Tag Archives: signal

#435213 Robot traps ball without coding

Dr. Kee-hoon Kim's team at the Center for Intelligent & Interactive Robotics of the Korea Institute of Science and Technology (KIST) developed a way of teaching “impedance-controlled robots” through human demonstrations using surface electromyograms (sEMG) of muscles, and succeeded in teaching a robot to trap a dropped ball like a soccer player. A surface electromyogram is an electric signal produced during muscle activation that can be picked up on the surface of the skin. Continue reading

Posted in Human Robots

#434865 5 AI Breakthroughs We’ll Likely See in ...

Convergence is accelerating disruption… everywhere! Exponential technologies are colliding into each other, reinventing products, services, and industries.

As AI algorithms such as Siri and Alexa can process your voice and output helpful responses, other AIs like Face++ can recognize faces. And yet others create art from scribbles, or even diagnose medical conditions.

Let’s dive into AI and convergence.

Top 5 Predictions for AI Breakthroughs (2019-2024)
My friend Neil Jacobstein is my ‘go-to expert’ in AI, with over 25 years of technical consulting experience in the field. Currently the AI and Robotics chair at Singularity University, Jacobstein is also a Distinguished Visiting Scholar in Stanford’s MediaX Program, a Henry Crown Fellow, an Aspen Institute moderator, and serves on the National Academy of Sciences Earth and Life Studies Committee. Neil predicted five trends he expects to emerge over the next five years, by 2024.

AI gives rise to new non-human pattern recognition and intelligence results

AlphaGo Zero, a machine learning computer program trained to play the complex game of Go, defeated the Go world champion in 2016 by 100 games to zero. But instead of learning from human play, AlphaGo Zero trained by playing against itself—a method known as reinforcement learning.

Building its own knowledge from scratch, AlphaGo Zero demonstrates a novel form of creativity, free of human bias. Even more groundbreaking, this type of AI pattern recognition allows machines to accumulate thousands of years of knowledge in a matter of hours.

While these systems can’t answer the question “What is orange juice?” or compete with the intelligence of a fifth grader, they are growing more and more strategically complex, merging with other forms of narrow artificial intelligence. Within the next five years, who knows what successors of AlphaGo Zero will emerge, augmenting both your business functions and day-to-day life.

Doctors risk malpractice when not using machine learning for diagnosis and treatment planning

A group of Chinese and American researchers recently created an AI system that diagnoses common childhood illnesses, ranging from the flu to meningitis. Trained on electronic health records compiled from 1.3 million outpatient visits of almost 600,000 patients, the AI program produced diagnosis outcomes with unprecedented accuracy.

While the US health system does not tout the same level of accessible universal health data as some Chinese systems, we’ve made progress in implementing AI in medical diagnosis. Dr. Kang Zhang, chief of ophthalmic genetics at the University of California, San Diego, created his own system that detects signs of diabetic blindness, relying on both text and medical images.

With an eye to the future, Jacobstein has predicted that “we will soon see an inflection point where doctors will feel it’s a risk to not use machine learning and AI in their everyday practices because they don’t want to be called out for missing an important diagnostic signal.”

Quantum advantage will massively accelerate drug design and testing

Researchers estimate that there are 1060 possible drug-like molecules—more than the number of atoms in our solar system. But today, chemists must make drug predictions based on properties influenced by molecular structure, then synthesize numerous variants to test their hypotheses.

Quantum computing could transform this time-consuming, highly costly process into an efficient, not to mention life-changing, drug discovery protocol.

“Quantum computing is going to have a major industrial impact… not by breaking encryption,” said Jacobstein, “but by making inroads into design through massive parallel processing that can exploit superposition and quantum interference and entanglement, and that can wildly outperform classical computing.”

AI accelerates security systems’ vulnerability and defense

With the incorporation of AI into almost every aspect of our lives, cyberattacks have grown increasingly threatening. “Deep attacks” can use AI-generated content to avoid both human and AI controls.

Previous examples include fake videos of former President Obama speaking fabricated sentences, and an adversarial AI fooling another algorithm into categorizing a stop sign as a 45 mph speed limit sign. Without the appropriate protections, AI systems can be manipulated to conduct any number of destructive objectives, whether ruining reputations or diverting autonomous vehicles.

Jacobstein’s take: “We all have security systems on our buildings, in our homes, around the healthcare system, and in air traffic control, financial organizations, the military, and intelligence communities. But we all know that these systems have been hacked periodically and we’re going to see that accelerate. So, there are major business opportunities there and there are major opportunities for you to get ahead of that curve before it bites you.”

AI design systems drive breakthroughs in atomically precise manufacturing

Just as the modern computer transformed our relationship with bits and information, AI will redefine and revolutionize our relationship with molecules and materials. AI is currently being used to discover new materials for clean-tech innovations, such as solar panels, batteries, and devices that can now conduct artificial photosynthesis.

Today, it takes about 15 to 20 years to create a single new material, according to industry experts. But as AI design systems skyrocket in capacity, these will vastly accelerate the materials discovery process, allowing us to address pressing issues like climate change at record rates. Companies like Kebotix are already on their way to streamlining the creation of chemistries and materials at the click of a button.

Atomically precise manufacturing will enable us to produce the previously unimaginable.

Final Thoughts
Within just the past three years, countries across the globe have signed into existence national AI strategies and plans for ramping up innovation. Businesses and think tanks have leaped onto the scene, hiring AI engineers and tech consultants to leverage what computer scientist Andrew Ng has even called the new ‘electricity’ of the 21st century.

As AI plays an exceedingly vital role in everyday life, how will your business leverage it to keep up and build forward?

In the wake of burgeoning markets, new ventures will quickly arise, each taking advantage of untapped data sources or unmet security needs.

And as your company aims to ride the wave of AI’s exponential growth, consider the following pointers to leverage AI and disrupt yourself before it reaches you first:

Determine where and how you can begin collecting critical data to inform your AI algorithms
Identify time-intensive processes that can be automated and accelerated within your company
Discern which global challenges can be expedited by hyper-fast, all-knowing minds

Remember: good data is vital fuel. Well-defined problems are the best compass. And the time to start implementing AI is now.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#434854 New Lifelike Biomaterial Self-Reproduces ...

Life demands flux.

Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.

What if we could endow cold, static, lifeless robots with the gift of metabolism?

In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.

Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.

The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.

“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.

“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.

Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.

Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?

Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.

Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”

The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.

Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.

DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.

Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.

Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.

This “enabled a general design strategy for the DASH patterns,” they said.

In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.

These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.

Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.

“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.

Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.

In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.

Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.

Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.

The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.

In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.

A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.

DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.

Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.

“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”

Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading

Posted in Human Robots

#434837 In Defense of Black Box AI

Deep learning is powering some amazing new capabilities, but we find it hard to scrutinize the workings of these algorithms. Lack of interpretability in AI is a common concern and many are trying to fix it, but is it really always necessary to know what’s going on inside these “black boxes”?

In a recent perspective piece for Science, Elizabeth Holm, a professor of materials science and engineering at Carnegie Mellon University, argued in defense of the black box algorithm. I caught up with her last week to find out more.

Edd Gent: What’s your experience with black box algorithms?

Elizabeth Holm: I got a dual PhD in materials science and engineering and scientific computing. I came to academia about six years ago and part of what I wanted to do in making this career change was to refresh and revitalize my computer science side.

I realized that computer science had changed completely. It used to be about algorithms and making codes run fast, but now it’s about data and artificial intelligence. There are the interpretable methods like random forest algorithms, where we can tell how the machine is making its decisions. And then there are the black box methods, like convolutional neural networks.

Once in a while we can find some information about their inner workings, but most of the time we have to accept their answers and kind of probe around the edges to figure out the space in which we can use them and how reliable and accurate they are.

EG: What made you feel like you had to mount a defense of these black box algorithms?

EH: When I started talking with my colleagues, I found that the black box nature of many of these algorithms was a real problem for them. I could understand that because we’re scientists, we always want to know why and how.

It got me thinking as a bit of a contrarian, “Are black boxes all bad? Must we reject them?” Surely not, because human thought processes are fairly black box. We often rely on human thought processes that the thinker can’t necessarily explain.

It’s looking like we’re going to be stuck with these methods for a while, because they’re really helpful. They do amazing things. And so there’s a very pragmatic realization that these are the best methods we’ve got to do some really important problems, and we’re not right now seeing alternatives that are interpretable. We’re going to have to use them, so we better figure out how.

EG: In what situations do you think we should be using black box algorithms?

EH: I came up with three rules. The simplest rule is: when the cost of a bad decision is small and the value of a good decision is high, it’s worth it. The example I gave in the paper is targeted advertising. If you send an ad no one wants it doesn’t cost a lot. If you’re the receiver it doesn’t cost a lot to get rid of it.

There are cases where the cost is high, and that’s then we choose the black box if it’s the best option to do the job. Things get a little trickier here because we have to ask “what are the costs of bad decisions, and do we really have them fully characterized?” We also have to be very careful knowing that our systems may have biases, they may have limitations in where you can apply them, they may be breakable.

But at the same time, there are certainly domains where we’re going to test these systems so extensively that we know their performance in virtually every situation. And if their performance is better than the other methods, we need to do it. Self driving vehicles are a significant example—it’s almost certain they’re going to have to use black box methods, and that they’re going to end up being better drivers than humans.

The third rule is the more fun one for me as a scientist, and that’s the case where the black box really enlightens us as to a new way to look at something. We have trained a black box to recognize the fracture energy of breaking a piece of metal from a picture of the broken surface. It did a really good job, and humans can’t do this and we don’t know why.

What the computer seems to be seeing is noise. There’s a signal in that noise, and finding it is very difficult, but if we do we may find something significant to the fracture process, and that would be an awesome scientific discovery.

EG: Do you think there’s been too much emphasis on interpretability?

EH: I think the interpretability problem is a fundamental, fascinating computer science grand challenge and there are significant issues where we need to have an interpretable model. But how I would frame it is not that there’s too much emphasis on interpretability, but rather that there’s too much dismissiveness of uninterpretable models.

I think that some of the current social and political issues surrounding some very bad black box outcomes have convinced people that all machine learning and AI should be interpretable because that will somehow solve those problems.

Asking humans to explain their rationale has not eliminated bias, or stereotyping, or bad decision-making in humans. Relying too much on interpreted ability perhaps puts the responsibility in the wrong place for getting better results. I can make a better black box without knowing exactly in what way the first one was bad.

EG: Looking further into the future, do you think there will be situations where humans will have to rely on black box algorithms to solve problems we can’t get our heads around?

EH: I do think so, and it’s not as much of a stretch as we think it is. For example, humans don’t design the circuit map of computer chips anymore. We haven’t for years. It’s not a black box algorithm that designs those circuit boards, but we’ve long since given up trying to understand a particular computer chip’s design.

With the billions of circuits in every computer chip, the human mind can’t encompass it, either in scope or just the pure time that it would take to trace every circuit. There are going to be cases where we want a system so complex that only the patience that computers have and their ability to work in very high-dimensional spaces is going to be able to do it.

So we can continue to argue about interpretability, but we need to acknowledge that we’re going to need to use black boxes. And this is our opportunity to do our due diligence to understand how to use them responsibly, ethically, and with benefits rather than harm. And that’s going to be a social conversation as well as as a scientific one.

*Responses have been edited for length and style

Image Credit: Chingraph / Shutterstock.com Continue reading

Posted in Human Robots

#434772 Traditional Higher Education Is Losing ...

Should you go to graduate school? If so, why? If not, what are your alternatives? Millions of young adults across the globe—and their parents and mentors—find themselves asking these questions every year.

Earlier this month, I explored how exponential technologies are rising to meet the needs of the rapidly changing workforce.

In this blog, I’ll dive into a highly effective way to build the business acumen and skills needed to make the most significant impact in these exponential times.

To start, let’s dive into the value of graduate school versus apprenticeship—especially during this time of extraordinarily rapid growth, and the micro-diversification of careers.

The True Value of an MBA
All graduate schools are not created equal.

For complex technical trades like medicine, engineering, and law, formal graduate-level training provides a critical foundation for safe, ethical practice (until these trades are fully augmented by artificial intelligence and automation…).

For the purposes of today’s blog, let’s focus on the value of a Master in Business Administration (MBA) degree, compared to acquiring your business acumen through various forms of apprenticeship.

The Waning of Business Degrees
Ironically, business schools are facing a tough business problem. The rapid rate of technological change, a booming job market, and the digitization of education are chipping away at the traditional graduate-level business program.

The data speaks for itself.

The Decline of Graduate School Admissions
Enrollment in two-year, full-time MBA programs in the US fell by more than one-third from 2010 to 2016.

While in previous years, top business schools (e.g. Stanford, Harvard, and Wharton) were safe from the decrease in applications, this year, they also felt the waning interest in MBA programs.

Harvard Business School: 4.5 percent decrease in applications, the school’s biggest drop since 2005.
Wharton: 6.7 percent decrease in applications.
Stanford Graduate School: 4.6 percent decrease in applications.

Another signal of change began unfolding over the past week. You may have read news headlines about an emerging college admissions scam, which implicates highly selective US universities, sports coaches, parents, and students in a conspiracy to game the undergraduate admissions process.

Already, students are filing multibillion-dollar civil lawsuits arguing that the scheme has devalued their degrees or denied them a fair admissions opportunity.

MBA Graduates in the Workforce
To meet today’s business needs, startups and massive companies alike are increasingly hiring technologists, developers, and engineers in place of the MBA graduates they may have preferentially hired in the past.

While 85 percent of US employers expect to hire MBA graduates this year (a decrease from 91 percent in 2017), 52 percent of employers worldwide expect to hire graduates with a master’s in data analytics (an increase from 35 percent last year).

We’re also seeing the waning of MBA degree holders at the CEO level.

For decades, an MBA was the hallmark of upward mobility towards the C-suite of top companies.

But as exponential technologies permeate not only products but every part of the supply chain—from manufacturing and shipping to sales, marketing and customer service—that trend is changing by necessity.

Looking at the Harvard Business Review’s Top 100 CEOs in 2018 list, more CEOs on the list held engineering degrees than MBAs (34 held engineering degrees, while 32 held MBAs).

There’s much more to leading innovative companies than an advanced business degree.

How Are Schools Responding?
With disruption to the advanced business education system already here, some business schools are applying notes from their own innovation classes to brace for change.

Over the past half-decade, we’ve seen schools with smaller MBA programs shut their doors in favor of advanced degrees with more specialization. This directly responds to market demand for skills in data science, supply chain, and manufacturing.

Some degrees resemble the precise skills training of technical trades. Others are very much in line with the apprenticeship models we’ll explore next.

Regardless, this new specialization strategy is working and attracting more new students. Over the past decade (2006 to 2016), enrollment in specialized graduate business programs doubled.

Higher education is also seeing a preference shift toward for-profit trade schools, like coding boot camps. This shift is one of several forces pushing universities to adopt skill-specific advanced degrees.

But some schools are slow to adapt, raising the question: how and when will these legacy programs be disrupted? A survey of over 170 business school deans around the world showed that many programs are operating at a loss.

But if these schools are world-class business institutions, as advertised, why do they keep the doors open even while they lose money? The surveyed deans revealed an important insight: they keep the degree program open because of the program’s prestige.

Why Go to Business School?
Shorthand Credibility, Cognitive Biases, and Prestige
Regardless of what knowledge a person takes away from graduate school, attending one of the world’s most rigorous and elite programs gives grads external validation.

With over 55 percent of MBA applicants applying to just 6 percent of graduate business schools, we have a clear cognitive bias toward the perceived elite status of certain universities.

To the outside world, thanks to the power of cognitive biases, an advanced degree is credibility shorthand for your capabilities.

Simply passing through a top school’s filtration system means that you had some level of abilities and merits.

And startup success statistics tend to back up that perceived enhanced capability. Let’s take, for example, universities with the most startup unicorn founders (see the figure below).

When you consider the 320+ unicorn startups around the world today, these numbers become even more impressive. Stanford’s 18 unicorn companies account for over 5 percent of global unicorns, and Harvard is responsible for producing just under 5 percent.

Combined, just these two universities (out of over 5,000 in the US, and thousands more around the world) account for 1 in 10 of the billion-dollar private companies in the world.

By the numbers, the prestigious reputation of these elite business programs has a firm basis in current innovation success.

While prestige may be inherent to the degree earned by graduates from these business programs, the credibility boost from holding one of these degrees is not a guaranteed path to success in the business world.

For example, you might expect that the Harvard School of Business or Stanford Graduate School of Business would come out on top when tallying up the alma maters of Fortune 500 CEOs.

It turns out that the University of Wisconsin-Madison leads the business school pack with 14 CEOs to Harvard’s 12. Beyond prestige, the success these elite business programs see translates directly into cultivating unmatched networks and relationships.

Relationships
Graduate schools—particularly at the upper echelon—are excellent at attracting sharp students.

At an elite business school, if you meet just five to ten people with extraordinary skill sets, personalities, ideas, or networks, then you have returned your $200,000 education investment.

It’s no coincidence that some 40 percent of Silicon Valley venture capitalists are alumni of either Harvard or Stanford.

From future investors to advisors, friends, and potential business partners, relationships are critical to an entrepreneur’s success.

Apprenticeships
As we saw above, graduate business degree programs are melting away in the current wave of exponential change.

With an increasing $1.5 trillion in student debt, there must be a more impactful alternative to attending graduate school for those starting their careers.

When I think about the most important skills I use today as an entrepreneur, writer, and strategic thinker, they didn’t come from my decade of graduate school at Harvard or MIT… they came from my experiences building real technologies and companies, and working with mentors.

Apprenticeship comes in a variety of forms; here, I’ll cover three top-of-mind approaches:

Real-world business acumen via startup accelerators
A direct apprenticeship model
The 6 D’s of mentorship

Startup Accelerators and Business Practicum
Let’s contrast the shrinking interest in MBA programs with applications to a relatively new model of business education: startup accelerators.

Startup accelerators are short-term (typically three to six months), cohort-based programs focusing on providing startup founders with the resources (capital, mentorship, relationships, and education) needed to refine their entrepreneurial acumen.

While graduate business programs have been condensing, startup accelerators are alive, well, and expanding rapidly.

In the 10 years from 2005 (when Paul Graham founded Y Combinator) through 2015, the number of startup accelerators in the US increased by more than tenfold.

The increase in startup accelerator activity hints at a larger trend: our best and brightest business minds are opting to invest their time and efforts in obtaining hands-on experience, creating tangible value for themselves and others, rather than diving into the theory often taught in business school classrooms.

The “Strike Force” Model
The Strike Force is my elite team of young entrepreneurs who work directly with me across all of my companies, travel by my side, sit in on every meeting with me, and help build businesses that change the world.

Previous Strike Force members have gone on to launch successful companies, including Bold Capital Partners, my $250 million venture capital firm.

Strike Force is an apprenticeship for the next generation of exponential entrepreneurs.

To paraphrase my good friend Tony Robbins: If you want to short-circuit the video game, find someone who’s been there and done that and is now doing something you want to one day do.

Every year, over 500,000 apprentices in the US follow this precise template. These apprentices are learning a craft they wish to master, under the mentorship of experts (skilled metal workers, bricklayers, medical technicians, electricians, and more) who have already achieved the desired result.

What if we more readily applied this model to young adults with aspirations of creating massive value through the vehicles of entrepreneurship and innovation?

For the established entrepreneur: How can you bring young entrepreneurs into your organization to create more value for your company, while also passing on your ethos and lessons learned to the next generation?

For the young, driven millennial: How can you find your mentor and convince him or her to take you on as an apprentice? What value can you create for this person in exchange for their guidance and investment in your professional development?

The 6 D’s of Mentorship
In my last blog on education, I shared how mobile device and internet penetration will transform adult literacy and basic education. Mobile phones and connectivity already create extraordinary value for entrepreneurs and young professionals looking to take their business acumen and skill set to the next level.

For all of human history up until the last decade or so, if you wanted to learn from the best and brightest in business, leadership, or strategy, you either needed to search for a dated book that they wrote at the local library or bookstore, or you had to be lucky enough to meet that person for a live conversation.

Now you can access the mentorship of just about any thought leader on the planet, at any time, for free.

Thanks to the power of the internet, mentorship has digitized, demonetized, dematerialized, and democratized.

What do you want to learn about?

Investing? Leadership? Technology? Marketing? Project management?

You can access a near-infinite stream of cutting-edge tools, tactics, and lessons from thousands of top performers from nearly every field—instantaneously, and for free.

For example, every one of Warren Buffett’s letters to his Berkshire Hathaway investors over the past 40 years is available for free on a device that fits in your pocket.

The rise of audio—particularly podcasts and audiobooks—is another underestimated driving force away from traditional graduate business programs and toward apprenticeships.

Over 28 million podcast episodes are available for free. Once you identify the strong signals in the noise, you’re still left with thousands of hours of long-form podcast conversation from which to learn valuable lessons.

Whenever and wherever you want, you can learn from the world’s best. In the future, mentorship and apprenticeship will only become more personalized. Imagine accessing a high-fidelity, AI-powered avatar of Bill Gates, Richard Branson, or Arthur C. Clarke (one of my early mentors) to help guide you through your career.

Virtual mentorship and coaching are powerful education forces that are here to stay.

Bringing It All Together
The education system is rapidly changing. Traditional master’s programs for business are ebbing away in the tides of exponential technologies. Apprenticeship models are reemerging as an effective way to train tomorrow’s leaders.

In a future blog, I’ll revisit the concept of apprenticeships and other effective business school alternatives.

If you are a young, ambitious entrepreneur (or the parent of one), remember that you live in the most abundant time ever in human history to refine your craft.

Right now, you have access to world-class mentorship and cutting-edge best-practices—literally in the palm of your hand. What will you do with this extraordinary power?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: fongbeerredhot / Shutterstock.com Continue reading

Posted in Human Robots