Tag Archives: shows

#435174 Revolt on the Horizon? How Young People ...

As digital technologies facilitate the growth of both new and incumbent organizations, we have started to see the darker sides of the digital economy unravel. In recent years, many unethical business practices have been exposed, including the capture and use of consumers’ data, anticompetitive activities, and covert social experiments.

But what do young people who grew up with the internet think about this development? Our research with 400 digital natives—19- to 24-year-olds—shows that this generation, dubbed “GenTech,” may be the one to turn the digital revolution on its head. Our findings point to a frustration and disillusionment with the way organizations have accumulated real-time information about consumers without their knowledge and often without their explicit consent.

Many from GenTech now understand that their online lives are of commercial value to an array of organizations that use this insight for the targeting and personalization of products, services, and experiences.

This era of accumulation and commercialization of user data through real-time monitoring has been coined “surveillance capitalism” and signifies a new economic system.

Artificial Intelligence
A central pillar of the modern digital economy is our interaction with artificial intelligence (AI) and machine learning algorithms. We found that 47 percent of GenTech do not want AI technology to monitor their lifestyle, purchases, and financial situation in order to recommend them particular things to buy.

In fact, only 29 percent see this as a positive intervention. Instead, they wish to maintain a sense of autonomy in their decision making and have the opportunity to freely explore new products, services, and experiences.

As individuals living in the digital age, we constantly negotiate with technology to let go of or retain control. This pendulum-like effect reflects the ongoing battle between humans and technology.

My Life, My Data?
Our research also reveals that 54 percent of GenTech are very concerned about the access organizations have to their data, while only 19 percent were not worried. Despite the EU General Data Protection Regulation being introduced in May 2018, this is still a major concern, grounded in a belief that too much of their data is in the possession of a small group of global companies, including Google, Amazon, and Facebook. Some 70 percent felt this way.

In recent weeks, both Facebook and Google have vowed to make privacy a top priority in the way they interact with users. Both companies have faced public outcry for their lack of openness and transparency when it comes to how they collect and store user data. It wasn’t long ago that a hidden microphone was found in one of Google’s home alarm products.

Google now plans to offer auto-deletion of users’ location history data, browsing, and app activity as well as extend its “incognito mode” to Google Maps and search. This will enable users to turn off tracking.

At Facebook, CEO Mark Zuckerberg is keen to reposition the platform as a “privacy focused communications platform” built on principles such as private interactions, encryption, safety, interoperability (communications across Facebook-owned apps and platforms), and secure data storage. This will be a tough turnaround for the company that is fundamentally dependent on turning user data into opportunities for highly individualized advertising.

Privacy and transparency are critically important themes for organizations today, both for those that have “grown up” online as well as the incumbents. While GenTech want organizations to be more transparent and responsible, 64 percent also believe that they cannot do much to keep their data private. Being tracked and monitored online by organizations is seen as part and parcel of being a digital consumer.

Despite these views, there is a growing revolt simmering under the surface. GenTech want to take ownership of their own data. They see this as a valuable commodity, which they should be given the opportunity to trade with organizations. Some 50 percent would willingly share their data with companies if they got something in return, for example a financial incentive.

Rewiring the Power Shift
GenTech are looking to enter into a transactional relationship with organizations. This reflects a significant change in attitudes from perceiving the free access to digital platforms as the “product” in itself (in exchange for user data), to now wishing to use that data to trade for explicit benefits.

This has created an opportunity for companies that seek to empower consumers and give them back control of their data. Several companies now offer consumers the opportunity to sell the data they are comfortable sharing or take part in research that they get paid for. More and more companies are joining this space, including People.io, Killi, and Ocean Protocol.

Sir Tim Berners Lee, the creator of the world wide web, has also been working on a way to shift the power from organizations and institutions back to citizens and consumers. The platform, Solid, offers users the opportunity to be in charge of where they store their data and who can access it. It is a form of re-decentralization.

The Solid POD (Personal Online Data storage) is a secure place on a hosted server or the individual’s own server. Users can grant apps access to their POD as a person’s data is stored centrally and not by an app developer or on an organization’s server. We see this as potentially being a way to let people take back control from technology and other companies.

GenTech have woken up to a reality where a life lived “plugged in” has significant consequences for their individual privacy and are starting to push back, questioning those organizations that have shown limited concern and continue to exercise exploitative practices.

It’s no wonder that we see these signs of revolt. GenTech is the generation with the most to lose. They face a life ahead intertwined with digital technology as part of their personal and private lives. With continued pressure on organizations to become more transparent, the time is now for young people to make their move.

Dr Mike Cooray, Professor of Practice, Hult International Business School and Dr Rikke Duus, Research Associate and Senior Teaching Fellow, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ser Borakovskyy / Shutterstock.com Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots

#435159 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Can Now Beat Us at Multiplayer Games Too
Cade Metz | The New York Times
“DeepMind’s project is part of a broad effort to build artificial intelligence that can play enormously complex, three-dimensional video games, including Quake III, Dota 2 and StarCraft II. Many researchers believe that success in the virtual arena will eventually lead to automated systems with improved abilities in the real world.”

ROBOTICS
Tiny Robots Carry Stem Cells Through a Mouse
Emily Waltz | IEEE Spectrum
“Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper, published [May 29] in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.” [Video shows microbots navigating a microfluidic chip. MRI could not be used to image the mouse as the bots navigate magnetically.]

COMPUTING
How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
Emerging Technology From the arXiv | MIT Technology Review
“[Two researchers] have found a more efficient way for quantum computers to perform the code-breaking calculations, reducing the resources they require by orders of magnitude. Consequently, these machines are significantly closer to reality than anyone suspected.” [The arXiv is a pre-print server for research that has not yet been peer reviewed.]

AUTOMATION
Lyft Has Completed 55,000 Self Driving Rides in Las Vegas
Christine Fisher | Engadget
“One year ago, Lyft launched its self-driving ride service in Las Vegas. Today, the company announced its 30-vehicle fleet has made 55,000 trips. That makes it the largest commercial program of its kind in the US.”

TRANSPORTATION
Flying Car Startup Alaka’i Bets Hydrogen Can Outdo Batteries
Eric Adams | Wired
“Alaka’i says the final product will be able to fly for up to four hours and cover 400 miles on a single load of fuel, which can be replenished in 10 minutes at a hydrogen fueling station. It has built a functional, full-scale prototype that will make its first flight ‘imminently,’ a spokesperson says.”

ETHICS
The World Economic Forum Wants to Develop Global Rules for AI
Will Knight | MIT Technology Review
“This week, AI experts, politicians, and CEOs will gather to ask an important question: Can the United States, China, or anyone else agree on how artificial intelligence should be used and controlled?”

SPACE
Building a Rocket in a Garage to Take on SpaceX and Blue Origin
Jackson Ryan | CNET
“While billionaire entrepreneurs like SpaceX’s Elon Musk and Blue Origin’s Jeff Bezos push the boundaries of human spaceflight and exploration, a legion of smaller private startups around the world have been developing their own rocket technology to launch lighter payloads into orbit.”

Image Credit: Kevin Crosby / Unsplash Continue reading

Posted in Human Robots

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#435046 The Challenge of Abundance: Boredom, ...

As technology continues to progress, the possibility of an abundant future seems more likely. Artificial intelligence is expected to drive down the cost of labor, infrastructure, and transport. Alternative energy systems are reducing the cost of a wide variety of goods. Poverty rates are falling around the world as more people are able to make a living, and resources that were once inaccessible to millions are becoming widely available.

But such a life presents fuel for the most common complaint against abundance: if robots take all the jobs, basic income provides us livable welfare for doing nothing, and healthcare is a guarantee free of charge, then what is the point of our lives? What would motivate us to work and excel if there are no real risks or rewards? If everything is simply given to us, how would we feel like we’ve ever earned anything?

Time has proven that humans inherently yearn to overcome challenges—in fact, this very desire likely exists as the root of most technological innovation. And the idea that struggling makes us stronger isn’t just anecdotal, it’s scientifically validated.

For instance, kids who use anti-bacterial soaps and sanitizers too often tend to develop weak immune systems, causing them to get sick more frequently and more severely. People who work out purposely suffer through torn muscles so that after a few days of healing their muscles are stronger. And when patients visit a psychologist to handle a fear that is derailing their lives, one of the most common treatments is exposure therapy: a slow increase of exposure to the suffering so that the patient gets stronger and braver each time, able to take on an incrementally more potent manifestation of their fears.

Different Kinds of Struggle
It’s not hard to understand why people might fear an abundant future as a terribly mundane one. But there is one crucial mistake made in this assumption, and it was well summarized by Indian mystic and author Sadhguru, who said during a recent talk at Google:

Stomach empty, only one problem. Stomach full—one hundred problems; because what we refer to as human really begins only after survival is taken care of.

This idea is backed up by Maslow’s hierarchy of needs, which was first presented in his 1943 paper “A Theory of Human Motivation.” Maslow shows the steps required to build to higher and higher levels of the human experience. Not surprisingly, the first two levels deal with physiological needs and the need for safety—in other words, with the body. You need to have food, water, and sleep, or you die. After that, you need to be protected from threats, from the elements, from dangerous people, and from disease and pain.

Maslow’s Hierarchy of Needs. Photo by Wikimedia User:Factoryjoe / CC BY-SA 3.0
The beauty of these first two levels is that they’re clear-cut problems with clear-cut solutions: if you’re hungry, then you eat; if you’re thirsty, then you drink; if you’re tired, then you sleep.

But what about the next tiers of the hierarchy? What of love and belonging, of self-esteem and self-actualization? If we’re lonely, can we just summon up an authentic friend or lover? If we feel neglected by society, can we demand it validate us? If we feel discouraged and disappointed in ourselves, can we simply dial up some confidence and self-esteem?

Of course not, and that’s because these psychological needs are nebulous; they don’t contain clear problems with clear solutions. They involve the external world and other people, and are complicated by the infinite flavors of nuance and compromise that are required to navigate human relationships and personal meaning.

These psychological difficulties are where we grow our personalities, outlooks, and beliefs. The truly defining characteristics of a person are dictated not by the physical situations they were forced into—like birth, socioeconomic class, or physical ailment—but instead by the things they choose. So a future of abundance helps to free us from the physical limitations so that we can truly commit to a life of purpose and meaning, rather than just feel like survival is our purpose.

The Greatest Challenge
And that’s the plot twist. This challenge to come to grips with our own individuality and freedom could actually be the greatest challenge our species has ever faced. Can you imagine waking up every day with infinite possibility? Every choice you make says no to the rest of reality, and so every decision carries with it truly life-defining purpose and meaning. That sounds overwhelming. And that’s probably because in our current socio-economic systems, it is.

Studies have shown that people in wealthier nations tend to experience more anxiety and depression. Ron Kessler, professor of health care policy at Harvard and World Health Organization (WHO) researcher, summarized his findings of global mental health by saying, “When you’re literally trying to survive, who has time for depression? Americans, on the other hand, many of whom lead relatively comfortable lives, blow other nations away in the depression factor, leading some to suggest that depression is a ‘luxury disorder.’”

This might explain why America scores in the top rankings for the most depressed and anxious country on the planet. We surpassed our survival needs, and instead became depressed because our jobs and relationships don’t fulfill our expectations for the next three levels of Maslow’s hierarchy (belonging, esteem, and self-actualization).

But a future of abundance would mean we’d have to deal with these levels. This is the challenge for the future; this is what keeps things from being mundane.

As a society, we would be forced to come to grips with our emotional intelligence, to reckon with philosophy rather than simply contemplate it. Nearly every person you meet will be passionately on their own customized life journey, not following a routine simply because of financial limitations. Such a world seems far more vibrant and interesting than one where most wander sleep-deprived and numb while attempting to survive the rat race.

We can already see the forceful hand of this paradigm shift as self-driving cars become ubiquitous. For example, consider the famous psychological and philosophical “trolley problem.” In this thought experiment, a person sees a trolley car heading towards five people on the train tracks; they see a lever that will allow them to switch the trolley car to a track that instead only has one person on it. Do you switch the lever and have a hand in killing one person, or do you let fate continue and kill five people instead?

For the longest time, this was just an interesting quandary to consider. But now, massive corporations have to have an answer, so they can program their self-driving cars with the ability to choose between hitting a kid who runs into the road or swerving into an oncoming car carrying a family of five. When companies need philosophers to make business decisions, it’s a good sign of what’s to come.

Luckily, it’s possible this forceful reckoning with philosophy and our own consciousness may be exactly what humanity needs. Perhaps our great failure as a species has been a result of advanced cognition still trapped in the first two levels of Maslow’s hierarchy due to a long history of scarcity.

As suggested in the opening scenes in 2001: A Space Odyssey, our ape-like proclivity for violence has long stayed the same while the technology we fight with and live amongst has progressed. So while well-off Americans may have comfortable lives, they still know they live in a system where there is no safety net, where a single tragic failure could still mean hunger and homelessness. And because of this, that evolutionarily hard-wired neurotic part of our brain that fears for our survival has never been able to fully relax, and so that anxiety and depression that come with too much freedom but not enough security stays ever present.

Not only might this shift in consciousness help liberate humanity, but it may be vital if we’re to survive our future creations as well. Whatever values we hold dear as a species are the ones we will imbue into the sentient robots we create. If machine learning is going to take its guidance from humanity, we need to level up humanity’s emotional maturity.

While the physical struggles of the future may indeed fall to the wayside amongst abundance, it’s unlikely to become a mundane world; instead, it will become a vibrant culture where each individual is striving against the most important struggle that affects all of us: the challenge to find inner peace, to find fulfillment, to build meaningful relationships, and ultimately, the challenge to find ourselves.

Image Credit: goffkein.pro / Shutterstock.com Continue reading

Posted in Human Robots