Tag Archives: score

#439095 DARPA Prepares for the Subterranean ...

The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.

It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.

Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.

The Louisville Mega Cavern is a former limestone mine, most of which is under the Louisville Zoo. It’s not all that deep, mostly less than 30 meters under the surface, but it’s enormous: with 370,000 square meters of rooms and passages, the cavern currently hosts (among other things) a business park, a zipline course, and mountain bike trails, because why not. While DARPA is keeping pretty quiet on the details, I’m guessing that they’ll be taking over a chunk of the cavern and filling it with features representing as many of the environmental challenges as they can.

To learn more about how the SubT Final Event is going to go, we spoke with SubT Program Manager Tim Chung. But first, we talked about Tim’s perspective on the success of the Urban Circuit, and how teams have been managing without an in-person Cave Circuit.

IEEE Spectrum: How did the SubT Urban Circuit go?

Tim Chung: On a couple fronts, Urban Circuit was really exciting. We were in this unfinished nuclear power plant—I’d be surprised if any of the competitors had prior experience in such a facility, or anything like it. I think that was illuminating both from an experiential point of view for the competitors, but also from a technology point of view, too.

One thing that I thought was really interesting was that we, DARPA, didn't need to make the venue more challenging. The real world is really that hard. There are places that were just really heinous for these robots to have to navigate through in order to look in every nook and cranny for artifacts. There were corners and doorways and small corridors and all these kind of things that really forced the teams to have to work hard, and the feedback was, why did DARPA have to make it so hard? But we didn’t, and in fact there were places that for the safety of the robots and personnel, we had to ensure the robots couldn’t go.

It sounds like some teams thought this course was on the more difficult side—do you think you tuned it to just the right amount of DARPA-hard?

Our calibration worked quite well. We were able to tease out and help refine and better understand what technologies are both useful and critical and also those technologies that might not necessarily get you the leap ahead capability. So as an example, the Urban Circuit really emphasized verticality, where you have to be able to sense, understand, and maneuver in three dimensions. Being able to capitalize on their robot technologies to address that verticality really stratified the teams, and showed how critical those capabilities are.

We saw teams that brought a lot of those capabilities do very well, and teams that brought baseline capabilities do what they could on the single floor that they were able to operate on. And so I think we got the Goldilocks solution for Urban Circuit that combined both difficulty and ambition.

Photos: Evan Ackerman/IEEE Spectrum

Two SubT Teams embedded networking equipment in balls that they could throw onto the course.

One of the things that I found interesting was that two teams independently came up with throwable network nodes. What was DARPA’s reaction to this? Is any solution a good solution, or was it more like the teams were trying to game the system?

You mean, do we want teams to game the rules in any way so as to get a competitive advantage? I don't think that's what the teams were doing. I think they were operating not only within the bounds of the rules, which permitted such a thing as throwable sensors where you could stand at the line and see how far you could chuck these things—not only was that acceptable by the rules, but anticipated. Behind the scenes, we tried to do exactly what these teams are doing and think through different approaches, so we explicitly didn't forbid such things in our rules because we thought it's important to have as wide an aperture as possible.

With these comms nodes specifically, I think they’re pretty clever. They were in some cases hacked together with a variety of different sports paraphernalia to see what would provide the best cushioning. You know, a lot of that happens in the field, and what it captured was that sometimes you just need to be up at two in the morning and thinking about things in a slightly different way, and that's when some nuggets of innovation can arise, and we see this all the time with operators in the field as well. They might only have duct tape or Styrofoam or whatever the case may be and that's when they come up with different ways to solve these problems. I think from DARPA’s perspective, and certainly from my perspective, wherever innovation can strike, we want to try to encourage and inspire those opportunities. I thought it was great, and it’s all part of the challenge.

Is there anything you can tell us about what your original plan had been for the Cave Circuit?

I can say that we’ve had the opportunity to go through a number of these caves scattered all throughout the country, and engage with caving communities—cavers clubs, speleologists that conduct research, and then of course the cave rescue community. The single biggest takeaway
is that every cave, and there are tens of thousands of them in the US alone, every cave has its own personality, and a lot of that personality is quite hidden from humans, because we can’t explore or access all of the cave. This led us to a number of different caves that were intriguing from a DARPA perspective but also inspirational for our Cave Circuit Virtual Competition.

How do you feel like the tuning was for the Virtual Cave Circuit?

The Virtual Competition, as you well know, was exciting in the sense that we could basically combine eight worlds into one competition, whereas the systems track competition really didn’t give us that opportunity. Even if we were able have held the Cave Circuit Systems Competition in person, it would have been at one site, and it would have been challenging to represent the level of diversity that we could with the Virtual Competition. So I think from that perspective, it’s clearly an advantage in terms of calibration—diversity gets you the ability to aggregate results to capture those that excel across all worlds as well as those that do well in one world or some worlds and not the others. I think the calibration was great in the sense that we were able to see the gamut of performance. Those that did well, did quite well, and those that have room to grow showed where those opportunities are for them as well.

We had to find ways to capture that diversity and that representativeness, and I think one of the fun ways we did that was with the different cave world tiles that we were able to combine in a variety of different ways. We also made use of a real world data set that we were able to take from a laser scan. Across the board, we had a really great chance to illustrate why virtual testing and simulation still plays such a dominant role in robotics technology development, and why I think it will continue to play an increasing role for developing these types of autonomy solutions.

Photo: Team CSIRO Data 61

How can systems track teams learn from their testing in whatever cave is local to them and effectively apply that to whatever cave environment is part of the final considering what the diversity of caves is?

I think that hits the nail on the head for what we as technologists are trying to discover—what are the transferable generalizable insights and how does that inform our technology development? As roboticists we want to optimize our systems to perform well at the tasks that they were designed to do, and oftentimes that means specialization because we get increased performance at the expense of being a generalist robot. I think in the case of SubT, we want to have our cake and eat it too—we want robots that perform well and reliably, but we want them to do so not just in one environment, which is how we tend to think about robot performance, but we want them to operate well in many environments, many of which have yet to be faced.

And I think that's kind of the nuance here, that we want robot systems to be generalists for the sake of being able to handle the unknown, namely the real world, but still achieve a high level of performance and perhaps they do that to their combined use of different technologies or advances in autonomy or perception approaches or novel mechanisms or mobility, but somehow they're still able, at least in aggregate, to achieve high performance.

We know these teams eagerly await any type of clue that DARPA can provide like about the SubT environments. From the environment previews for Tunnel, Urban, and even Cave, the teams were pivoting around and thinking a little bit differently. The takeaway, however, was that they didn't go to a clean sheet design—their systems were flexible enough that they could incorporate some of those specialist trends while still maintaining the notion of a generalist framework.

Looking ahead to the SubT Final, what can you tell us about the Louisville Mega Cavern?

As always, I’ll keep you in suspense until we get you there, but I can say that from the beginning of the SubT Challenge we had always envisioned teams of robots that are able to address not only the uncertainty of what's right in front of them, but also the uncertainty of what comes next. So I think the teams will be advantaged by thinking through subdomain awareness, or domain awareness if you want to generalize it, whether that means tuning multi-purpose robots, or deploying different robots, or employing your team of robots differently. Knowing which subdomain you are in is likely to be helpful, because then you can take advantage of those unique lessons learned through all those previous experiences then capitalize on that.

As far as specifics, I think the Mega Cavern offers many of the features important to what it means to be underground, while giving DARPA a pretty blank canvas to realize our vision of the SubT Challenge.

The SubT Final will be different from the earlier circuits in that there’s just one 60-minute run, rather than two. This is going to make things a lot more stressful for teams who have experienced bad robot days—why do it this way?

The preliminary round has two 30-minute runs, and those two runs are very similar to how we have done it during the circuits, of a single run per configuration per course. Teams will have the opportunity to show that their systems can face the obstacles in the final course, and it's the sum of those scores much like we did during the circuits, to help mitigate some of the concerns that you mentioned of having one robot somehow ruin their chances at a prize.

The prize round does give DARPA as well as the community a chance to focus on the top six teams from the preliminary round, and allows us to understand how they came to be at the top of the pack while emphasizing their technological contributions. The prize round will be one and done, but all of these teams we anticipate will be putting their best robot forward and will show the world why they deserve to win the SubT Challenge.

We’ve always thought that when called upon these robots need to operate in really challenging environments, and in the context of real world operations, there is no second chance. I don't think it's actually that much of a departure from our interests and insistence on bringing reliable technologies to the field, and those teams that might have something break here and there, that's all part of the challenge, of being resilient. Many teams struggled with robots that were debilitated on the course, and they still found ways to succeed and overcome that in the field, so maybe the rules emphasize that desire for showing up and working on game day which is consistent, I think, with how we've always envisioned it. This isn’t to say that these systems have to work perfectly, they just have to work in a way such that the team is resilient enough to tackle anything that they face.

It’s not too late for teams to enter for both the Virtual Track and the Systems Track to compete in the SubT Final, right?

Yes, that's absolutely right. Qualifications are still open, we are eager to welcome new teams to join in along with our existing competitors. I think any dark horse competitors coming into the Finals may be able to bring something that we haven't seen before, and that would be really exciting. I think it'll really make for an incredibly vibrant and illuminating final event.

The final event qualification deadline for the Systems Competition is April 21, and the qualification deadline for the Virtual Competition is June 29. More details here. Continue reading

Posted in Human Robots

#438801 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots

#437667 17 Teams to Take Part in DARPA’s ...

Among all of the other in-person events that have been totally wrecked by COVID-19 is the Cave Circuit of the DARPA Subterranean Challenge. DARPA has already hosted the in-person events for the Tunnel and Urban SubT circuits (see our previous coverage here), and the plan had always been for a trio of events representing three uniquely different underground environments in advance of the SubT Finals, which will somehow combine everything into one bonkers course.

While the SubT Urban Circuit event snuck in just under the lockdown wire in late February, DARPA made the difficult (but prudent) decision to cancel the in-person Cave Circuit event. What this means is that there will be no Systems Track Cave competition, which is a serious disappointment—we were very much looking forward to watching teams of robots navigating through an entirely unpredictable natural environment with a lot of verticality. Fortunately, DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment that’s as dynamic and detailed as DARPA can make it.

From DARPA’s press releases:

DARPA’s Subterranean (SubT) Challenge will host its Cave Circuit Virtual Competition, which focuses on innovative solutions to map, navigate, and search complex, simulated cave environments November 17. Qualified teams have until Oct. 15 to develop and submit software-based solutions for the Cave Circuit via the SubT Virtual Portal, where their technologies will face unknown cave environments in the cloud-based SubT Simulator. Until then, teams can refine their roster of selected virtual robot models, choose sensor payloads, and continue to test autonomy approaches to maximize their score.

The Cave Circuit also introduces new simulation capabilities, including digital twins of Systems Competition robots to choose from, marsupial-style platforms combining air and ground robots, and breadcrumb nodes that can be dropped by robots to serve as communications relays. Each robot configuration has an associated cost, measured in SubT Credits – an in-simulation currency – based on performance characteristics such as speed, mobility, sensing, and battery life.

Each team’s simulated robots must navigate realistic caves, with features including natural terrain and dynamic rock falls, while they search for and locate various artifacts on the course within five meters of accuracy to score points during a 60-minute timed run. A correct report is worth one point. Each course contains 20 artifacts, which means each team has the potential for a maximum score of 20 points. Teams can leverage numerous practice worlds and even build their own worlds using the cave tiles found in the SubT Tech Repo to perfect their approach before they submit one official solution for scoring. The DARPA team will then evaluate the solution on a set of hidden competition scenarios.

Of the 17 qualified teams (you can see all of them here), there are a handful that we’ll quickly point out. Team BARCS, from Michigan Tech, was the winner of the SubT Virtual Urban Circuit, meaning that they may be the team to beat on Cave as well, although the course is likely to be unique enough that things will get interesting. Some Systems Track teams to watch include Coordinated Robotics, CTU-CRAS-NORLAB, MARBLE, NUS SEDS, and Robotika, and there are also a handful of brand new teams as well.

Now, just because there’s no dedicated Cave Circuit for the Systems Track teams, it doesn’t mean that there won’t be a Cave component (perhaps even a significant one) in the final event, which as far as we know is still scheduled to happen in fall of next year. We’ve heard that many of the Systems Track teams have been testing out their robots in caves anyway, and as the virtual event gets closer, we’ll be doing a sort of Virtual Systems Track series that highlights how different teams are doing mock Cave Circuits in caves they’ve found for themselves.

For more, we checked in with DARPA SubT program manager Dr. Timothy H. Chung.

IEEE Spectrum: Was it a difficult decision to cancel the Systems Track for Cave?

Tim Chung: The decision to go virtual only was heart wrenching, because I think DARPA’s role is to offer up opportunities that may be unimaginable for some of our competitors, like opening up a cave-type site for this competition. We crawled and climbed through a number of these sites, and I share the sense of disappointment that both our team and the competitors have that we won’t be able to share all the advances that have been made since the Urban Circuit. But what we’ve been able to do is pour a lot of our energy and the insights that we got from crawling around in those caves into what’s going to be a really great opportunity on the Virtual Competition side. And whether it’s a global pandemic, or just lack of access to physical sites like caves, virtual environments are an opportunity that we want to develop.

“The simulator offers us a chance to look at where things could be … it really allows for us to find where some of those limits are in the technology based only on our imagination.”
—Timothy H. Chung, DARPA

What kind of new features will be included in the Virtual Cave Circuit for this competition?

I’m really excited about these particular features because we’re seeing an opportunity for increased synergy between the physical and the virtual. The first I’d say is that we scanned some of the Systems Track robots using photogrammetry and combined that with some additional models that we got from the systems competitors themselves to turn their systems robots into virtual models. We often talk about the sim to real transfer and how successful we can get a simulation to transfer over to the physical world, but now we’ve taken something from the physical world and made it virtual. We’ve validated the controllers as well as the kinematics of the robots, we’ve iterated with the systems competitors themselves, and now we have these 13 robots (air and ground) in the SubT Tech Repo that now all virtual competitors can take advantage of.

We also have additional robot capability. Those comms bread crumbs are common among many of the competitors, so we’ve adopted that in the virtual world, and now you have comms relay nodes that are baked in to the SubT Simulator—you can have either six or twelve comms nodes that you can drop from a variety of our ground robot platforms. We have the marsupial deployment capability now, so now we have parent ground robots that can be mixed and matched with different child drones to become marsupial pairs.

And this is something I’ve been planning for for a while: we now have the ability to trigger things like rock falls. They still don’t quite look like Indiana Jones with the boulder coming down the corridor, but this comes really close. In addition to it just being an interesting and realistic consideration, we get to really dynamically test and stress the robots’ ability to navigate and recognize that something has changed in the environment and respond to it.

Image: DARPA

DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment.

No simulation is perfect, so can you talk to us about what kinds of things aren’t being simulated right now? Where does the simulator not match up to reality?

I think that question is foundational to any conversation about simulation. I’ll give you a couple of examples:

We have the ability to represent wholesale damage to a robot, but it’s not at the actuator or component level. So there’s not a reliability model, although I think that would be really interesting to incorporate so that you could do assessments on things like mean time to failure. But if a robot falls off a ledge, it can be disabled by virtue of being too damaged to continue.

With communications, and this is one that’s near and dear not only to my heart but also to all of those that have lived through developing communication systems and robotic systems, we’ve gone through and conducted RF surveys of underground environments to get a better handle on what propagation effects are. There’s a lot of research that has gone into this, and trying to carry through some of that realism, we do have path loss models for RF communications baked into the SubT Simulator. For example, when you drop a bread crumb node, it’s using a path loss model so that it can represent the degradation of signal as you go farther into a cave. Now, we’re not modeling it at the Maxwell equations level, which I think would be awesome, but we’re not quite there yet.

We do have things like battery depletion, sensor degradation to the extent that simulators can degrade sensor inputs, and things like that. It’s just amazing how close we can get in some places, and how far away we still are in others, and I think showing where the limits are of how far you can get simulation is all part and parcel of why SubT Challenge wants to have both System and Virtual tracks. Simulation can be an accelerant, but it’s not going to be the panacea for development and innovation, and I think all the competitors are cognizant those limitations.

One of the most amazing things about the SubT Virtual Track is that all of the robots operate fully autonomously, without the human(s) in the loop that the System Track teams have when they compete. Why make the Virtual Track even more challenging in that way?

I think it’s one of the defining, delineating attributes of the Virtual Track. Our continued vision for the simulation side is that the simulator offers us a chance to look at where things could be, and allows for us to explore things like larger scales, or increased complexity, or types of environments that we can’t physically gain access to—it really allows for us to find where some of those limits are in the technology based only on our imagination, and this is one of the intrinsic values of simulation.

But I think finding a way to incorporate human input, or more generally human factors like teleoperation interfaces and the in-situ stress that you might not be able to recreate in the context of a virtual competition provided a good reason for us to delineate the two competitions, with the Virtual Competition really being about the role of fully autonomous or self-sufficient systems going off and doing their solution without human guidance, while also acknowledging that the real world has conditions that would not necessarily be represented by a fully simulated version. Having said that, I think cognitive engineering still has an incredibly important role to play in human robot interaction.

What do we have to look forward to during the Virtual Competition Showcase?

We have a number of additional features and capabilities that we’ve baked into the simulator that will allow for us to derive some additional insights into our competition runs. Those insights might involve things like the performance of one or more robots in a given scenario, or the impact of the environment on different types of robots, and what I can tease is that this will be an opportunity for us to showcase both the technology and also the excitement of the robots competing in the virtual environment. I’m trying not to give too many spoilers, but we’ll have an opportunity to really get into the details.

Check back as we get closer to the 17 November event for more on the DARPA SubT Challenge. Continue reading

Posted in Human Robots

#437592 Coordinated Robotics Wins DARPA SubT ...

DARPA held the Virtual Cave Circuit event of the Subterranean Challenge on Tuesday in the form of a several hour-long livestream. We got to watch (along with all of the competing teams) as virtual robots explored virtual caves fully autonomously, dodging rockfalls, spotting artifacts, scoring points, and sometimes running into stuff and falling over.

Expert commentary was provided by DARPA, and we were able to watch multiple teams running at once, skipping from highlight to highlight. It was really very well done (you can watch an archive of the entire stream here), but they made us wait until the very end to learn who won: First place went to Coordinated Robotics, with BARCS taking second, and third place going to newcomer Team Dynamo.

Huge congratulations to Coordinated Robotics! It’s worth pointing out that the top three teams were separated by an incredibly small handful of points, and on a slightly different day, with slightly different artifact positions, any of them could have come out on top. This doesn’t diminish Coordinated Robotics’ victory in the least—it means that the competition was fierce, and that the problem of autonomous cave exploration with robots has been solved (virtually, at least) in several different but effective ways.

We know Coordinated Robotics pretty well at this point, but here’s an introduction video:

You heard that right—Coordinated Robotics is just Kevin Knoedler, all by himself. This would be astonishing, if we weren’t already familiar with Kevin’s abilities: He won NASA’s virtual Space Robotics Challenge by himself in 2017, and Coordinated Robotics placed first in the DARPA SubT Virtual Tunnel Circuit and second in the Virtual Urban Circuit. We asked Kevin how he managed to do so spectacularly well (again), and here’s what he told us:

IEEE Spectrum: Can you describe what it was like to watch your team of robots on the live stream, and to see them score the most points?

Kevin Knoedler: It was exciting and stressful watching the live stream. It was exciting as the top few scores were quite close for the cave circuit. It was stressful because I started out behind and worked my way up, but did not do well on the final world. Luckily, not doing well on the first and last worlds was offset by better scores on many of the runs in between. DARPA did a very nice job with their live stream of the cave circuit results.

How did you decide on the makeup of your team, and on what sensors to use?

To decide on the makeup of the team I experimented with quite a few different vehicles. I had a lot of trouble with the X2 and other small ground vehicles flipping over. Based on that I looked at the larger ground vehicles that also had a sensor capable of identifying drop-offs. The vehicles that met those criteria for me were the Marble HD2, Marble Husky, Ozbot ATR, and the Absolem. Of those ground vehicles I went with the Marble HD2. It had a downward looking depth camera that I could use to detect drop-offs and was much more stable on the varied terrain than the X2. I had used the X3 aerial vehicle before and so that was my first choice for an aerial platform.

What were some things that you learned in Tunnel and Urban that you were able to incorporate into your strategy for Cave?

In the Tunnel circuit I had learned a strategy to use ground vehicles and in the Urban circuit I had learned a strategy to use aerial vehicles. At a high level that was the biggest thing I learned from the previous circuits that I was able to apply to the Cave circuit. At a lower level I was able to apply many of the development and testing strategies from the previous circuits to the Cave circuit.

What aspect of the cave environment was most challenging for your robots?

I would say it wasn't just one aspect of the cave environment that was challenging for the robots. There were quite a few challenging aspects of the cave environment. For the ground vehicles there were frequently paths that looked good as the robot started on the path, but turned into drop-offs or difficult boulder crawls. While it was fun to see the robot plan well enough to slowly execute paths over the boulders, I was wishing that the robot was smart enough to try a different path rather than wasting so much time crawling over the large boulders. For the aerial vehicles the combination of tight paths along with large vertical spaces was the biggest challenge in the environment. The large open vertical areas were particularly challenging for my aerial robots. They could easily lose track of their position without enough nearby features to track and it was challenging to find the correct path in and out of such large vertical areas.

How will you be preparing for the SubT Final?

To prepare for the SubT Final the vehicles will be getting a lot smarter. The ground vehicles will be better at navigation and communicating with one another. The aerial vehicles will be better able to handle large vertical areas both from a positioning and a planning point of view. Finally, all of the vehicles will do a better job coordinating what areas have been explored and what areas have good leads for further exploration.

Image: DARPA

The final score for the DARPA SubT Cave Circuit virtual competition.

We also had a chance to ask SubT program manager Tim Chung a few questions at yesterday’s post-event press conference, about the course itself and what he thinks teams should have learned from the competition:

IEEE Spectrum: Having looked through some real caves, can you give some examples of some of the most significant differences between this simulation and real caves? And with the enormous variety of caves out there, how generalizable are the solutions that teams came up with?

Tim Chung: Many of the caves that I’ve had to crawl through and gotten bumps and scrapes from had a couple of different features that I’ll highlight. The first is the variations in moisture— a lot of these caves were naturally formed with streams and such, so many of the caves we went to had significant mud, flowing water, and such. And so one of the things we're not capturing in the SubT simulator is explicitly anything that would submerge the robots, or otherwise short any of their systems. So from that perspective, that's one difference that's certainly notable.

And then the other difference I think is the granularity of the terrain, whether it's rubble, sand, or just raw dirt, friction coefficients are all across the board, and I think that's one of the things that any terrestrial simulator will both struggle with and potentially benefit from— that is, terramechanics simulation abilities. Given the emphasis on mobility in the SubT simulation, we’re capturing just a sliver of the complexity of terramechanics, but I think that's probably another take away that you'll certainly see— where there’s that distinction between physical and virtual technologies.

To answer your second question about generalizability— that’s the multi-million dollar question! It’s definitely at the crux of why we have eight diverse worlds, both in size verticality, dimensions, constraint passageways, etc. But this is eight out of countless variations, and the goal of course is to be able to investigate what those key dependencies are. What I'll say is that the out of the seventy three different virtual cave tiles, which are the building blocks that make up these virtual worlds, quite a number of them were not only inspired by real world caves, but were specifically designed so that we can essentially use these tiles as unit tests going forward. So, if I want to simulate vertical inclines, here are the tiles that are the vertical vertical unit tests for robots, and that’s how we’re trying to to think through how to tease out that generalizability factor.

What are some observations from this event that you think systems track teams should pay attention to as they prepare for the final event?

One of the key things about the virtual competition is that you submit your software, and that's it. So you have to design everything from state management to failure mode triage, really thinking about what could go wrong and then building out your autonomous capabilities either to react to some of those conditions, or to anticipate them. And to be honest I think that the humans in the loop that we have in the systems competition really are key enablers of their capability, but also could someday (if not already) be a crutch that we might not be able to develop.

Thinking through some of the failure modes in a fully autonomous software deployed setting are going to be incredibly valuable for the systems competitors, so that for example the human supervisor doesn't have to worry about those failure modes as much, or can respond in a more supervisory way rather than trying to joystick the robot around. I think that's going to be one of the greatest impacts, thinking through what it means to send these robots off to autonomously get you the information you need and complete the mission

This isn’t to say that the humans aren't going to be useful and continue to play a role of course, but I think this shifting of the role of the human supervisor from being a state manager to being more of a tactical commander will dramatically highlight the impact of the virtual side on the systems side.

What, if anything, should we take away from one person teams being able to do so consistently well in the virtual circuit?

It’s a really interesting question. I think part of it has to do with systems integration versus software integration. There's something to be said for the richness of the technologies that can be developed, and how many people it requires to be able to develop some of those technologies. With the systems competitors, having one person try to build, manage, deploy, service, and operate all of those robots is still functionally quite challenging, whereas in the virtual competition, it really is a software deployment more than anything else. And so I think the commonality of single person teams may just be a virtue of the virtual competition not having some of those person-intensive requirements.

In terms of their strong performance, I give credit to all of these really talented folks who are taking upon themselves to jump into the competitor pool and see how well they do, and I think that just goes to show you that whether you're one person or ten people people or a hundred people on a team, a good idea translated and executed well really goes a long way.

Looking ahead, teams have a year to prepare for the final event, which is still scheduled to be held sometime in fall 2021. And even though there was no cave event for systems track teams, the fact that the final event will be a combination of tunnel, urban, and cave circuits means that systems track teams have been figuring out how to get their robots to work in caves anyway, and we’ll be bringing you some of their stories over the next few weeks.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#437579 Disney Research Makes Robotic Gaze ...

While it’s not totally clear to what extent human-like robots are better than conventional robots for most applications, one area I’m personally comfortable with them is entertainment. The folks over at Disney Research, who are all about entertainment, have been working on this sort of thing for a very long time, and some of their animatronic attractions are actually quite impressive.

The next step for Disney is to make its animatronic figures, which currently feature scripted behaviors, to perform in an interactive manner with visitors. The challenge is that this is where you start to get into potential Uncanny Valley territory, which is what happens when you try to create “the illusion of life,” which is what Disney (they explicitly say) is trying to do.

In a paper presented at IROS this month, a team from Disney Research, Caltech, University of Illinois at Urbana-Champaign, and Walt Disney Imagineering is trying to nail that illusion of life with a single, and perhaps most important, social cue: eye gaze.

Before you watch this video, keep in mind that you’re watching a specific character, as Disney describes:

The robot character plays an elderly man reading a book, perhaps in a library or on a park bench. He has difficulty hearing and his eyesight is in decline. Even so, he is constantly distracted from reading by people passing by or coming up to greet him. Most times, he glances at people moving quickly in the distance, but as people encroach into his personal space, he will stare with disapproval for the interruption, or provide those that are familiar to him with friendly acknowledgment.

What, exactly, does “lifelike” mean in the context of robotic gaze? The paper abstract describes the goal as “[seeking] to create an interaction which demonstrates the illusion of life.” I suppose you could think of it like a sort of old-fashioned Turing test focused on gaze: If the gaze of this robot cannot be distinguished from the gaze of a human, then victory, that’s lifelike. And critically, we’re talking about mutual gaze here—not just a robot gazing off into the distance, but you looking deep into the eyes of this robot and it looking right back at you just like a human would. Or, just like some humans would.

The approach that Disney is using is more animation-y than biology-y or psychology-y. In other words, they’re not trying to figure out what’s going on in our brains to make our eyes move the way that they do when we’re looking at other people and basing their control system on that, but instead, Disney just wants it to look right. This “visual appeal” approach is totally fine, and there’s been an enormous amount of human-robot interaction (HRI) research behind it already, albeit usually with less explicitly human-like platforms. And speaking of human-like platforms, the hardware is a “custom Walt Disney Imagineering Audio-Animatronics bust,” which has DoFs that include neck, eyes, eyelids, and eyebrows.

In order to decide on gaze motions, the system first identifies a person to target with its attention using an RGB-D camera. If more than one person is visible, the system calculates a curiosity score for each, currently simplified to be based on how much motion it sees. Depending on which person that the robot can see has the highest curiosity score, the system will choose from a variety of high level gaze behavior states, including:

Read: The Read state can be considered the “default” state of the character. When not executing another state, the robot character will return to the Read state. Here, the character will appear to read a book located at torso level.

Glance: A transition to the Glance state from the Read or Engage states occurs when the attention engine indicates that there is a stimuli with a curiosity score […] above a certain threshold.

Engage: The Engage state occurs when the attention engine indicates that there is a stimuli […] to meet a threshold and can be triggered from both Read and Glance states. This state causes the robot to gaze at the person-of-interest with both the eyes and head.

Acknowledge: The Acknowledge state is triggered from either Engage or Glance states when the person-of-interest is deemed to be familiar to the robot.

Running underneath these higher level behavior states are lower level motion behaviors like breathing, small head movements, eye blinking, and saccades (the quick eye movements that occur when people, or robots, look between two different focal points). The term for this hierarchical behavioral state layering is a subsumption architecture, which goes all the way back to Rodney Brooks’ work on robots like Genghis in the 1980s and Cog and Kismet in the ’90s, and it provides a way for more complex behaviors to emerge from a set of simple, decentralized low-level behaviors.

“25 years on Disney is using my subsumption architecture for humanoid eye control, better and smoother now than our 1995 implementations on Cog and Kismet.”
—Rodney Brooks, MIT emeritus professor

Brooks, an emeritus professor at MIT and, most recently, cofounder and CTO of Robust.ai, tweeted about the Disney project, saying: “People underestimate how long it takes to get from academic paper to real world robotics. 25 years on Disney is using my subsumption architecture for humanoid eye control, better and smoother now than our 1995 implementations on Cog and Kismet.”

From the paper:

Although originally intended for control of mobile robots, we find that the subsumption architecture, as presented in [17], lends itself as a framework for organizing animatronic behaviors. This is due to the analogous use of subsumption in human behavior: human psychomotor behavior can be intuitively modeled as layered behaviors with incoming sensory inputs, where higher behavioral levels are able to subsume lower behaviors. At the lowest level, we have involuntary movements such as heartbeats, breathing and blinking. However, higher behavioral responses can take over and control lower level behaviors, e.g., fight-or-flight response can induce faster heart rate and breathing. As our robot character is modeled after human morphology, mimicking biological behaviors through the use of a bottom-up approach is straightforward.

The result, as the video shows, appears to be quite good, although it’s hard to tell how it would all come together if the robot had more of, you know, a face. But it seems like you don’t necessarily need to have a lifelike humanoid robot to take advantage of this architecture in an HRI context—any robot that wants to make a gaze-based connection with a human could benefit from doing it in a more human-like way.

“Realistic and Interactive Robot Gaze,” by Matthew K.X.J. Pan, Sungjoon Choi, James Kennedy, Kyna McIntosh, Daniel Campos Zamora, Gunter Niemeyer, Joohyung Kim, Alexis Wieland, and David Christensen from Disney Research, California Institute of Technology, University of Illinois at Urbana-Champaign, and Walt Disney Imagineering, was presented at IROS 2020. You can find the full paper, along with a 13-minute video presentation, on the IROS on-demand conference website.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots