Tag Archives: rock

#435145 How Big Companies Can Simultaneously Run ...

We live in the age of entrepreneurs. New startups seem to appear out of nowhere and challenge not only established companies, but entire industries. Where startup unicorns were once mythical creatures, they now seem abundant, not only increasing in numbers but also in the speed with which they can gain the minimum one-billion-dollar valuations to achieve this status.

But no matter how well things go for innovative startups, how many new success stories we hear, and how much space they take up in the media, the story that they are the best or only source of innovation isn’t entirely accurate.

Established organizations, or legacy organizations, can be incredibly innovative too. And while innovation is much more difficult in established organizations than in startups because they have much more complex systems—nobody is more likely to succeed in their innovation efforts than established organizations.

Unlike startups, established organizations have all the resources. They have money, customers, data, suppliers, partners, and infrastructure, which put them in a far better position to transform new ideas into concrete, value-creating, successful offerings than startups.

However, for established organizations, becoming an innovation champion in these times of rapid change requires new rules of engagement.

Many organizations commit the mistake of engaging in innovation as if it were a homogeneous thing that should be approached in the same way every time, regardless of its purpose. In my book, Transforming Legacy Organizations, I argue that innovation in established organizations must actually be divided into three different tracks: optimizing, augmenting, and mutating innovation.

All three are important, and to complicate matters further, organizations must execute all three types of innovation at the same time.

Optimizing Innovation
The first track is optimizing innovation. This type of innovation is the majority of what legacy organizations already do today. It is, metaphorically speaking, the extra blade on the razor. A razor manufacturer might launch a new razor that has not just three, but four blades, to ensure an even better, closer, and more comfortable shave. Then one or two years later, they say they are now launching a razor that has not only four, but five blades for an even better, closer, and more comfortable shave. That is optimizing innovation.

Adding extra blades on the razor is where the established player reigns.

No startup with so much as a modicum of sense would even try to beat the established company in this type of innovation. And this continuous optimization, both on the operational and customer facing sides, is important. In the short term. It pays the rent. But it’s far from enough. There are limits to how many blades a razor needs, and optimizing innovation only improves upon the past.

Augmenting Innovation
Established players must also go beyond optimization and prepare for the future through augmenting innovation.

The digital transformation projects that many organizations are initiating can be characterized as augmenting innovation. In the first instance, it is about upgrading core offerings and processes from analog to digital. Or, if you’re born digital, you’ve probably had to augment the core to become mobile-first. Perhaps you have even entered the next augmentation phase, which involves implementing artificial intelligence. Becoming AI-first, like the Amazons, Microsofts, Baidus, and Googles of the world, requires great technological advancements. And it’s difficult. But technology may, in fact, be a minor part of the task.

The biggest challenge for augmenting innovation is probably culture.

Only legacy organizations that manage to transform their cultures from status quo cultures—cultures with a preference for things as they are—into cultures full of incremental innovators can thrive in constant change.

To create a strong innovation culture, an organization needs to thoroughly understand its immune systems. These are the mechanisms that protect the organization and operate around the clock to keep it healthy and stable, just as the body’s immune system operates to keep the body healthy and stable. But in a rapidly changing world, many of these defense mechanisms are no longer appropriate and risk weakening organizations’ innovation power.

When talking about organizational immune systems, there is a clear tendency to simply point to the individual immune system, people’s unwillingness to change.

But this is too simplistic.

Of course, there is human resistance to change, but the organizational immune system, consisting of a company’s key performance indicators (KPIs), rewards systems, legacy IT infrastructure and processes, and investor and shareholder demands, is far more important. So is the organization’s societal immune system, such as legislative barriers, legacy customers and providers, and economic climate.

Luckily, there are many culture hacks that organizations can apply to strengthen their innovation cultures by upgrading their physical and digital workspaces, transforming their top-down work processes into decentralized, agile ones, and empowering their employees.

Mutating Innovation
Upgrading your core and preparing for the future by augmenting innovation is crucial if you want success in the medium term. But to win in the long run and be as or more successful 20 to 30 years from now, you need to invent the future, and challenge your core, through mutating innovation.

This requires involving radical innovators who have a bold focus on experimenting with that which is not currently understood and for which a business case cannot be prepared.

Here you must also physically move away from the core organization when you initiate and run such initiatives. This is sometimes called “innovation on the edges” because the initiatives will not have a chance at succeeding within the core. It will be too noisy as they challenge what currently exists—precisely what the majority of the organization’s employees are working to optimize or augment.

Forward-looking organizations experiment to mutate their core through “X divisions,” sometimes called skunk works or innovation labs.

Lowe’s Innovation Labs, for instance, worked with startups to build in-store robot assistants and zero-gravity 3D printers to explore the future. Mutating innovation might include pursuing partnerships across all imaginable domains or establishing brand new companies, rather than traditional business units, as we see automakers such as Toyota now doing to build software for autonomous vehicles. Companies might also engage in radical open innovation by sponsoring others’ ingenuity. Japan’s top airline ANA is exploring a future of travel that does not involve flying people from point A to point B via the ANA Avatar XPRIZE competition.

Increasing technological opportunities challenge the core of any organization but also create unprecedented potential. No matter what product, service, or experience you create, you can’t rest on your laurels. You have to bring yourself to a position where you have a clear strategy for optimizing, augmenting, and mutating your core and thus transforming your organization.

It’s not an easy job. But, hey, if it were easy, everyone would be doing it. Those who make it, on the other hand, will be the innovation champions of the future.

Image Credit: rock-the-stock / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#435098 Coming of Age in the Age of AI: The ...

The first generation to grow up entirely in the 21st century will never remember a time before smartphones or smart assistants. They will likely be the first children to ride in self-driving cars, as well as the first whose healthcare and education could be increasingly turned over to artificially intelligent machines.

Futurists, demographers, and marketers have yet to agree on the specifics of what defines the next wave of humanity to follow Generation Z. That hasn’t stopped some, like Australian futurist Mark McCrindle, from coining the term Generation Alpha, denoting a sort of reboot of society in a fully-realized digital age.

“In the past, the individual had no power, really,” McCrindle told Business Insider. “Now, the individual has great control of their lives through being able to leverage this world. Technology, in a sense, transformed the expectations of our interactions.”

No doubt technology may impart Marvel superhero-like powers to Generation Alpha that even tech-savvy Millennials never envisioned over cups of chai latte. But the powers of machine learning, computer vision, and other disciplines under the broad category of artificial intelligence will shape this yet unformed generation more definitively than any before it.

What will it be like to come of age in the Age of AI?

The AI Doctor Will See You Now
Perhaps no other industry is adopting and using AI as much as healthcare. The term “artificial intelligence” appears in nearly 90,000 publications from biomedical literature and research on the PubMed database.

AI is already transforming healthcare and longevity research. Machines are helping to design drugs faster and detect disease earlier. And AI may soon influence not only how we diagnose and treat illness in children, but perhaps how we choose which children will be born in the first place.

A study published earlier this month in NPJ Digital Medicine by scientists from Weill Cornell Medicine used 12,000 photos of human embryos taken five days after fertilization to train an AI algorithm on how to tell which in vitro fertilized embryo had the best chance of a successful pregnancy based on its quality.

Investigators assigned each embryo a grade based on various aspects of its appearance. A statistical analysis then correlated that grade with the probability of success. The algorithm, dubbed Stork, was able to classify the quality of a new set of images with 97 percent accuracy.

“Our algorithm will help embryologists maximize the chances that their patients will have a single healthy pregnancy,” said Dr. Olivier Elemento, director of the Caryl and Israel Englander Institute for Precision Medicine at Weill Cornell Medicine, in a press release. “The IVF procedure will remain the same, but we’ll be able to improve outcomes by harnessing the power of artificial intelligence.”

Other medical researchers see potential in applying AI to detect possible developmental issues in newborns. Scientists in Europe, working with a Finnish AI startup that creates seizure monitoring technology, have developed a technique for detecting movement patterns that might indicate conditions like cerebral palsy.

Published last month in the journal Acta Pediatrica, the study relied on an algorithm to extract the movements from a newborn, turning it into a simplified “stick figure” that medical experts could use to more easily detect clinically relevant data.

The researchers are continuing to improve the datasets, including using 3D video recordings, and are now developing an AI-based method for determining if a child’s motor maturity aligns with its true age. Meanwhile, a study published in February in Nature Medicine discussed the potential of using AI to diagnose pediatric disease.

AI Gets Classy
After being weaned on algorithms, Generation Alpha will hit the books—about machine learning.

China is famously trying to win the proverbial AI arms race by spending billions on new technologies, with one Chinese city alone pledging nearly $16 billion to build a smart economy based on artificial intelligence.

To reach dominance by its stated goal of 2030, Chinese cities are also incorporating AI education into their school curriculum. Last year, China published its first high school textbook on AI, according to the South China Morning Post. More than 40 schools are participating in a pilot program that involves SenseTime, one of the country’s biggest AI companies.

In the US, where it seems every child has access to their own AI assistant, researchers are just beginning to understand how the ubiquity of intelligent machines will influence the ways children learn and interact with their highly digitized environments.

Sandra Chang-Kredl, associate professor of the department of education at Concordia University, told The Globe and Mail that AI could have detrimental effects on learning creativity or emotional connectedness.

Similar concerns inspired Stefania Druga, a member of the Personal Robots group at the MIT Media Lab (and former Education Teaching Fellow at SU), to study interactions between children and artificial intelligence devices in order to encourage positive interactions.

Toward that goal, Druga created Cognimates, a platform that enables children to program and customize their own smart devices such as Alexa or even a smart, functional robot. The kids can also use Cognimates to train their own AI models or even build a machine learning version of Rock Paper Scissors that gets better over time.

“I believe it’s important to also introduce young people to the concepts of AI and machine learning through hands-on projects so they can make more informed and critical use of these technologies,” Druga wrote in a Medium blog post.

Druga is also the founder of Hackidemia, an international organization that sponsors workshops and labs around the world to introduce kids to emerging technologies at an early age.

“I think we are in an arms race in education with the advancement of technology, and we need to start thinking about AI literacy before patterns of behaviors for children and their families settle in place,” she wrote.

AI Goes Back to School
It also turns out that AI has as much to learn from kids. More and more researchers are interested in understanding how children grasp basic concepts that still elude the most advanced machine minds.

For example, developmental psychologist Alison Gopnik has written and lectured extensively about how studying the minds of children can provide computer scientists clues on how to improve machine learning techniques.

In an interview on Vox, she described that while DeepMind’s AlpahZero was trained to be a chessmaster, it struggles with even the simplest changes in the rules, such as allowing the bishop to move horizontally instead of vertically.

“A human chess player, even a kid, will immediately understand how to transfer that new rule to their playing of the game,” she noted. “Flexibility and generalization are something that even human one-year-olds can do but that the best machine learning systems have a much harder time with.”

Last year, the federal defense agency DARPA announced a new program aimed at improving AI by teaching it “common sense.” One of the chief strategies is to develop systems for “teaching machines through experience, mimicking the way babies grow to understand the world.”

Such an approach is also the basis of a new AI program at MIT called the MIT Quest for Intelligence.

The research leverages cognitive science to understand human intelligence, according to an article on the project in MIT Technology Review, such as exploring how young children visualize the world using their own innate 3D models.

“Children’s play is really serious business,” said Josh Tenenbaum, who leads the Computational Cognitive Science lab at MIT and his head of the new program. “They’re experiments. And that’s what makes humans the smartest learners in the known universe.”

In a world increasingly driven by smart technologies, it’s good to know the next generation will be able to keep up.

Image Credit: phoelixDE / Shutterstock.com Continue reading

Posted in Human Robots

#433728 AI Is Kicking Space Exploration into ...

Artificial intelligence in space exploration is gathering momentum. Over the coming years, new missions look likely to be turbo-charged by AI as we voyage to comets, moons, and planets and explore the possibilities of mining asteroids.

“AI is already a game-changer that has made scientific research and exploration much more efficient. We are not just talking about a doubling but about a multiple of ten,” Leopold Summerer, Head of the Advanced Concepts and Studies Office at ESA, said in an interview with Singularity Hub.

Examples Abound
The history of AI and space exploration is older than many probably think. It has already played a significant role in research into our planet, the solar system, and the universe. As computer systems and software have developed, so have AI’s potential use cases.

The Earth Observer 1 (EO-1) satellite is a good example. Since its launch in the early 2000s, its onboard AI systems helped optimize analysis of and response to natural occurrences, like floods and volcanic eruptions. In some cases, the AI was able to tell EO-1 to start capturing images before the ground crew were even aware that the occurrence had taken place.

Other satellite and astronomy examples abound. Sky Image Cataloging and Analysis Tool (SKICAT) has assisted with the classification of objects discovered during the second Palomar Sky Survey, classifying thousands more objects caught in low resolution than a human would be able to. Similar AI systems have helped astronomers to identify 56 new possible gravitational lenses that play a crucial role in connection with research into dark matter.

AI’s ability to trawl through vast amounts of data and find correlations will become increasingly important in relation to getting the most out of the available data. ESA’s ENVISAT produces around 400 terabytes of new data every year—but will be dwarfed by the Square Kilometre Array, which will produce around the same amount of data that is currently on the internet in a day.

AI Readying For Mars
AI is also being used for trajectory and payload optimization. Both are important preliminary steps to NASA’s next rover mission to Mars, the Mars 2020 Rover, which is, slightly ironically, set to land on the red planet in early 2021.

An AI known as AEGIS is already on the red planet onboard NASA’s current rovers. The system can handle autonomous targeting of cameras and choose what to investigate. However, the next generation of AIs will be able to control vehicles, autonomously assist with study selection, and dynamically schedule and perform scientific tasks.

Throughout his career, John Leif Jørgensen from DTU Space in Denmark has designed equipment and systems that have been on board about 100 satellites—and counting. He is part of the team behind the Mars 2020 Rover’s autonomous scientific instrument PIXL, which makes extensive use of AI. Its purpose is to investigate whether there have been lifeforms like stromatolites on Mars.

“PIXL’s microscope is situated on the rover’s arm and needs to be placed 14 millimetres from what we want it to study. That happens thanks to several cameras placed on the rover. It may sound simple, but the handover process and finding out exactly where to place the arm can be likened to identifying a building from the street from a picture taken from the roof. This is something that AI is eminently suited for,” he said in an interview with Singularity Hub.

AI also helps PIXL operate autonomously throughout the night and continuously adjust as the environment changes—the temperature changes between day and night can be more than 100 degrees Celsius, meaning that the ground beneath the rover, the cameras, the robotic arm, and the rock being studied all keep changing distance.

“AI is at the core of all of this work, and helps almost double productivity,” Jørgensen said.

First Mars, Then Moons
Mars is likely far from the final destination for AIs in space. Jupiter’s moons have long fascinated scientists. Especially Europa, which could house a subsurface ocean, buried beneath an approximately 10 km thick ice crust. It is one of the most likely candidates for finding life elsewhere in the solar system.

While that mission may be some time in the future, NASA is currently planning to launch the James Webb Space Telescope into an orbit of around 1.5 million kilometers from Earth in 2020. Part of the mission will involve AI-empowered autonomous systems overseeing the full deployment of the telescope’s 705-kilo mirror.

The distances between Earth and Europa, or Earth and the James Webb telescope, means a delay in communications. That, in turn, makes it imperative for the crafts to be able to make their own decisions. Examples from the Mars Rover project show that communication between a rover and Earth can take 20 minutes because of the vast distance. A Europa mission would see much longer communication times.

Both missions, to varying degrees, illustrate one of the most significant challenges currently facing the use of AI in space exploration. There tends to be a direct correlation between how well AI systems perform and how much data they have been fed. The more, the better, as it were. But we simply don’t have very much data to feed such a system about what it’s likely to encounter on a mission to a place like Europa.

Computing power presents a second challenge. A strenuous, time-consuming approval process and the risk of radiation mean that your computer at home would likely be more powerful than anything going into space in the near future. A 200 GHz processor, 256 megabytes of ram, and 2 gigabytes of memory sounds a lot more like a Nokia 3210 (the one you could use as an ice hockey puck without it noticing) than an iPhone X—but it’s actually the ‘brain’ that will be onboard the next rover.

Private Companies Taking Off
Private companies are helping to push those limitations. CB Insights charts 57 startups in the space-space, covering areas as diverse as natural resources, consumer tourism, R&D, satellites, spacecraft design and launch, and data analytics.

David Chew works as an engineer for the Japanese satellite company Axelspace. He explained how private companies are pushing the speed of exploration and lowering costs.

“Many private space companies are taking advantage of fall-back systems and finding ways of using parts and systems that traditional companies have thought of as non-space-grade. By implementing fall-backs, and using AI, it is possible to integrate and use parts that lower costs without adding risk of failure,” he said in an interview with Singularity Hub.

Terraforming Our Future Home
Further into the future, moonshots like terraforming Mars await. Without AI, these kinds of projects to adapt other planets to Earth-like conditions would be impossible.

Autonomous crafts are already terraforming here on Earth. BioCarbon Engineering uses drones to plant up to 100,000 trees in a single day. Drones first survey and map an area, then an algorithm decides the optimal locations for the trees before a second wave of drones carry out the actual planting.

As is often the case with exponential technologies, there is a great potential for synergies and convergence. For example with AI and robotics, or quantum computing and machine learning. Why not send an AI-driven robot to Mars and use it as a telepresence for scientists on Earth? It could be argued that we are already in the early stages of doing just that by using VR and AR systems that take data from the Mars rovers and create a virtual landscape scientists can walk around in and make decisions on what the rovers should explore next.

One of the biggest benefits of AI in space exploration may not have that much to do with its actual functions. Chew believes that within as little as ten years, we could see the first mining of asteroids in the Kuiper Belt with the help of AI.

“I think one of the things that AI does to space exploration is that it opens up a whole range of new possible industries and services that have a more immediate effect on the lives of people on Earth,” he said. “It becomes a relatable industry that has a real effect on people’s daily lives. In a way, space exploration becomes part of people’s mindset, and the border between our planet and the solar system becomes less important.”

Image Credit: Taily / Shutterstock.com Continue reading

Posted in Human Robots

#433655 First-Ever Grad Program in Space Mining ...

Maybe they could call it the School of Space Rock: A new program being offered at the Colorado School of Mines (CSM) will educate post-graduate students on the nuts and bolts of extracting and using valuable materials such as rare metals and frozen water from space rocks like asteroids or the moon.

Officially called Space Resources, the graduate-level program is reputedly the first of its kind in the world to offer a course in the emerging field of space mining. Heading the program is Angel Abbud-Madrid, director of the Center for Space Resources at Mines, a well-known engineering school located in Golden, Colorado, where Molson Coors taps Rocky Mountain spring water for its earthly brews.

The first semester for the new discipline began last month. While Abbud-Madrid didn’t immediately respond to an interview request, Singularity Hub did talk to Chris Lewicki, president and CEO of Planetary Resources, a space mining company whose founders include Peter Diamandis, Singularity University co-founder.

A former NASA engineer who worked on multiple Mars missions, Lewicki says the Space Resources program at CSM, with its multidisciplinary focus on science, economics, and policy, will help students be light years ahead of their peers in the nascent field of space mining.

“I think it’s very significant that they’ve started this program,” he said. “Having students with that kind of background exposure just allows them to be productive on day one instead of having to kind of fill in a lot of things for them.”

Who would be attracted to apply for such a program? There are many professionals who could be served by a post-baccalaureate certificate, master’s degree, or even Ph.D. in Space Resources, according to Lewicki. Certainly aerospace engineers and planetary scientists would be among the faces in the classroom.

“I think it’s [also] people who have an interest in what I would call maybe space robotics,” he said. Lewicki is referring not only to the classic example of robotic arms like the Canadarm2, which lends a hand to astronauts aboard the International Space Station, but other types of autonomous platforms.

One example might be Planetary Resources’ own Arkyd-6, a small, autonomous satellite called a CubeSat launched earlier this year to test different technologies that might be used for deep-space exploration of resources. The proof-of-concept was as much a test for the technology—such as the first space-based use of a mid-wave infrared imager to detect water resources—as it was for being able to work in space on a shoestring budget.

“We really proved that doing one of these billion-dollar science missions to deep space can be done for a lot less if you have a very focused goal, and if you kind of cut a lot of corners and then put some commercial approaches into those things,” Lewicki said.

A Trillion-Dollar Industry
Why space mining? There are at least a trillion reasons.

Astrophysicist Neil deGrasse Tyson famously said that the first trillionaire will be the “person who exploits the natural resources on asteroids.” That’s because asteroids—rocky remnants from the formation of our solar system more than four billion years ago—harbor precious metals, ranging from platinum and gold to iron and nickel.

For instance, one future target of exploration by NASA—an asteroid dubbed 16 Psyche, orbiting the sun in the asteroid belt between Mars and Jupiter—is worth an estimated $10,000 quadrillion. It’s a number so mind-bogglingly big that it would crash the global economy, if someone ever figured out how to tow it back to Earth without literally crashing it into the planet.

Living Off the Land
Space mining isn’t just about getting rich. Many argue that humanity’s ability to extract resources in space, especially water that can be refined into rocket fuel, will be a key technology to extend our reach beyond near-Earth space.

The presence of frozen water around the frigid polar regions of the moon, for example, represents an invaluable source to power future deep-space missions. Splitting H20 into its component elements of hydrogen and oxygen would provide a nearly inexhaustible source of rocket fuel. Today, it costs $10,000 to put a pound of payload in Earth orbit, according to NASA.

Until more advanced rocket technology is developed, the moon looks to be the best bet for serving as the launching pad to Mars and beyond.

Moon Versus Asteroid
However, Lewicki notes that despite the moon’s proximity and our more intimate familiarity with its pockmarked surface, that doesn’t mean a lunar mission to extract resources is any easier than a multi-year journey to a fast-moving asteroid.

For one thing, fighting gravity to and from the moon is no easy feat, as the moon has a significantly stronger gravitational field than an asteroid. Another challenge is that the frozen water is located in permanently shadowed lunar craters, meaning space miners can’t rely on solar-powered equipment, but on some sort of external energy source.

And then there’s the fact that moon craters might just be the coldest places in the solar system. NASA’s Lunar Reconnaissance Orbiter found temperatures plummeted as low as 26 Kelvin, or more than minus 400 degrees Fahrenheit. In comparison, the coldest temperatures on Earth have been recorded near the South Pole in Antarctica—about minus 148 degrees F.

“We don’t operate machines in that kind of thermal environment,” Lewicki said of the extreme temperatures detected in the permanent dark regions of the moon. “Antarctica would be a balmy desert island compared to a lunar polar crater.”

Of course, no one knows quite what awaits us in the asteroid belt. Answers may soon be forthcoming. Last week, the Japan Aerospace Exploration Agency landed two small, hopping rovers on an asteroid called Ryugu. Meanwhile, NASA hopes to retrieve a sample from the near-Earth asteroid Bennu when its OSIRIS-REx mission makes contact at the end of this year.

No Bucks, No Buck Rogers
Visionaries like Elon Musk and Jeff Bezos talk about colonies on Mars, with millions of people living and working in space. The reality is that there’s probably a reason Buck Rogers was set in the 25th century: It’s going to take a lot of money and a lot of time to realize those sci-fi visions.

Or, as Lewicki put it: “No bucks, no Buck Rogers.”

The cost of operating in outer space can be prohibitive. Planetary Resources itself is grappling with raising additional funding, with reports this year about layoffs and even a possible auction of company assets.

Still, Lewicki is confident that despite economic and technical challenges, humanity will someday exceed even the boldest dreamers—skyscrapers on the moon, interplanetary trips to Mars—as judged against today’s engineering marvels.

“What we’re doing is going to be very hard, very painful, and almost certainly worth it,” he said. “Who would have thought that there would be a job for a space miner that you could go to school for, even just five or ten years ago. Things move quickly.”

Image Credit: M-SUR / Shutterstock.com Continue reading

Posted in Human Robots

#432190 In the Future, There Will Be No Limit to ...

New planets found in distant corners of the galaxy. Climate models that may improve our understanding of sea level rise. The emergence of new antimalarial drugs. These scientific advances and discoveries have been in the news in recent months.

While representing wildly divergent disciplines, from astronomy to biotechnology, they all have one thing in common: Artificial intelligence played a key role in their scientific discovery.

One of the more recent and famous examples came out of NASA at the end of 2017. The US space agency had announced an eighth planet discovered in the Kepler-90 system. Scientists had trained a neural network—a computer with a “brain” modeled on the human mind—to re-examine data from Kepler, a space-borne telescope with a four-year mission to seek out new life and new civilizations. Or, more precisely, to find habitable planets where life might just exist.

The researchers trained the artificial neural network on a set of 15,000 previously vetted signals until it could identify true planets and false positives 96 percent of the time. It then went to work on weaker signals from nearly 700 star systems with known planets.

The machine detected Kepler 90i—a hot, rocky planet that orbits its sun about every two Earth weeks—through a nearly imperceptible change in brightness captured when a planet passes a star. It also found a sixth Earth-sized planet in the Kepler-80 system.

AI Handles Big Data
The application of AI to science is being driven by three great advances in technology, according to Ross King from the Manchester Institute of Biotechnology at the University of Manchester, leader of a team that developed an artificially intelligent “scientist” called Eve.

Those three advances include much faster computers, big datasets, and improved AI methods, King said. “These advances increasingly give AI superhuman reasoning abilities,” he told Singularity Hub by email.

AI systems can flawlessly remember vast numbers of facts and extract information effortlessly from millions of scientific papers, not to mention exhibit flawless logical reasoning and near-optimal probabilistic reasoning, King says.

AI systems also beat humans when it comes to dealing with huge, diverse amounts of data.

That’s partly what attracted a team of glaciologists to turn to machine learning to untangle the factors involved in how heat from Earth’s interior might influence the ice sheet that blankets Greenland.

Algorithms juggled 22 geologic variables—such as bedrock topography, crustal thickness, magnetic anomalies, rock types, and proximity to features like trenches, ridges, young rifts, and volcanoes—to predict geothermal heat flux under the ice sheet throughout Greenland.

The machine learning model, for example, predicts elevated heat flux upstream of Jakobshavn Glacier, the fastest-moving glacier in the world.

“The major advantage is that we can incorporate so many different types of data,” explains Leigh Stearns, associate professor of geology at Kansas University, whose research takes her to the polar regions to understand how and why Earth’s great ice sheets are changing, questions directly related to future sea level rise.

“All of the other models just rely on one parameter to determine heat flux, but the [machine learning] approach incorporates all of them,” Stearns told Singularity Hub in an email. “Interestingly, we found that there is not just one parameter…that determines the heat flux, but a combination of many factors.”

The research was published last month in Geophysical Research Letters.

Stearns says her team hopes to apply high-powered machine learning to characterize glacier behavior over both short and long-term timescales, thanks to the large amounts of data that she and others have collected over the last 20 years.

Emergence of Robot Scientists
While Stearns sees machine learning as another tool to augment her research, King believes artificial intelligence can play a much bigger role in scientific discoveries in the future.

“I am interested in developing AI systems that autonomously do science—robot scientists,” he said. Such systems, King explained, would automatically originate hypotheses to explain observations, devise experiments to test those hypotheses, physically run the experiments using laboratory robotics, and even interpret the results. The conclusions would then influence the next cycle of hypotheses and experiments.

His AI scientist Eve recently helped researchers discover that triclosan, an ingredient commonly found in toothpaste, could be used as an antimalarial drug against certain strains that have developed a resistance to other common drug therapies. The research was published in the journal Scientific Reports.

Automation using artificial intelligence for drug discovery has become a growing area of research, as the machines can work orders of magnitude faster than any human. AI is also being applied in related areas, such as synthetic biology for the rapid design and manufacture of microorganisms for industrial uses.

King argues that machines are better suited to unravel the complexities of biological systems, with even the most “simple” organisms are host to thousands of genes, proteins, and small molecules that interact in complicated ways.

“Robot scientists and semi-automated AI tools are essential for the future of biology, as there are simply not enough human biologists to do the necessary work,” he said.

Creating Shockwaves in Science
The use of machine learning, neural networks, and other AI methods can often get better results in a fraction of the time it would normally take to crunch data.

For instance, scientists at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign, have a deep learning system for the rapid detection and characterization of gravitational waves. Gravitational waves are disturbances in spacetime, emanating from big, high-energy cosmic events, such as the massive explosion of a star known as a supernova. The “Holy Grail” of this type of research is to detect gravitational waves from the Big Bang.

Dubbed Deep Filtering, the method allows real-time processing of data from LIGO, a gravitational wave observatory comprised of two enormous laser interferometers located thousands of miles apart in California and Louisiana. The research was published in Physics Letters B. You can watch a trippy visualization of the results below.

In a more down-to-earth example, scientists published a paper last month in Science Advances on the development of a neural network called ConvNetQuake to detect and locate minor earthquakes from ground motion measurements called seismograms.

ConvNetQuake uncovered 17 times more earthquakes than traditional methods. Scientists say the new method is particularly useful in monitoring small-scale seismic activity, which has become more frequent, possibly due to fracking activities that involve injecting wastewater deep underground. You can learn more about ConvNetQuake in this video:

King says he believes that in the long term there will be no limit to what AI can accomplish in science. He and his team, including Eve, are currently working on developing cancer therapies under a grant from DARPA.

“Robot scientists are getting smarter and smarter; human scientists are not,” he says. “Indeed, there is arguably a case that human scientists are less good. I don’t see any scientist alive today of the stature of a Newton or Einstein—despite the vast number of living scientists. The Physics Nobel [laureate] Frank Wilczek is on record as saying (10 years ago) that in 100 years’ time the best physicist will be a machine. I agree.”

Image Credit: Romaset / Shutterstock.com Continue reading

Posted in Human Robots