Tag Archives: scientist

#437303 The Deck Is Not Rigged: Poker and the ...

Tuomas Sandholm, a computer scientist at Carnegie Mellon University, is not a poker player—or much of a poker fan, in fact—but he is fascinated by the game for much the same reason as the great game theorist John von Neumann before him. Von Neumann, who died in 1957, viewed poker as the perfect model for human decision making, for finding the balance between skill and chance that accompanies our every choice. He saw poker as the ultimate strategic challenge, combining as it does not just the mathematical elements of a game like chess but the uniquely human, psychological angles that are more difficult to model precisely—a view shared years later by Sandholm in his research with artificial intelligence.

“Poker is the main benchmark and challenge program for games of imperfect information,” Sandholm told me on a warm spring afternoon in 2018, when we met in his offices in Pittsburgh. The game, it turns out, has become the gold standard for developing artificial intelligence.

Tall and thin, with wire-frame glasses and neat brow hair framing a friendly face, Sandholm is behind the creation of three computer programs designed to test their mettle against human poker players: Claudico, Libratus, and most recently, Pluribus. (When we met, Libratus was still a toddler and Pluribus didn’t yet exist.) The goal isn’t to solve poker, as such, but to create algorithms whose decision making prowess in poker’s world of imperfect information and stochastic situations—situations that are randomly determined and unable to be predicted—can then be applied to other stochastic realms, like the military, business, government, cybersecurity, even health care.

While the first program, Claudico, was summarily beaten by human poker players—“one broke-ass robot,” an observer called it—Libratus has triumphed in a series of one-on-one, or heads-up, matches against some of the best online players in the United States.

Libratus relies on three main modules. The first involves a basic blueprint strategy for the whole game, allowing it to reach a much faster equilibrium than its predecessor. It includes an algorithm called the Monte Carlo Counterfactual Regret Minimization, which evaluates all future actions to figure out which one would cause the least amount of regret. Regret, of course, is a human emotion. Regret for a computer simply means realizing that an action that wasn’t chosen would have yielded a better outcome than one that was. “Intuitively, regret represents how much the AI regrets having not chosen that action in the past,” says Sandholm. The higher the regret, the higher the chance of choosing that action next time.

It’s a useful way of thinking—but one that is incredibly difficult for the human mind to implement. We are notoriously bad at anticipating our future emotions. How much will we regret doing something? How much will we regret not doing something else? For us, it’s an emotionally laden calculus, and we typically fail to apply it in quite the right way. For a computer, it’s all about the computation of values. What does it regret not doing the most, the thing that would have yielded the highest possible expected value?

The second module is a sub-game solver that takes into account the mistakes the opponent has made so far and accounts for every hand she could possibly have. And finally, there is a self-improver. This is the area where data and machine learning come into play. It’s dangerous to try to exploit your opponent—it opens you up to the risk that you’ll get exploited right back, especially if you’re a computer program and your opponent is human. So instead of attempting to do that, the self-improver lets the opponent’s actions inform the areas where the program should focus. “That lets the opponent’s actions tell us where [they] think they’ve found holes in our strategy,” Sandholm explained. This allows the algorithm to develop a blueprint strategy to patch those holes.

It’s a very human-like adaptation, if you think about it. I’m not going to try to outmaneuver you head on. Instead, I’m going to see how you’re trying to outmaneuver me and respond accordingly. Sun-Tzu would surely approve. Watch how you’re perceived, not how you perceive yourself—because in the end, you’re playing against those who are doing the perceiving, and their opinion, right or not, is the only one that matters when you craft your strategy. Overnight, the algorithm patches up its overall approach according to the resulting analysis.

There’s one final thing Libratus is able to do: play in situations with unknown probabilities. There’s a concept in game theory known as the trembling hand: There are branches of the game tree that, under an optimal strategy, one should theoretically never get to; but with some probability, your all-too-human opponent’s hand trembles, they take a wrong action, and you’re suddenly in a totally unmapped part of the game. Before, that would spell disaster for the computer: An unmapped part of the tree means the program no longer knows how to respond. Now, there’s a contingency plan.

Of course, no algorithm is perfect. When Libratus is playing poker, it’s essentially working in a zero-sum environment. It wins, the opponent loses. The opponent wins, it loses. But while some real-life interactions really are zero-sum—cyber warfare comes to mind—many others are not nearly as straightforward: My win does not necessarily mean your loss. The pie is not fixed, and our interactions may be more positive-sum than not.

What’s more, real-life applications have to contend with something that a poker algorithm does not: the weights that are assigned to different elements of a decision. In poker, this is a simple value-maximizing process. But what is value in the human realm? Sandholm had to contend with this before, when he helped craft the world’s first kidney exchange. Do you want to be more efficient, giving the maximum number of kidneys as quickly as possible—or more fair, which may come at a cost to efficiency? Do you want as many lives as possible saved—or do some take priority at the cost of reaching more? Is there a preference for the length of the wait until a transplant? Do kids get preference? And on and on. It’s essential, Sandholm says, to separate means and the ends. To figure out the ends, a human has to decide what the goal is.

“The world will ultimately become a lot safer with the help of algorithms like Libratus,” Sandholm told me. I wasn’t sure what he meant. The last thing that most people would do is call poker, with its competition, its winners and losers, its quest to gain the maximum edge over your opponent, a haven of safety.

“Logic is good, and the AI is much better at strategic reasoning than humans can ever be,” he explained. “It’s taking out irrationality, emotionality. And it’s fairer. If you have an AI on your side, it can lift non-experts to the level of experts. Naïve negotiators will suddenly have a better weapon. We can start to close off the digital divide.”

It was an optimistic note to end on—a zero-sum, competitive game yielding a more ultimately fair and rational world.

I wanted to learn more, to see if it was really possible that mathematics and algorithms could ultimately be the future of more human, more psychological interactions. And so, later that day, I accompanied Nick Nystrom, the chief scientist of the Pittsburgh Supercomputing Center—the place that runs all of Sandholm’s poker-AI programs—to the actual processing center that make undertakings like Libratus possible.

A half-hour drive found us in a parking lot by a large glass building. I’d expected something more futuristic, not the same square, corporate glass squares I’ve seen countless times before. The inside, however, was more promising. First the security checkpoint. Then the ride in the elevator — down, not up, to roughly three stories below ground, where we found ourselves in a maze of corridors with card readers at every juncture to make sure you don’t slip through undetected. A red-lit panel formed the final barrier, leading to a small sliver of space between two sets of doors. I could hear a loud hum coming from the far side.

“Let me tell you what you’re going to see before we walk in,” Nystrom told me. “Once we get inside, it will be too loud to hear.”

I was about to witness the heart of the supercomputing center: 27 large containers, in neat rows, each housing multiple processors with speeds and abilities too great for my mind to wrap around. Inside, the temperature is by turns arctic and tropic, so-called “cold” rows alternating with “hot”—fans operate around the clock to cool the processors as they churn through millions of giga, mega, tera, peta and other ever-increasing scales of data bytes. In the cool rows, robotic-looking lights blink green and blue in orderly progression. In the hot rows, a jumble of multicolored wires crisscrosses in tangled skeins.

In the corners stood machines that had outlived their heyday. There was Sherlock, an old Cray model, that warmed my heart. There was a sad nameless computer, whose anonymity was partially compensated for by the Warhol soup cans adorning its cage (an homage to Warhol’s Pittsburghian origins).

And where does Libratus live, I asked? Which of these computers is Bridges, the computer that runs the AI Sandholm and I had been discussing?

Bridges, it turned out, isn’t a single computer. It’s a system with processing power beyond comprehension. It takes over two and a half petabytes to run Libratus. A single petabyte is a million gigabytes: You could watch over 13 years of HD video, store 10 billion photos, catalog the contents of the entire Library of Congress word for word. That’s a whole lot of computing power. And that’s only to succeed at heads-up poker, in limited circumstances.

Yet despite the breathtaking computing power at its disposal, Libratus is still severely limited. Yes, it beat its opponents where Claudico failed. But the poker professionals weren’t allowed to use many of the tools of their trade, including the opponent analysis software that they depend on in actual online games. And humans tire. Libratus can churn for a two-week marathon, where the human mind falters.

But there’s still much it can’t do: play more opponents, play live, or win every time. There’s more humanity in poker than Libratus has yet conquered. “There’s this belief that it’s all about statistics and correlations. And we actually don’t believe that,” Nystrom explained as we left Bridges behind. “Once in a while correlations are good, but in general, they can also be really misleading.”

Two years later, the Sandholm lab will produce Pluribus. Pluribus will be able to play against five players—and will run on a single computer. Much of the human edge will have evaporated in a short, very short time. The algorithms have improved, as have the computers. AI, it seems, has gained by leaps and bounds.

So does that mean that, ultimately, the algorithmic can indeed beat out the human, that computation can untangle the web of human interaction by discerning “the little tactics of deception, of asking yourself what is the other man going to think I mean to do,” as von Neumann put it?

Long before I’d spoken to Sandholm, I’d met Kevin Slavin, a polymath of sorts whose past careers have including founding a game design company and an interactive art space and launching the Playful Systems group at MIT’s Media Lab. Slavin has a decidedly different view from the creators of Pluribus. “On the one hand, [von Neumann] was a genius,” Kevin Slavin reflects. “But the presumptuousness of it.”

Slavin is firmly on the side of the gambler, who recognizes uncertainty for what it is and thus is able to take calculated risks when necessary, all the while tampering confidence at the outcome. The most you can do is put yourself in the path of luck—but to think you can guess with certainty the actual outcome is a presumptuousness the true poker player foregoes. For Slavin, the wonder of computers is “That they can generate this fabulous, complex randomness.” His opinion of the algorithmic assaults on chance? “This is their moment,” he said. “But it’s the exact opposite of what’s really beautiful about a computer, which is that it can do something that’s actually unpredictable. That, to me, is the magic.”

Will they actually succeed in making the unpredictable predictable, though? That’s what I want to know. Because everything I’ve seen tells me that absolute success is impossible. The deck is not rigged.

“It’s an unbelievable amount of work to get there. What do you get at the end? Let’s say they’re successful. Then we live in a world where there’s no God, agency, or luck,” Slavin responded.

“I don’t want to live there,’’ he added “I just don’t want to live there.”

Luckily, it seems that for now, he won’t have to. There are more things in life than are yet written in the algorithms. We have no reliable lie detection software—whether in the face, the skin, or the brain. In a recent test of bluffing in poker, computer face recognition failed miserably. We can get at discomfort, but we can’t get at the reasons for that discomfort: lying, fatigue, stress—they all look much the same. And humans, of course, can also mimic stress where none exists, complicating the picture even further.

Pluribus may turn out to be powerful, but von Neumann’s challenge still stands: The true nature of games, the most human of the human, remains to be conquered.

This article was originally published on Undark. Read the original article.

Image Credit: José Pablo Iglesias / Unsplash Continue reading

Posted in Human Robots

#437282 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

TECHNOLOGY
I Tried to Live Without the Tech Giants. It Was Impossible.
Kashmir Hill | The New York Times
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ My takeaway from the experiment was that it’s not possible to do that. It’s not just the products and services branded with the big tech giant’s name. It’s that these companies control a thicket of more obscure products and services that are hard to untangle from tools we rely on for everything we do, from work to getting from point A to point B.”

ROBOTICS
Meet the Engineer Who Let a Robot Barber Shave Him With a Straight Razor
Luke Dormehl | Digital Trends
“No, it’s not some kind of lockdown-induced barber startup or a Jackass-style stunt. Instead, Whitney, assistant professor of mechanical and industrial engineering at Northeastern University School of Engineering, was interested in straight-razor shaving as a microcosm for some of the big challenges that robots have faced in the past (such as their jerky, robotic movement) and how they can now be solved.”

LONGEVITY
Can Trees Live Forever? New Kindling in an Immortal Debate
Cara Giaimo | The New York Times
“Even if a scientist dedicated her whole career to very old trees, she would be able to follow her research subjects for only a small percentage of their lives. And a long enough multigenerational study might see its own methods go obsolete. For these reasons, Dr. Munné-Bosch thinks we will never prove’ whether long-lived trees experience senescence…”

BIOTECH
There’s No Such Thing as Family Secrets in the Age of 23andMe
Caitlin Harrington | Wired
“…technology has a way of creating new consequences for old decisions. Today, some 30 million people have taken consumer DNA tests, a threshold experts have called a tipping point. People conceived through donor insemination are matching with half-siblings, tracking down their donors, forming networks and advocacy organizations.”

ETHICS
The Problems AI Has Today Go Back Centuries
Karen Hao | MIT Techology Review
“In 2018, just as the AI field was beginning to reckon with problems like algorithmic discrimination, [Shakir Mohamed, a South African AI researcher at DeepMind], penned a blog post with his initial thoughts. In it he called on researchers to ‘decolonise artificial intelligence’—to reorient the field’s work away from Western hubs like Silicon Valley and engage new voices, cultures, and ideas for guiding the technology’s development.”

INTERNET
AI-Generated Text Is the Scariest Deepfake of All
Renee DiResta | Wired
“In the future, deepfake videos and audiofakes may well be used to create distinct, sensational moments that commandeer a press cycle, or to distract from some other, more organic scandal. But undetectable textfakes—masked as regular chatter on Twitter, Facebook, Reddit, and the like—have the potential to be far more subtle, far more prevalent, and far more sinister.”

Image credit: Adrien Olichon / Unsplash Continue reading

Posted in Human Robots

#437261 How AI Will Make Drug Discovery ...

If you had to guess how long it takes for a drug to go from an idea to your pharmacy, what would you guess? Three years? Five years? How about the cost? $30 million? $100 million?

Well, here’s the sobering truth: 90 percent of all drug possibilities fail. The few that do succeed take an average of 10 years to reach the market and cost anywhere from $2.5 billion to $12 billion to get there.

But what if we could generate novel molecules to target any disease, overnight, ready for clinical trials? Imagine leveraging machine learning to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.

Welcome to the future of AI and low-cost, ultra-fast, and personalized drug discovery. Let’s dive in.

GANs & Drugs
Around 2012, computer scientist-turned-biophysicist Alex Zhavoronkov started to notice that artificial intelligence was getting increasingly good at image, voice, and text recognition. He knew that all three tasks shared a critical commonality. In each, massive datasets were available, making it easy to train up an AI.

But similar datasets were present in pharmacology. So, back in 2014, Zhavoronkov started wondering if he could use these datasets and AI to significantly speed up the drug discovery process. He’d heard about a new technique in artificial intelligence known as generative adversarial networks (or GANs). By pitting two neural nets against one another (adversarial), the system can start with minimal instructions and produce novel outcomes (generative). At the time, researchers had been using GANs to do things like design new objects or create one-of-a-kind, fake human faces, but Zhavoronkov wanted to apply them to pharmacology.

He figured GANs would allow researchers to verbally describe drug attributes: “The compound should inhibit protein X at concentration Y with minimal side effects in humans,” and then the AI could construct the molecule from scratch. To turn his idea into reality, Zhavoronkov set up Insilico Medicine on the campus of Johns Hopkins University in Baltimore, Maryland, and rolled up his sleeves.

Instead of beginning their process in some exotic locale, Insilico’s “drug discovery engine” sifts millions of data samples to determine the signature biological characteristics of specific diseases. The engine then identifies the most promising treatment targets and—using GANs—generates molecules (that is, baby drugs) perfectly suited for them. “The result is an explosion in potential drug targets and a much more efficient testing process,” says Zhavoronkov. “AI allows us to do with fifty people what a typical drug company does with five thousand.”

The results have turned what was once a decade-long war into a month-long skirmish.

In late 2018, for example, Insilico was generating novel molecules in fewer than 46 days, and this included not just the initial discovery, but also the synthesis of the drug and its experimental validation in computer simulations.

Right now, they’re using the system to hunt down new drugs for cancer, aging, fibrosis, Parkinson’s, Alzheimer’s, ALS, diabetes, and many others. The first drug to result from this work, a treatment for hair loss, is slated to start Phase I trials by the end of 2020.

They’re also in the early stages of using AI to predict the outcomes of clinical trials in advance of the trial. If successful, this technique will enable researchers to strip a bundle of time and money out of the traditional testing process.

Protein Folding
Beyond inventing new drugs, AI is also being used by other scientists to identify new drug targets—that is, the place to which a drug binds in the body and another key part of the drug discovery process.

Between 1980 and 2006, despite an annual investment of $30 billion, researchers only managed to find about five new drug targets a year. The trouble is complexity. Most potential drug targets are proteins, and a protein’s structure—meaning the way a 2D sequence of amino acids folds into a 3D protein—determines its function.

But a protein with merely a hundred amino acids (a rather small protein) can produce a googol-cubed worth of potential shapes—that’s a one followed by three hundred zeroes. This is also why protein-folding has long been considered an intractably hard problem for even the most powerful of supercomputers.

Back in 1994, to monitor supercomputers’ progress in protein-folding, a biannual competition was created. Until 2018, success was fairly rare. But then the creators of DeepMind turned their neural networks loose on the problem. They created an AI that mines enormous datasets to determine the most likely distance between a protein’s base pairs and the angles of their chemical bonds—aka, the basics of protein-folding. They called it AlphaFold.

On its first foray into the competition, contestant AIs were given 43 protein-folding problems to solve. AlphaFold got 25 right. The second-place team managed a meager three. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.

Drug Delivery
Another theater of war for improved drugs is the realm of drug delivery. Even here, converging exponential technologies are paving the way for massive implications in both human health and industry shifts.

One key contender is CRISPR, the fast-advancing gene-editing technology that stands to revolutionize synthetic biology and treatment of genetically linked diseases. And researchers have now demonstrated how this tool can be applied to create materials that shape-shift on command. Think: materials that dissolve instantaneously when faced with a programmed stimulus, releasing a specified drug at a highly targeted location.

Yet another potential boon for targeted drug delivery is nanotechnology, whereby medical nanorobots have now been used to fight incidences of cancer. In a recent review of medical micro- and nanorobotics, lead authors (from the University of Texas at Austin and University of California, San Diego) found numerous successful tests of in vivo operation of medical micro- and nanorobots.

Drugs From the Future
Covid-19 is uniting the global scientific community with its urgency, prompting scientists to cast aside nation-specific territorialism, research secrecy, and academic publishing politics in favor of expedited therapeutic and vaccine development efforts. And in the wake of rapid acceleration across healthcare technologies, Big Pharma is an area worth watching right now, no matter your industry. Converging technologies will soon enable extraordinary strides in longevity and disease prevention, with companies like Insilico leading the charge.

Riding the convergence of massive datasets, skyrocketing computational power, quantum computing, cognitive surplus capabilities, and remarkable innovations in AI, we are not far from a world in which personalized drugs, delivered directly to specified targets, will graduate from science fiction to the standard of care.

Rejuvenational biotechnology will be commercially available sooner than you think. When I asked Alex for his own projection, he set the timeline at “maybe 20 years—that’s a reasonable horizon for tangible rejuvenational biotechnology.”

How might you use an extra 20 or more healthy years in your life? What impact would you be able to make?

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: andreas160578 from Pixabay Continue reading

Posted in Human Robots

#437150 AI Is Getting More Creative. But Who ...

Creativity is a trait that makes humans unique from other species. We alone have the ability to make music and art that speak to our experiences or illuminate truths about our world. But suddenly, humans’ artistic abilities have some competition—and from a decidedly non-human source.

Over the last couple years there have been some remarkable examples of art produced by deep learning algorithms. They have challenged the notion of an elusive definition of creativity and put into perspective how professionals can use artificial intelligence to enhance their abilities and produce beyond the known boundaries.

But when creativity is the result of code written by a programmer, using a format given by a software engineer, featuring private and public datasets, how do we assign ownership of AI-generated content, and particularly that of artwork? McKinsey estimates AI will annually generate value of $3.5 to $5.8 trillion across various sectors.

In 2018, a portrait that was christened Edmond de Belamy was made in a French art collective called Obvious. It used a database with 15,000 portraits from the 1300s to the 1900s to train a deep learning algorithm to produce a unique portrait. The painting sold for $432,500 in a New York auction. Similarly, a program called Aiva, trained on thousands of classical compositions, has released albums whose pieces are being used by ad agencies and movies.

The datasets used by these algorithms were different, but behind both there was a programmer who changed the brush strokes or musical notes into lines of code and a data scientist or engineer who fitted and “curated” the datasets to use for the model. There could also have been user-based input, and the output may be biased towards certain styles or unintentionally infringe on similar pieces of art. This shows that there are many collaborators with distinct roles in producing AI-generated content, and it’s important to discuss how they can protect their proprietary interests.

A perspective article published in Nature Machine Intelligence by Jason K. Eshraghian in March looks into how AI artists and the collaborators involved should assess their ownership, laying out some guiding principles that are “only applicable for as long as AI does not have legal parenthood, the way humans and corporations are accorded.”

Before looking at how collaborators can protect their interests, it’s useful to understand the basic requirements of copyright law. The artwork in question must be an “original work of authorship fixed in a tangible medium.” Given this principle, the author asked whether it’s possible for AI to exercise creativity, skill, or any other indicator of originality. The answer is still straightforward—no—or at least not yet. Currently, AI’s range of creativity doesn’t exceed the standard used by the US Copyright Office, which states that copyright law protects the “fruits of intellectual labor founded in the creative powers of the mind.”

Due to the current limitations of narrow AI, it must have some form of initial input that helps develop its ability to create. At the moment AI is a tool that can be used to produce creative work in the same way that a video camera is a tool used to film creative content. Video producers don’t need to comprehend the inner workings of their cameras; as long as their content shows creativity and originality, they have a proprietary claim over their creations.

The same concept applies to programmers developing a neural network. As long as the dataset they use as input yields an original and creative result, it will be protected by copyright law; they don’t need to understand the high-level mathematics, which in this case are often black box algorithms whose output it’s impossible to analyze.

Will robots and algorithms eventually be treated as creative sources able to own copyrights? The author pointed to the recent patent case of Warner-Lambert Co Ltd versus Generics where Lord Briggs, Justice of the Supreme Court of the UK, determined that “the court is well versed in identifying the governing mind of a corporation and, when the need arises, will no doubt be able to do the same for robots.”

In the meantime, Dr. Eshraghian suggests four guiding principles to allow artists who collaborate with AI to protect themselves.

First, programmers need to document their process through online code repositories like GitHub or BitBucket.

Second, data engineers should also document and catalog their datasets and the process they used to curate their models, indicating selectivity in their criteria as much as possible to demonstrate their involvement and creativity.

Third, in cases where user data is utilized, the engineer should “catalog all runs of the program” to distinguish the data selection process. This could be interpreted as a way of determining whether user-based input has a right to claim the copyright too.

Finally, the output should avoid infringing on others’ content through methods like reverse image searches and version control, as mentioned above.

AI-generated artwork is still a very new concept, and the ambiguous copyright laws around it give a lot of flexibility to AI artists and programmers worldwide. The guiding principles Eshraghian lays out will hopefully shed some light on the legislation we’ll eventually need for this kind of art, and start an important conversation between all the stakeholders involved.

Image Credit: Wikimedia Commons Continue reading

Posted in Human Robots

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots