal that 7% of astronaut Scott Kelly’s genetic expression—how his genes function within cells—did not return to baseline after his return to Earth two years ago. The study looks at what happened to Kelly before, during and after he spent one year aboard the International Space Station through an extensive comparison with his identical twin, Mark, who remained on Earth.”

3D PRINTING
This Cheap 3D-Printed Home Is a Start for the 1 Billion Who Lack Shelter
Tamara Warren | The Verge
“ICON has developed a method for printing a single-story 650-square-foot house out of cement in only 12 to 24 hours, a fraction of the time it takes for new construction. If all goes according to plan, a community made up of about 100 homes will be constructed for residents in El Salvador next year. The company has partnered with New Story, a nonprofit that is vested in international housing solutions. ‘We have been building homes for communities in Haiti, El Salvador, and Bolivia,’ Alexandria Lafci, co-founder of New Story, tells The Verge.”

SCIENCE
Our Microbiomes Are Making Scientists Question What It Means to Be Human
Rebecca Flowers | Motherboard
“Studies in genetics and Watson and Crick’s discovery of DNA gave more credence to the idea of individuality. But as scientists learn more about the microbiome, the idea of humans as a singular organism is being reconsidered: ‘There is now overwhelming evidence that normal development as well as the maintenance of the organism depend on the microorganisms…that we harbor,’ they state (others have taken this position, too).”

CULTURE
Stephen Hawking, Who Awed Both Scientists and the Public, Dies
Joe Palca | NPR
“Hawking was probably the best-known scientist in the world. He was a theoretical physicist whose early work on black holes transformed how scientists think about the nature of the universe. But his fame wasn’t just a result of his research. Hawking, who had a debilitating neurological disease that made it impossible for him to move his limbs or speak, was also a popular public figure and best-selling author. There was even a biopic about his life, The Theory of Everything, that won an Oscar for the actor, Eddie Redmayne, who portrayed Hawking.”

Image Credit: NASA/JPL-Caltech/STScI Continue reading

Posted in Human Robots

#432236 Why Hasn’t AI Mastered Language ...

In the myth about the Tower of Babel, people conspired to build a city and tower that would reach heaven. Their creator observed, “And now nothing will be restrained from them, which they have imagined to do.” According to the myth, God thwarted this effort by creating diverse languages so that they could no longer collaborate.

In our modern times, we’re experiencing a state of unprecedented connectivity thanks to technology. However, we’re still living under the shadow of the Tower of Babel. Language remains a barrier in business and marketing. Even though technological devices can quickly and easily connect, humans from different parts of the world often can’t.

Translation agencies step in, making presentations, contracts, outsourcing instructions, and advertisements comprehensible to all intended recipients. Some agencies also offer “localization” expertise. For instance, if a company is marketing in Quebec, the advertisements need to be in Québécois French, not European French. Risk-averse companies may be reluctant to invest in these translations. Consequently, these ventures haven’t achieved full market penetration.

Global markets are waiting, but AI-powered language translation isn’t ready yet, despite recent advancements in natural language processing and sentiment analysis. AI still has difficulties processing requests in one language, without the additional complications of translation. In November 2016, Google added a neural network to its translation tool. However, some of its translations are still socially and grammatically odd. I spoke to technologists and a language professor to find out why.

“To Google’s credit, they made a pretty massive improvement that appeared almost overnight. You know, I don’t use it as much. I will say this. Language is hard,” said Michael Housman, chief data science officer at RapportBoost.AI and faculty member of Singularity University.

He explained that the ideal scenario for machine learning and artificial intelligence is something with fixed rules and a clear-cut measure of success or failure. He named chess as an obvious example, and noted machines were able to beat the best human Go player. This happened faster than anyone anticipated because of the game’s very clear rules and limited set of moves.

Housman elaborated, “Language is almost the opposite of that. There aren’t as clearly-cut and defined rules. The conversation can go in an infinite number of different directions. And then of course, you need labeled data. You need to tell the machine to do it right or wrong.”

Housman noted that it’s inherently difficult to assign these informative labels. “Two translators won’t even agree on whether it was translated properly or not,” he said. “Language is kind of the wild west, in terms of data.”

Google’s technology is now able to consider the entirety of a sentence, as opposed to merely translating individual words. Still, the glitches linger. I asked Dr. Jorge Majfud, Associate Professor of Spanish, Latin American Literature, and International Studies at Jacksonville University, to explain why consistently accurate language translation has thus far eluded AI.

He replied, “The problem is that considering the ‘entire’ sentence is still not enough. The same way the meaning of a word depends on the rest of the sentence (more in English than in Spanish), the meaning of a sentence depends on the rest of the paragraph and the rest of the text, as the meaning of a text depends on a larger context called culture, speaker intentions, etc.”

He noted that sarcasm and irony only make sense within this widened context. Similarly, idioms can be problematic for automated translations.

“Google translation is a good tool if you use it as a tool, that is, not to substitute human learning or understanding,” he said, before offering examples of mistranslations that could occur.

“Months ago, I went to buy a drill at Home Depot and I read a sign under a machine: ‘Saw machine.’ Right below it, the Spanish translation: ‘La máquina vió,’ which means, ‘The machine did see it.’ Saw, not as a noun but as a verb in the preterit form,” he explained.

Dr. Majfud warned, “We should be aware of the fragility of their ‘interpretation.’ Because to translate is basically to interpret, not just an idea but a feeling. Human feelings and ideas that only humans can understand—and sometimes not even we, humans, understand other humans.”

He noted that cultures, gender, and even age can pose barriers to this understanding and also contended that an over-reliance on technology is leading to our cultural and political decline. Dr. Majfud mentioned that Argentinean writer Julio Cortázar used to refer to dictionaries as “cemeteries.” He suggested that automatic translators could be called “zombies.”

Erik Cambria is an academic AI researcher and assistant professor at Nanyang Technological University in Singapore. He mostly focuses on natural language processing, which is at the core of AI-powered language translation. Like Dr. Majfud, he sees the complexity and associated risks. “There are so many things that we unconsciously do when we read a piece of text,” he told me. Reading comprehension requires multiple interrelated tasks, which haven’t been accounted for in past attempts to automate translation.

Cambria continued, “The biggest issue with machine translation today is that we tend to go from the syntactic form of a sentence in the input language to the syntactic form of that sentence in the target language. That’s not what we humans do. We first decode the meaning of the sentence in the input language and then we encode that meaning into the target language.”

Additionally, there are cultural risks involved with these translations. Dr. Ramesh Srinivasan, Director of UCLA’s Digital Cultures Lab, said that new technological tools sometimes reflect underlying biases.

“There tend to be two parameters that shape how we design ‘intelligent systems.’ One is the values and you might say biases of those that create the systems. And the second is the world if you will that they learn from,” he told me. “If you build AI systems that reflect the biases of their creators and of the world more largely, you get some, occasionally, spectacular failures.”

Dr. Srinivasan said translation tools should be transparent about their capabilities and limitations. He said, “You know, the idea that a single system can take languages that I believe are very diverse semantically and syntactically from one another and claim to unite them or universalize them, or essentially make them sort of a singular entity, it’s a misnomer, right?”

Mary Cochran, co-founder of Launching Labs Marketing, sees the commercial upside. She mentioned that listings in online marketplaces such as Amazon could potentially be auto-translated and optimized for buyers in other countries.

She said, “I believe that we’re just at the tip of the iceberg, so to speak, with what AI can do with marketing. And with better translation, and more globalization around the world, AI can’t help but lead to exploding markets.”

Image Credit: igor kisselev / Shutterstock.com Continue reading

Posted in Human Robots

#432193 Are ‘You’ Just Inside Your Skin or ...

In November 2017, a gunman entered a church in Sutherland Springs in Texas, where he killed 26 people and wounded 20 others. He escaped in his car, with police and residents in hot pursuit, before losing control of the vehicle and flipping it into a ditch. When the police got to the car, he was dead. The episode is horrifying enough without its unsettling epilogue. In the course of their investigations, the FBI reportedly pressed the gunman’s finger to the fingerprint-recognition feature on his iPhone in an attempt to unlock it. Regardless of who’s affected, it’s disquieting to think of the police using a corpse to break into someone’s digital afterlife.

Most democratic constitutions shield us from unwanted intrusions into our brains and bodies. They also enshrine our entitlement to freedom of thought and mental privacy. That’s why neurochemical drugs that interfere with cognitive functioning can’t be administered against a person’s will unless there’s a clear medical justification. Similarly, according to scholarly opinion, law-enforcement officials can’t compel someone to take a lie-detector test, because that would be an invasion of privacy and a violation of the right to remain silent.

But in the present era of ubiquitous technology, philosophers are beginning to ask whether biological anatomy really captures the entirety of who we are. Given the role they play in our lives, do our devices deserve the same protections as our brains and bodies?

After all, your smartphone is much more than just a phone. It can tell a more intimate story about you than your best friend. No other piece of hardware in history, not even your brain, contains the quality or quantity of information held on your phone: it ‘knows’ whom you speak to, when you speak to them, what you said, where you have been, your purchases, photos, biometric data, even your notes to yourself—and all this dating back years.

In 2014, the United States Supreme Court used this observation to justify the decision that police must obtain a warrant before rummaging through our smartphones. These devices “are now such a pervasive and insistent part of daily life that the proverbial visitor from Mars might conclude they were an important feature of human anatomy,” as Chief Justice John Roberts observed in his written opinion.

The Chief Justice probably wasn’t making a metaphysical point—but the philosophers Andy Clark and David Chalmers were when they argued in “The Extended Mind” (1998) that technology is actually part of us. According to traditional cognitive science, “thinking” is a process of symbol manipulation or neural computation, which gets carried out by the brain. Clark and Chalmers broadly accept this computational theory of mind, but claim that tools can become seamlessly integrated into how we think. Objects such as smartphones or notepads are often just as functionally essential to our cognition as the synapses firing in our heads. They augment and extend our minds by increasing our cognitive power and freeing up internal resources.

If accepted, the extended mind thesis threatens widespread cultural assumptions about the inviolate nature of thought, which sits at the heart of most legal and social norms. As the US Supreme Court declared in 1942: “freedom to think is absolute of its own nature; the most tyrannical government is powerless to control the inward workings of the mind.” This view has its origins in thinkers such as John Locke and René Descartes, who argued that the human soul is locked in a physical body, but that our thoughts exist in an immaterial world, inaccessible to other people. One’s inner life thus needs protecting only when it is externalized, such as through speech. Many researchers in cognitive science still cling to this Cartesian conception—only, now, the private realm of thought coincides with activity in the brain.

But today’s legal institutions are straining against this narrow concept of the mind. They are trying to come to grips with how technology is changing what it means to be human, and to devise new normative boundaries to cope with this reality. Justice Roberts might not have known about the idea of the extended mind, but it supports his wry observation that smartphones have become part of our body. If our minds now encompass our phones, we are essentially cyborgs: part-biology, part-technology. Given how our smartphones have taken over what were once functions of our brains—remembering dates, phone numbers, addresses—perhaps the data they contain should be treated on a par with the information we hold in our heads. So if the law aims to protect mental privacy, its boundaries would need to be pushed outwards to give our cyborg anatomy the same protections as our brains.

This line of reasoning leads to some potentially radical conclusions. Some philosophers have argued that when we die, our digital devices should be handled as remains: if your smartphone is a part of who you are, then perhaps it should be treated more like your corpse than your couch. Similarly, one might argue that trashing someone’s smartphone should be seen as a form of “extended” assault, equivalent to a blow to the head, rather than just destruction of property. If your memories are erased because someone attacks you with a club, a court would have no trouble characterizing the episode as a violent incident. So if someone breaks your smartphone and wipes its contents, perhaps the perpetrator should be punished as they would be if they had caused a head trauma.

The extended mind thesis also challenges the law’s role in protecting both the content and the means of thought—that is, shielding what and how we think from undue influence. Regulation bars non-consensual interference in our neurochemistry (for example, through drugs), because that meddles with the contents of our mind. But if cognition encompasses devices, then arguably they should be subject to the same prohibitions. Perhaps some of the techniques that advertisers use to hijack our attention online, to nudge our decision-making or manipulate search results, should count as intrusions on our cognitive process. Similarly, in areas where the law protects the means of thought, it might need to guarantee access to tools such as smartphones—in the same way that freedom of expression protects people’s right not only to write or speak, but also to use computers and disseminate speech over the internet.

The courts are still some way from arriving at such decisions. Besides the headline-making cases of mass shooters, there are thousands of instances each year in which police authorities try to get access to encrypted devices. Although the Fifth Amendment to the US Constitution protects individuals’ right to remain silent (and therefore not give up a passcode), judges in several states have ruled that police can forcibly use fingerprints to unlock a user’s phone. (With the new facial-recognition feature on the iPhone X, police might only need to get an unwitting user to look at her phone.) These decisions reflect the traditional concept that the rights and freedoms of an individual end at the skin.

But the concept of personal rights and freedoms that guides our legal institutions is outdated. It is built on a model of a free individual who enjoys an untouchable inner life. Now, though, our thoughts can be invaded before they have even been developed—and in a way, perhaps this is nothing new. The Nobel Prize-winning physicist Richard Feynman used to say that he thought with his notebook. Without a pen and pencil, a great deal of complex reflection and analysis would never have been possible. If the extended mind view is right, then even simple technologies such as these would merit recognition and protection as a part of the essential toolkit of the mind.This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit: Sergii Tverdokhlibov / Shutterstock.com Continue reading

Posted in Human Robots

#432027 We Read This 800-Page Report on the ...

The longevity field is bustling but still fragmented, and the “silver tsunami” is coming.

That is the takeaway of The Science of Longevity, the behemoth first volume of a four-part series offering a bird’s-eye view of the longevity industry in 2017. The report, a joint production of the Biogerontology Research Foundation, Deep Knowledge Life Science, Aging Analytics Agency, and Longevity.International, synthesizes the growing array of academic and industry ventures related to aging, healthspan, and everything in between.

This is huge, not only in scale but also in ambition. The report, totally worth a read here, will be followed by four additional volumes in 2018, covering topics ranging from the business side of longevity ventures to financial systems to potential tensions between life extension and religion.

And that’s just the first step. The team hopes to publish updated versions of the report annually, giving scientists, investors, and regulatory agencies an easy way to keep their finger on the longevity pulse.

“In 2018, ‘aging’ remains an unnamed adversary in an undeclared war. For all intents and purposes it is mere abstraction in the eyes of regulatory authorities worldwide,” the authors write.

That needs to change.

People often arrive at the field of aging from disparate areas with wildly diverse opinions and strengths. The report compiles these individual efforts at cracking aging into a systematic resource—a “periodic table” for longevity that clearly lays out emerging trends and promising interventions.

The ultimate goal? A global framework serving as a road map to guide the burgeoning industry. With such a framework in hand, academics and industry alike are finally poised to petition the kind of large-scale investments and regulatory changes needed to tackle aging with a unified front.

Infographic depicting many of the key research hubs and non-profits within the field of geroscience.
Image Credit: Longevity.International
The Aging Globe
The global population is rapidly aging. And our medical and social systems aren’t ready to handle this oncoming “silver tsunami.”

Take the medical field. Many age-related diseases such as Alzheimer’s lack effective treatment options. Others, including high blood pressure, stroke, lung or heart problems, require continuous medication and monitoring, placing enormous strain on medical resources.

What’s more, because disease risk rises exponentially with age, medical care for the elderly becomes a game of whack-a-mole: curing any individual disease such as cancer only increases healthy lifespan by two to three years before another one hits.

That’s why in recent years there’s been increasing support for turning the focus to the root of the problem: aging. Rather than tackling individual diseases, geroscience aims to add healthy years to our lifespan—extending “healthspan,” so to speak.

Despite this relative consensus, the field still faces a roadblock. The US FDA does not yet recognize aging as a bona fide disease. Without such a designation, scientists are banned from testing potential interventions for aging in clinical trials (that said, many have used alternate measures such as age-related biomarkers or Alzheimer’s symptoms as a proxy).

Luckily, the FDA’s stance is set to change. The promising anti-aging drug metformin, for example, is already in clinical trials, examining its effect on a variety of age-related symptoms and diseases. This report, and others to follow, may help push progress along.

“It is critical for investors, policymakers, scientists, NGOs, and influential entities to prioritize the amelioration of the geriatric world scenario and recognize aging as a critical matter of global economic security,” the authors say.

Biomedical Gerontology
The causes of aging are complex, stubborn, and not all clear.

But the report lays out two main streams of intervention with already promising results.

The first is to understand the root causes of aging and stop them before damage accumulates. It’s like meddling with cogs and other inner workings of a clock to slow it down, the authors say.

The report lays out several treatments to keep an eye on.

Geroprotective drugs is a big one. Often repurposed from drugs already on the market, these traditional small molecule drugs target a wide variety of metabolic pathways that play a role in aging. Think anti-oxidants, anti-inflammatory, and drugs that mimic caloric restriction, a proven way to extend healthspan in animal models.

More exciting are the emerging technologies. One is nanotechnology. Nanoparticles of carbon, “bucky-balls,” for example, have already been shown to fight viral infections and dangerous ion particles, as well as stimulate the immune system and extend lifespan in mice (though others question the validity of the results).

Blood is another promising, if surprising, fountain of youth: recent studies found that molecules in the blood of the young rejuvenate the heart, brain, and muscles of aged rodents, though many of these findings have yet to be replicated.

Rejuvenation Biotechnology
The second approach is repair and maintenance.

Rather than meddling with inner clockwork, here we force back the hands of a clock to set it back. The main example? Stem cell therapy.

This type of approach would especially benefit the brain, which harbors small, scattered numbers of stem cells that deplete with age. For neurodegenerative diseases like Alzheimer’s, in which neurons progressively die off, stem cell therapy could in theory replace those lost cells and mend those broken circuits.

Once a blue-sky idea, the discovery of induced pluripotent stem cells (iPSCs), where scientists can turn skin and other mature cells back into a stem-like state, hugely propelled the field into near reality. But to date, stem cells haven’t been widely adopted in clinics.

It’s “a toolkit of highly innovative, highly invasive technologies with clinical trials still a great many years off,” the authors say.

But there is a silver lining. The boom in 3D tissue printing offers an alternative approach to stem cells in replacing aging organs. Recent investment from the Methuselah Foundation and other institutions suggests interest remains high despite still being a ways from mainstream use.

A Disruptive Future
“We are finally beginning to see an industry emerge from mankind’s attempts to make sense of the biological chaos,” the authors conclude.

Looking through the trends, they identified several technologies rapidly gaining steam.

One is artificial intelligence, which is already used to bolster drug discovery. Machine learning may also help identify new longevity genes or bring personalized medicine to the clinic based on a patient’s records or biomarkers.

Another is senolytics, a class of drugs that kill off “zombie cells.” Over 10 prospective candidates are already in the pipeline, with some expected to enter the market in less than a decade, the authors say.

Finally, there’s the big gun—gene therapy. The treatment, unlike others mentioned, can directly target the root of any pathology. With a snip (or a swap), genetic tools can turn off damaging genes or switch on ones that promote a youthful profile. It is the most preventative technology at our disposal.

There have already been some success stories in animal models. Using gene therapy, rodents given a boost in telomerase activity, which lengthens the protective caps of DNA strands, live healthier for longer.

“Although it is the prospect farthest from widespread implementation, it may ultimately prove the most influential,” the authors say.

Ultimately, can we stop the silver tsunami before it strikes?

Perhaps not, the authors say. But we do have defenses: the technologies outlined in the report, though still immature, could one day stop the oncoming tidal wave in its tracks.

Now we just have to bring them out of the lab and into the real world. To push the transition along, the team launched Longevity.International, an online meeting ground that unites various stakeholders in the industry.

By providing scientists, entrepreneurs, investors, and policy-makers a platform for learning and discussion, the authors say, we may finally generate enough drive to implement our defenses against aging. The war has begun.

Read the report in full here, and watch out for others coming soon here. The second part of the report profiles 650 (!!!) longevity-focused research hubs, non-profits, scientists, conferences, and literature. It’s an enormously helpful resource—totally worth keeping it in your back pocket for future reference.

Image Credit: Worraket / Shutterstock.com Continue reading

Posted in Human Robots