Tag Archives: sensation

#433950 How the Spatial Web Will Transform Every ...

What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or is our future workplace completely virtualized, whereby we hang out at home in our PJs while walking about our virtual corporate headquarters?

This blog will look at the future of work during the age of Web 3.0… Examining scenarios in which AI, VR, and the spatial web converge to transform every element of our careers, from training to execution to free time.

Three weeks ago, I explored the vast implications of Web 3.0 on news, media, smart advertising, and personalized retail. And to offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.

A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.

But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments.

Suddenly, all our information will be manipulated, stored, understood, and experienced in spatial ways.

In this third installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for:

Professional Training
Delocalized Business and the Virtual Workplace
Smart Permissions and Data Security

Let’s dive in.

Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

In September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mock-ups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.

Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.

But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.

Rise of the Virtual Workplace and Digital Data Integrity
In addition to enabling an annual $52 billion virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.

Too good to be true? Check out an incredible publicly listed company called eXp Realty.

Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading.

But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.

And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial.

What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.

Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.

Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.

This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.

But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imaging showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.

Life-like virtual modules are already unlocking countless professional training camps, modifiable in real-time and easily updated.

Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading.

And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.

Welcome to the Spatial Web workplace.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: MONOPOLY919 / Shutterstock.com Continue reading

Posted in Human Robots

#432876 Walking robots, a YouTube sensation, get ...

A robotics company known for its widely shared videos of nimble, legged robots opening doors or walking through rough terrain is preparing to sell some after years of research. Continue reading

Posted in Human Robots

#432051 What Roboticists Are Learning From Early ...

You might not have heard of Hanson Robotics, but if you’re reading this, you’ve probably seen their work. They were the company behind Sophia, the lifelike humanoid avatar that’s made dozens of high-profile media appearances. Before that, they were the company behind that strange-looking robot that seemed a bit like Asimo with Albert Einstein’s head—or maybe you saw BINA48, who was interviewed for the New York Times in 2010 and featured in Jon Ronson’s books. For the sci-fi aficionados amongst you, they even made a replica of legendary author Philip K. Dick, best remembered for having books with titles like Do Androids Dream of Electric Sheep? turned into films with titles like Blade Runner.

Hanson Robotics, in other words, with their proprietary brand of life-like humanoid robots, have been playing the same game for a while. Sometimes it can be a frustrating game to watch. Anyone who gives the robot the slightest bit of thought will realize that this is essentially a chat-bot, with all the limitations this implies. Indeed, even in that New York Times interview with BINA48, author Amy Harmon describes it as a frustrating experience—with “rare (but invariably thrilling) moments of coherence.” This sensation will be familiar to anyone who’s conversed with a chatbot that has a few clever responses.

The glossy surface belies the lack of real intelligence underneath; it seems, at first glance, like a much more advanced machine than it is. Peeling back that surface layer—at least for a Hanson robot—means you’re peeling back Frubber. This proprietary substance—short for “Flesh Rubber,” which is slightly nightmarish—is surprisingly complicated. Up to thirty motors are required just to control the face; they manipulate liquid cells in order to make the skin soft, malleable, and capable of a range of different emotional expressions.

A quick combinatorial glance at the 30+ motors suggests that there are millions of possible combinations; researchers identify 62 that they consider “human-like” in Sophia, although not everyone agrees with this assessment. Arguably, the technical expertise that went into reconstructing the range of human facial expressions far exceeds the more simplistic chat engine the robots use, although it’s the second one that allows it to inflate the punters’ expectations with a few pre-programmed questions in an interview.

Hanson Robotics’ belief is that, ultimately, a lot of how humans will eventually relate to robots is going to depend on their faces and voices, as well as on what they’re saying. “The perception of identity is so intimately bound up with the perception of the human form,” says David Hanson, company founder.

Yet anyone attempting to design a robot that won’t terrify people has to contend with the uncanny valley—that strange blend of concern and revulsion people react with when things appear to be creepily human. Between cartoonish humanoids and genuine humans lies what has often been a no-go zone in robotic aesthetics.

The uncanny valley concept originated with roboticist Masahiro Mori, who argued that roboticists should avoid trying to replicate humans exactly. Since anything that wasn’t perfect, but merely very good, would elicit an eerie feeling in humans, shirking the challenge entirely was the only way to avoid the uncanny valley. It’s probably a task made more difficult by endless streams of articles about AI taking over the world that inexplicably conflate AI with killer humanoid Terminators—which aren’t particularly likely to exist (although maybe it’s best not to push robots around too much).

The idea behind this realm of psychological horror is fairly simple, cognitively speaking.

We know how to categorize things that are unambiguously human or non-human. This is true even if they’re designed to interact with us. Consider the popularity of Aibo, Jibo, or even some robots that don’t try to resemble humans. Something that resembles a human, but isn’t quite right, is bound to evoke a fear response in the same way slightly distorted music or slightly rearranged furniture in your home will. The creature simply doesn’t fit.

You may well reject the idea of the uncanny valley entirely. David Hanson, naturally, is not a fan. In the paper Upending the Uncanny Valley, he argues that great art forms have often resembled humans, but the ultimate goal for humanoid roboticists is probably to create robots we can relate to as something closer to humans than works of art.

Meanwhile, Hanson and other scientists produce competing experiments to either demonstrate that the uncanny valley is overhyped, or to confirm it exists and probe its edges.

The classic experiment involves gradually morphing a cartoon face into a human face, via some robotic-seeming intermediaries—yet it’s in movement that the real horror of the almost-human often lies. Hanson has argued that incorporating cartoonish features may help—and, sometimes, that the uncanny valley is a generational thing which will melt away when new generations grow used to the quirks of robots. Although Hanson might dispute the severity of this effect, it’s clearly what he’s trying to avoid with each new iteration.

Hiroshi Ishiguro is the latest of the roboticists to have dived headlong into the valley.

Building on the work of pioneers like Hanson, those who study human-robot interaction are pushing at the boundaries of robotics—but also of social science. It’s usually difficult to simulate what you don’t understand, and there’s still an awful lot we don’t understand about how we interpret the constant streams of non-verbal information that flow when you interact with people in the flesh.

Ishiguro took this imitation of human forms to extreme levels. Not only did he monitor and log the physical movements people made on videotapes, but some of his robots are based on replicas of people; the Repliee series began with a ‘replicant’ of his daughter. This involved making a rubber replica—a silicone cast—of her entire body. Future experiments were focused on creating Geminoid, a replica of Ishiguro himself.

As Ishiguro aged, he realized that it would be more effective to resemble his replica through cosmetic surgery rather than by continually creating new casts of his face, each with more lines than the last. “I decided not to get old anymore,” Ishiguro said.

We love to throw around abstract concepts and ideas: humans being replaced by machines, cared for by machines, getting intimate with machines, or even merging themselves with machines. You can take an idea like that, hold it in your hand, and examine it—dispassionately, if not without interest. But there’s a gulf between thinking about it and living in a world where human-robot interaction is not a field of academic research, but a day-to-day reality.

As the scientists studying human-robot interaction develop their robots, their replicas, and their experiments, they are making some of the first forays into that world. We might all be living there someday. Understanding ourselves—decrypting the origins of empathy and love—may be the greatest challenge to face. That is, if you want to avoid the valley.

Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading

Posted in Human Robots

#430579 What These Lifelike Androids Can Teach ...

For Dr. Hiroshi Ishiguro, one of the most interesting things about androids is the changing questions they pose us, their creators, as they evolve. Does it, for example, do something to the concept of being human if a human-made creation starts telling you about what kind of boys ‘she’ likes?
If you want to know the answer to the boys question, you need to ask ERICA, one of Dr. Ishiguro’s advanced androids. Beneath her plastic skull and silicone skin, wires connect to AI software systems that bring her to life. Her ability to respond goes far beyond standard inquiries. Spend a little time with her, and the feeling of a distinct personality starts to emerge. From time to time, she works as a receptionist at Dr. Ishiguro and his team’s Osaka University labs. One of her android sisters is an actor who has starred in plays and a film.

ERICA’s ‘brother’ is an android version of Dr. Ishiguro himself, which has represented its creator at various events while the biological Ishiguro can remain in his offices in Japan. Microphones and cameras capture Ishiguro’s voice and face movements, which are relayed to the android. Apart from mimicking its creator, the Geminoid™ android is also capable of lifelike blinking, fidgeting, and breathing movements.
Say hello to relaxation
As technological development continues to accelerate, so do the possibilities for androids. From a position as receptionist, ERICA may well branch out into many other professions in the coming years. Companion for the elderly, comic book storyteller (an ancient profession in Japan), pop star, conversational foreign language partner, and newscaster are some of the roles and responsibilities Dr. Ishiguro sees androids taking on in the near future.
“Androids are not uncanny anymore. Most people adapt to interacting with Erica very quickly. Actually, I think that in interacting with androids, which are still different from us, we get a better appreciation of interacting with other cultures. In both cases, we are talking with someone who is different from us and learn to overcome those differences,” he says.
A lot has been written about how robots will take our jobs. Dr. Ishiguro believes these fears are blown somewhat out of proportion.
“Robots and androids will take over many simple jobs. Initially there might be some job-related issues, but new schemes, like for example a robot tax similar to the one described by Bill Gates, should help,” he says.
“Androids will make it possible for humans to relax and keep evolving. If we compare the time we spend studying now compared to 100 years ago, it has grown a lot. I think it needs to keep growing if we are to keep expanding our scientific and technological knowledge. In the future, we might end up spending 20 percent of our lifetime on work and 80 percent of the time on education and growing our skills.”
Android asks who you are
For Dr. Ishiguro, another aspect of robotics in general, and androids in particular, is how they question what it means to be human.
“Identity is a very difficult concept for humans sometimes. For example, I think clothes are part of our identity, in a way that is similar to our faces and bodies. We don’t change those from one day to the next, and that is why I have ten matching black outfits,” he says.
This link between physical appearance and perceived identity is one of the aspects Dr. Ishiguro is exploring. Another closely linked concept is the connection between body and feeling of self. The Ishiguro avatar was once giving a presentation in Austria. Its creator recalls how he felt distinctly like he was in Austria, even capable of feeling sensation of touch on his own body when people laid their hands on the android. If he was distracted, he felt almost ‘sucked’ back into his body in Japan.
“I am constantly thinking about my life in this way, and I believe that androids are a unique mirror that helps us formulate questions about why we are here and why we have been so successful. I do not necessarily think I have found the answers to these questions, so if you have, please share,” he says with a laugh.
His work and these questions, while extremely interesting on their own, become extra poignant when considering the predicted melding of mind and machine in the near future.
The ability to be present in several locations through avatars—virtual or robotic—raises many questions of both philosophical and practical nature. Then add the hypotheticals, like why send a human out onto the hostile surface of Mars if you could send a remote-controlled android, capable of relaying everything it sees, hears and feels?
The two ways of robotics will meet
Dr. Ishiguro sees the world of AI-human interaction as currently roughly split into two. One is the chat-bot approach that companies like Amazon, Microsoft, Google, and recently Apple, employ using stationary objects like speakers. Androids like ERICA represent another approach.
“It is about more than the form factor. I think that the android approach is generally more story-based. We are integrating new conversation features based on assumptions about the situation and running different scenarios that expand the android’s vocabulary and interactions. Another aspect we are working on is giving androids desire and intention. Like with people, androids should have desires and intentions in order for you to want to interact with them over time,” Dr. Ishiguro explains.
This could be said to be part of a wider trend for Japan, where many companies are developing human-like robots that often have some Internet of Things capabilities, making them able to handle some of the same tasks as an Amazon Echo. The difference in approach could be summed up in the words ‘assistant’ (Apple, Amazon, etc.) and ‘companion’ (Japan).
Dr. Ishiguro sees this as partly linked to how Japanese as a language—and market—is somewhat limited. This has a direct impact on viability and practicality of ‘pure’ voice recognition systems. At the same time, Japanese people have had greater exposure to positive images of robots, and have a different cultural / religious view of objects having a ‘soul’. However, it may also mean Japanese companies and android scientists are both stealing a lap on their western counterparts.
“If you speak to an Amazon Echo, that is not a natural way to interact for humans. This is part of why we are making human-like robot systems. The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction. Technology has to adapt to us, because we cannot adapt fast enough to it, as it develops so quickly,” he says.
Banner image courtesy of Hiroshi Ishiguro Laboratories, ATR all rights reserved.
Dr. Ishiguro’s team has collaborated with partners and developed a number of android systems:
Geminoid™ HI-2 has been developed by Hiroshi Ishiguro Laboratories and Advanced Telecommunications Research Institute International (ATR).
Geminoid™ F has been developed by Osaka University and Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International (ATR).
ERICA has been developed by ERATO ISHIGURO Symbiotic Human-Robot Interaction Project Continue reading

Posted in Human Robots