Tag Archives: respond

#432671 Stuff 3.0: The Era of Programmable ...

It’s the end of a long day in your apartment in the early 2040s. You decide your work is done for the day, stand up from your desk, and yawn. “Time for a film!” you say. The house responds to your cues. The desk splits into hundreds of tiny pieces, which flow behind you and take on shape again as a couch. The computer screen you were working on flows up the wall and expands into a flat projection screen. You relax into the couch and, after a few seconds, a remote control surfaces from one of its arms.

In a few seconds flat, you’ve gone from a neatly-equipped office to a home cinema…all within the same four walls. Who needs more than one room?

This is the dream of those who work on “programmable matter.”

In his recent book about AI, Max Tegmark makes a distinction between three different levels of computational sophistication for organisms. Life 1.0 is single-celled organisms like bacteria; here, hardware is indistinguishable from software. The behavior of the bacteria is encoded into its DNA; it cannot learn new things.

Life 2.0 is where humans live on the spectrum. We are more or less stuck with our hardware, but we can change our software by choosing to learn different things, say, Spanish instead of Italian. Much like managing space on your smartphone, your brain’s hardware will allow you to download only a certain number of packages, but, at least theoretically, you can learn new behaviors without changing your underlying genetic code.

Life 3.0 marks a step-change from this: creatures that can change both their hardware and software in something like a feedback loop. This is what Tegmark views as a true artificial intelligence—one that can learn to change its own base code, leading to an explosion in intelligence. Perhaps, with CRISPR and other gene-editing techniques, we could be using our “software” to doctor our “hardware” before too long.

Programmable matter extends this analogy to the things in our world: what if your sofa could “learn” how to become a writing desk? What if, instead of a Swiss Army knife with dozens of tool attachments, you just had a single tool that “knew” how to become any other tool you could require, on command? In the crowded cities of the future, could houses be replaced by single, OmniRoom apartments? It would save space, and perhaps resources too.

Such are the dreams, anyway.

But when engineering and manufacturing individual gadgets is such a complex process, you can imagine that making stuff that can turn into many different items can be extremely complicated. Professor Skylar Tibbits at MIT referred to it as 4D printing in a TED Talk, and the website for his research group, the Self-Assembly Lab, excitedly claims, “We have also identified the key ingredients for self-assembly as a simple set of responsive building blocks, energy and interactions that can be designed within nearly every material and machining process available. Self-assembly promises to enable breakthroughs across many disciplines, from biology to material science, software, robotics, manufacturing, transportation, infrastructure, construction, the arts, and even space exploration.”

Naturally, their projects are still in the early stages, but the Self-Assembly Lab and others are genuinely exploring just the kind of science fiction applications we mooted.

For example, there’s the cell-phone self-assembly project, which brings to mind eerie, 24/7 factories where mobile phones assemble themselves from 3D printed kits without human or robotic intervention. Okay, so the phones they’re making are hardly going to fly off the shelves as fashion items, but if all you want is something that works, it could cut manufacturing costs substantially and automate even more of the process.

One of the major hurdles to overcome in making programmable matter a reality is choosing the right fundamental building blocks. There’s a very important balance to strike. To create fine details, you need to have things that aren’t too big, so as to keep your rearranged matter from being too lumpy. This might make the building blocks useless for certain applications—for example, if you wanted to make tools for fine manipulation. With big pieces, it might be difficult to simulate a range of textures. On the other hand, if the pieces are too small, different problems can arise.

Imagine a setup where each piece is a small robot. You have to contain the robot’s power source and its brain, or at least some kind of signal-generator and signal-processor, all in the same compact unit. Perhaps you can imagine that one might be able to simulate a range of textures and strengths by changing the strength of the “bond” between individual units—your desk might need to be a little bit more firm than your bed, which might be nicer with a little more give.

Early steps toward creating this kind of matter have been taken by those who are developing modular robots. There are plenty of different groups working on this, including MIT, Lausanne, and the University of Brussels.

In the latter configuration, one individual robot acts as a centralized decision-maker, referred to as the brain unit, but additional robots can autonomously join the brain unit as and when needed to change the shape and structure of the overall system. Although the system is only ten units at present, it’s a proof-of-concept that control can be orchestrated over a modular system of robots; perhaps in the future, smaller versions of the same thing could be the components of Stuff 3.0.

You can imagine that with machine learning algorithms, such swarms of robots might be able to negotiate obstacles and respond to a changing environment more easily than an individual robot (those of you with techno-fear may read “respond to a changing environment” and imagine a robot seamlessly rearranging itself to allow a bullet to pass straight through without harm).

Speaking of robotics, the form of an ideal robot has been a subject of much debate. In fact, one of the major recent robotics competitions—DARPA’s Robotics Challenge—was won by a robot that could adapt, beating Boston Dynamics’ infamous ATLAS humanoid with the simple addition of a wheel that allowed it to drive as well as walk.

Rather than building robots into a humanoid shape (only sometimes useful), allowing them to evolve and discover the ideal form for performing whatever you’ve tasked them to do could prove far more useful. This is particularly true in disaster response, where expensive robots can still be more valuable than humans, but conditions can be very unpredictable and adaptability is key.

Further afield, many futurists imagine “foglets” as the tiny nanobots that will be capable of constructing anything from raw materials, somewhat like the “Santa Claus machine.” But you don’t necessarily need anything quite so indistinguishable from magic to be useful. Programmable matter that can respond and adapt to its surroundings could be used in all kinds of industrial applications. How about a pipe that can strengthen or weaken at will, or divert its direction on command?

We’re some way off from being able to order our beds to turn into bicycles. As with many tech ideas, it may turn out that the traditional low-tech solution is far more practical and cost-effective, even as we can imagine alternatives. But as the march to put a chip in every conceivable object goes on, it seems certain that inanimate objects are about to get a lot more animated.

Image Credit: PeterVrabel / Shutterstock.com Continue reading

Posted in Human Robots

#432549 Your Next Pilot Could Be Drone Software

Would you get on a plane that didn’t have a human pilot in the cockpit? Half of air travelers surveyed in 2017 said they would not, even if the ticket was cheaper. Modern pilots do such a good job that almost any air accident is big news, such as the Southwest engine disintegration on April 17.

But stories of pilot drunkenness, rants, fights and distraction, however rare, are reminders that pilots are only human. Not every plane can be flown by a disaster-averting pilot, like Southwest Capt. Tammie Jo Shults or Capt. Chesley “Sully” Sullenberger. But software could change that, equipping every plane with an extremely experienced guidance system that is always learning more.

In fact, on many flights, autopilot systems already control the plane for basically all of the flight. And software handles the most harrowing landings—when there is no visibility and the pilot can’t see anything to even know where he or she is. But human pilots are still on hand as backups.

A new generation of software pilots, developed for self-flying vehicles, or drones, will soon have logged more flying hours than all humans have—ever. By combining their enormous amounts of flight data and experience, drone-control software applications are poised to quickly become the world’s most experienced pilots.

Drones That Fly Themselves
Drones come in many forms, from tiny quad-rotor copter toys to missile-firing winged planes, or even 7-ton aircraft that can stay aloft for 34 hours at a stretch.

When drones were first introduced, they were flown remotely by human operators. However, this merely substitutes a pilot on the ground for one aloft. And it requires significant communications bandwidth between the drone and control center, to carry real-time video from the drone and to transmit the operator’s commands.

Many newer drones no longer need pilots; some drones for hobbyists and photographers can now fly themselves along human-defined routes, leaving the human free to sightsee—or control the camera to get the best view.

University researchers, businesses, and military agencies are now testing larger and more capable drones that will operate autonomously. Swarms of drones can fly without needing tens or hundreds of humans to control them. And they can perform coordinated maneuvers that human controllers could never handle.

Could humans control these 1,218 drones all together?

Whether flying in swarms or alone, the software that controls these drones is rapidly gaining flight experience.

Importance of Pilot Experience
Experience is the main qualification for pilots. Even a person who wants to fly a small plane for personal and noncommercial use needs 40 hours of flying instruction before getting a private pilot’s license. Commercial airline pilots must have at least 1,000 hours before even serving as a co-pilot.

On-the-ground training and in-flight experience prepare pilots for unusual and emergency scenarios, ideally to help save lives in situations like the “Miracle on the Hudson.” But many pilots are less experienced than “Sully” Sullenberger, who saved his planeload of people with quick and creative thinking. With software, though, every plane can have on board a pilot with as much experience—if not more. A popular software pilot system, in use in many aircraft at once, could gain more flight time each day than a single human might accumulate in a year.

As someone who studies technology policy as well as the use of artificial intelligence for drones, cars, robots, and other uses, I don’t lightly suggest handing over the controls for those additional tasks. But giving software pilots more control would maximize computers’ advantages over humans in training, testing, and reliability.

Training and Testing Software Pilots
Unlike people, computers will follow sets of instructions in software the same way every time. That lets developers create instructions, test reactions, and refine aircraft responses. Testing could make it far less likely, for example, that a computer would mistake the planet Venus for an oncoming jet and throw the plane into a steep dive to avoid it.

The most significant advantage is scale: Rather than teaching thousands of individual pilots new skills, updating thousands of aircraft would require only downloading updated software.

These systems would also need to be thoroughly tested—in both real-life situations and in simulations—to handle a wide range of aviation situations and to withstand cyberattacks. But once they’re working well, software pilots are not susceptible to distraction, disorientation, fatigue, or other human impairments that can create problems or cause errors even in common situations.

Rapid Response and Adaptation
Already, aircraft regulators are concerned that human pilots are forgetting how to fly on their own and may have trouble taking over from an autopilot in an emergency.

In the “Miracle on the Hudson” event, for example, a key factor in what happened was how long it took for the human pilots to figure out what had happened—that the plane had flown through a flock of birds, which had damaged both engines—and how to respond. Rather than the approximately one minute it took the humans, a computer could have assessed the situation in seconds, potentially saving enough time that the plane could have landed on a runway instead of a river.

Aircraft damage can pose another particularly difficult challenge for human pilots: It can change what effects the controls have on its flight. In cases where damage renders a plane uncontrollable, the result is often tragedy. A sufficiently advanced automated system could make minute changes to the aircraft’s steering and use its sensors to quickly evaluate the effects of those movements—essentially learning how to fly all over again with a damaged plane.

Boosting Public Confidence
The biggest barrier to fully automated flight is psychological, not technical. Many people may not want to trust their lives to computer systems. But they might come around when reassured that the software pilot has tens, hundreds, or thousands more hours of flight experience than any human pilot.

Other autonomous technologies, too, are progressing despite public concerns. Regulators and lawmakers are allowing self-driving cars on the roads in many states. But more than half of Americans don’t want to ride in one, largely because they don’t trust the technology. And only 17 percent of travelers around the world are willing to board a plane without a pilot. However, as more people experience self-driving cars on the road and have drones deliver them packages, it is likely that software pilots will gain in acceptance.

The airline industry will certainly be pushing people to trust the new systems: Automating pilots could save tens of billions of dollars a year. And the current pilot shortage means software pilots may be the key to having any airline service to smaller destinations.

Both Boeing and Airbus have made significant investments in automated flight technology, which would remove or reduce the need for human pilots. Boeing has actually bought a drone manufacturer and is looking to add software pilot capabilities to the next generation of its passenger aircraft. (Other tests have tried to retrofit existing aircraft with robotic pilots.)

One way to help regular passengers become comfortable with software pilots—while also helping to both train and test the systems—could be to introduce them as co-pilots working alongside human pilots. Planes would be operated by software from gate to gate, with the pilots instructed to touch the controls only if the system fails. Eventually pilots could be removed from the aircraft altogether, just like they eventually were from the driverless trains that we routinely ride in airports around the world.

This article was originally published on The Conversation. Read the original article.

Image Credit: Skycolors / Shutterstock.com Continue reading

Posted in Human Robots

#432512 How Will Merging Minds and Machines ...

One of the most exciting and frightening outcomes of technological advancement is the potential to merge our minds with machines. If achieved, this would profoundly boost our cognitive capabilities. More importantly, however, it could be a revolution in human identity, emotion, spirituality, and self-awareness.

Brain-machine interface technology is already being developed by pioneers and researchers around the globe. It’s still early and today’s tech is fairly rudimentary, but it’s a fast-moving field, and some believe it will advance faster than generally expected. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to connect our brains to the internet via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” Even if the advances are less dramatic, however, they’ll have significant implications.

How might this technology affect human consciousness? What about its implications on our sentience, self-awareness, or subjective experience of our illusion of self?

Consciousness can be hard to define, but a holistic definition often encompasses many of our most fundamental capacities, such as wakefulness, self-awareness, meta-cognition, and sense of agency. Beyond that, consciousness represents a spectrum of awareness, as seen across various species of animals. Even humans experience different levels of existential awareness.

From psychedelics to meditation, there are many tools we already use to alter and heighten our conscious experience, both temporarily and permanently. These tools have been said to contribute to a richer life, with the potential to bring experiences of beauty, love, inner peace, and transcendence. Relatively non-invasive, these tools show us what a seemingly minor imbalance of neurochemistry and conscious internal effort can do to the subjective experience of being human.

Taking this into account, what implications might emerging brain-machine interface technologies have on the “self”?

The Tools for Self-Transcendence
At the basic level, we are currently seeing the rise of “consciousness hackers” using techniques like non-invasive brain stimulation through EEG, nutrition, virtual reality, and ecstatic experiences to create environments for heightened consciousness and self-awareness. In Stealing Fire, Steven Kotler and Jamie Wheal explore this trillion-dollar altered-states economy and how innovators and thought leaders are “harnessing rare and controversial states of consciousness to solve critical challenges and outperform the competition.” Beyond enhanced productivity, these altered states expose our inner potential and give us a glimpse of a greater state of being.

Expanding consciousness through brain augmentation and implants could one day be just as accessible. Researchers are working on an array of neurotechnologies as simple and non-invasive as electrode-based EEGs to invasive implants and techniques like optogenetics, where neurons are genetically reprogrammed to respond to pulses of light. We’ve already connected two brains via the internet, allowing the two to communicate, and future-focused startups are researching the possibilities too. With an eye toward advanced brain-machine interfaces, last year Elon Musk unveiled Neuralink, a company whose ultimate goal is to merge the human mind with AI through a “neural lace.”

Many technologists predict we will one day merge with and, more speculatively, upload our minds onto machines. Neuroscientist Kenneth Hayworth writes in Skeptic magazine, “All of today’s neuroscience models are fundamentally computational by nature, supporting the theoretical possibility of mind-uploading.” This might include connecting with other minds using digital networks or even uploading minds onto quantum computers, which can be in multiple states of computation at a given time.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. With advancements in genetic engineering, we are indeed seeing evolution become an increasingly conscious process with an accelerated pace. This could one day apply to the evolution of our consciousness as well; we would be using our consciousness to expand our consciousness.

What Will It Feel Like?
We may be able to come up with predictions of the impact of these technologies on society, but we can only wonder what they will feel like subjectively.

It’s hard to imagine, for example, what our stream of consciousness will feel like when we can process thoughts and feelings 1,000 times faster, or how artificially intelligent brain implants will impact our capacity to love and hate. What will the illusion of “I” feel like when our consciousness is directly plugged into the internet? Overall, what impact will the process of merging with technology have on the subjective experience of being human?

The Evolution of Consciousness
In The Future Evolution of Consciousness, Thomas Lombardo points out, “We are a journey rather than a destination—a chapter in the evolutionary saga rather than a culmination. Just as probable, there will also be a diversification of species and types of conscious minds. It is also very likely that new psychological capacities, incomprehensible to us, will emerge as well.”

Humans are notorious for fearing the unknown. For any individual who has never experienced an altered state, be it spiritual or psychedelic-induced, it is difficult to comprehend the subjective experience of that state. It is why many refer to their first altered-state experience as “waking up,” wherein they didn’t even realize they were asleep.

Similarly, exponential neurotechnology represents the potential of a higher state of consciousness and a range of experiences that are unimaginable to our current default state.

Our capacity to think and feel is set by the boundaries of our biological brains. To transform and expand these boundaries is to transform and expand the first-hand experience of consciousness. Emerging neurotechnology may end up providing the awakening our species needs.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#432487 Can We Make a Musical Turing Test?

As artificial intelligence advances, we’re encountering the same old questions. How much of what we consider to be fundamentally human can be reduced to an algorithm? Can we create something sufficiently advanced that people can no longer distinguish between the two? This, after all, is the idea behind the Turing Test, which has yet to be passed.

At first glance, you might think music is beyond the realm of algorithms. Birds can sing, and people can compose symphonies. Music is evocative; it makes us feel. Very often, our intense personal and emotional attachments to music are because it reminds us of our shared humanity. We are told that creative jobs are the least likely to be automated. Creativity seems fundamentally human.

But I think above all, we view it as reductionist sacrilege: to dissect beautiful things. “If you try to strangle a skylark / to cut it up, see how it works / you will stop its heart from beating / you will stop its mouth from singing.” A human musician wrote that; a machine might be able to string words together that are happy or sad; it might even be able to conjure up a decent metaphor from the depths of some neural network—but could it understand humanity enough to produce art that speaks to humans?

Then, of course, there’s the other side of the debate. Music, after all, has a deeply mathematical structure; you can train a machine to produce harmonics. “In the teachings of Pythagoras and his followers, music was inseparable from numbers, which were thought to be the key to the whole spiritual and physical universe,” according to Grout in A History of Western Music. You might argue that the process of musical composition cannot be reduced to a simple algorithm, yet musicians have often done so. Mozart, with his “Dice Music,” used the roll of a dice to decide how to order musical fragments; creativity through an 18th-century random number generator. Algorithmic music goes back a very long way, with the first papers on the subject from the 1960s.

Then there’s the techno-enthusiast side of the argument. iTunes has 26 million songs, easily more than a century of music. A human could never listen to and learn from them all, but a machine could. It could also memorize every note of Beethoven. Music can be converted into MIDI files, a nice chewable data format that allows even a character-by-character neural net you can run on your computer to generate music. (Seriously, even I could get this thing working.)

Indeed, generating music in the style of Bach has long been a test for AI, and you can see neural networks gradually learn to imitate classical composers while trying to avoid overfitting. When an algorithm overfits, it essentially starts copying the existing music, rather than being inspired by it but creating something similar: a tightrope the best human artists learn to walk. Creativity doesn’t spring from nowhere; even maverick musical geniuses have their influences.

Does a machine have to be truly ‘creative’ to produce something that someone would find valuable? To what extent would listeners’ attitudes change if they thought they were hearing a human vs. an AI composition? This all suggests a musical Turing Test. Of course, it already exists. In fact, it’s run out of Dartmouth, the school that hosted that first, seminal AI summer conference. This year, the contest is bigger than ever: alongside the PoetiX, LimeriX and LyriX competitions for poetry and lyrics, there’s a DigiKidLit competition for children’s literature (although you may have reservations about exposing your children to neural-net generated content… it can get a bit surreal).

There’s also a pair of musical competitions, including one for original compositions in different genres. Key genres and styles are represented by Charlie Parker for Jazz and the Bach chorales for classical music. There’s also a free composition, and a contest where a human and an AI try to improvise together—the AI must respond to a human spontaneously, in real time, and in a musically pleasing way. Quite a challenge! In all cases, if any of the generated work is indistinguishable from human performers, the neural net has passed the Turing Test.

Did they? Here’s part of 2017’s winning sonnet from Charese Smiley and Hiroko Bretz:

The large cabin was in total darkness.
Come marching up the eastern hill afar.
When is the clock on the stairs dangerous?
Everything seemed so near and yet so far.
Behind the wall silence alone replied.
Was, then, even the staircase occupied?
Generating the rhymes is easy enough, the sentence structure a little trickier, but what’s impressive about this sonnet is that it sticks to a single topic and appears to be a more coherent whole. I’d guess they used associated “lexical fields” of similar words to help generate something coherent. In a similar way, most of the more famous examples of AI-generated music still involve some amount of human control, even if it’s editorial; a human will build a song around an AI-generated riff, or select the most convincing Bach chorale from amidst many different samples.

We are seeing strides forward in the ability of AI to generate human voices and human likenesses. As the latter example shows, in the fake news era people have focused on the dangers of this tech– but might it also be possible to create a virtual performer, trained on a dataset of their original music? Did you ever want to hear another Beatles album, or jam with Miles Davis? Of course, these things are impossible—but could we create a similar experience that people would genuinely value? Even, to the untrained eye, something indistinguishable from the real thing?

And if it did measure up to the real thing, what would this mean? Jaron Lanier is a fascinating technology writer, a critic of strong AI, and a believer in the power of virtual reality to change the world and provide truly meaningful experiences. He’s also a composer and a musical aficionado. He pointed out in a recent interview that translation algorithms, by reducing the amount of work translators are commissioned to do, have, in some sense, profited from stolen expertise. They were trained on huge datasets purloined from human linguists and translators. If you can train an AI on someone’s creative output and it produces new music, who “owns” it?

Although companies that offer AI music tools are starting to proliferate, and some groups will argue that the musical Turing test has been passed already, AI-generated music is hardly racing to the top of the pop charts just yet. Even as the line between human-composed and AI-generated music starts to blur, there’s still a gulf between the average human and musical genius. In the next few years, we’ll see how far the current techniques can take us. It may be the case that there’s something in the skylark’s song that can’t be generated by machines. But maybe not, and then this song might need an extra verse.

Image Credit: d1sk / Shutterstock.com Continue reading

Posted in Human Robots

#431866 The Technologies We’ll Have Our Eyes ...

It’s that time of year again when our team has a little fun and throws on our futurist glasses to look ahead at some of the technologies and trends we’re most anticipating next year.
Whether the implications of a technology are vast or it resonates with one of us personally, here’s the list from some of the Singularity Hub team of what we have our eyes on as we enter the new year.
For a little refresher, these were the technologies our team was fired up about at the start of 2017.
Tweet us the technology you’re excited to watch in 2018 at @SingularityHub.
Cryptocurrency and Blockchain
“Given all the noise Bitcoin is making globally in the media, it is driving droves of main street investors to dabble in and learn more about cryptocurrencies. This will continue to raise valuations and drive adoption of blockchain. From Bank of America recently getting a blockchain-based patent approved to the Australian Securities Exchange’s plan to use blockchain, next year is going to be chock-full of these stories. Coindesk even recently spotted a patent filing from Apple involving blockchain. From ‘China’s Ethereum’, NEO, to IOTA to Golem to Qtum, there are a lot of interesting cryptos to follow given the immense numbers of potential applications. Hang on, it’s going to be a bumpy ride in 2018!”
–Kirk Nankivell, Website Manager
There Is No One Technology to Watch
“Next year may be remembered for advances in gene editing, blockchain, AI—or most likely all these and more. There is no single technology to watch. A number of consequential trends are advancing and converging. This general pace of change is exciting, and it also contributes to spiking anxiety. Technology’s invisible lines of force are extending further and faster into our lives and subtly subverting how we view the world and each other in unanticipated ways. Still, all the near-term messiness and volatility, the little and not-so-little dramas, the hype and disillusion, the controversies and conflict, all that smooths out a bit when you take a deep breath and a step back, and it’s my sincere hope and belief the net result will be more beneficial than harmful.”
–Jason Dorrier, Managing Editor
‘Fake News’ Fighting Technology
“It’s been a wild ride for the media this year with the term ‘fake news’ moving from the public’s peripheral and into mainstream vocabulary. The spread of ‘fake news’ is often blamed on media outlets, but social media platforms and search engines are often responsible too. (Facebook still won’t identify as a media company—maybe next year?) Yes, technology can contribute to spreading false information, but it can also help stop it. From technologists who are building in-article ‘trust indicator’ features, to artificial intelligence systems that can both spot and shut down fake news early on, I’m hopeful we can create new solutions to this huge problem. One step further: if publishers step up to fix this we might see some faith restored in the media.”
–Alison E. Berman, Digital Producer
Pay-as-You-Go Home Solar Power
“People in rural African communities are increasingly bypassing electrical grids (which aren’t even an option in many cases) and installing pay-as-you-go solar panels on their homes. The companies offering these services are currently not subject to any regulations, though they’re essentially acting as a utility. As demand for power grows, they’ll have to come up with ways to efficiently scale, and to balance the humanitarian and capitalistic aspects of their work. It’s fascinating to think traditional grids may never be necessary in many areas of the continent thanks to this technology.”
–Vanessa Bates Ramirez, Associate Editor
Virtual Personal Assistants
“AI is clearly going to rule our lives, and in many ways it already makes us look like clumsy apes. Alexa, Siri, and Google Assistant are promising first steps toward a world of computers that understand us and relate to us on an emotional level. I crave the day when my Apple Watch coaches me into healthier habits, lets me know about new concerts nearby, speaks to my self-driving Lyft on my behalf, and can help me respond effectively to aggravating emails based on communication patterns. But let’s not brush aside privacy concerns and the implications of handing over our personal data to megacorporations. The scariest thing here is that privacy laws and advertising ethics do not accommodate this level of intrusive data hoarding.”
–Matthew Straub, Director of Digital Engagement (Hub social media)
Solve for Learning: Educational Apps for Children in Conflict Zones
“I am most excited by exponential technology when it is used to help solve a global grand challenge. Educational apps are currently being developed to help solve for learning by increasing accessibility to learning opportunities for children living in conflict zones. Many children in these areas are not receiving an education, with girls being 2.5 times more likely than boys to be out of school. The EduApp4Syria project is developing apps to help children in Syria and Kashmir learn in their native languages. Mobile phones are increasingly available in these areas, and the apps are available offline for children who do not have consistent access to mobile networks. The apps are low-cost, easily accessible, and scalable educational opportunities.
–Paige Wilcoxson, Director, Curriculum & Learning Design
Image Credit: Triff / Shutterstock.com Continue reading

Posted in Human Robots