Tag Archives: REPLACE

#434818 Watch These Robots Do Tasks You Thought ...

Robots have been masters of manufacturing at speed and precision for decades, but give them a seemingly simple task like stacking shelves, and they quickly get stuck. That’s changing, though, as engineers build systems that can take on the deceptively tricky tasks most humans can do with their eyes closed.

Boston Dynamics is famous for dramatic reveals of robots performing mind-blowing feats that also leave you scratching your head as to what the market is—think the bipedal Atlas doing backflips or Spot the galloping robot dog.

Last week, the company released a video of a robot called Handle that looks like an ostrich on wheels carrying out the seemingly mundane task of stacking boxes in a warehouse.

It might seem like a step backward, but this is exactly the kind of practical task robots have long struggled with. While the speed and precision of industrial robots has seen them take over many functions in modern factories, they’re generally limited to highly prescribed tasks carried out in meticulously-controlled environments.

That’s because despite their mechanical sophistication, most are still surprisingly dumb. They can carry out precision welding on a car or rapidly assemble electronics, but only by rigidly following a prescribed set of motions. Moving cardboard boxes around a warehouse might seem simple to a human, but it actually involves a variety of tasks machines still find pretty difficult—perceiving your surroundings, navigating, and interacting with objects in a dynamic environment.

But the release of this video suggests Boston Dynamics thinks these kinds of applications are close to prime time. Last week the company doubled down by announcing the acquisition of start-up Kinema Systems, which builds computer vision systems for robots working in warehouses.

It’s not the only company making strides in this area. On the same day the video went live, Google unveiled a robot arm called TossingBot that can pick random objects from a box and quickly toss them into another container beyond its reach, which could prove very useful for sorting items in a warehouse. The machine can train on new objects in just an hour or two, and can pick and toss up to 500 items an hour with better accuracy than any of the humans who tried the task.

And an apple-picking robot built by Abundant Robotics is currently on New Zealand farms navigating between rows of apple trees using LIDAR and computer vision to single out ripe apples before using a vacuum tube to suck them off the tree.

In most cases, advances in machine learning and computer vision brought about by the recent AI boom are the keys to these rapidly improving capabilities. Robots have historically had to be painstakingly programmed by humans to solve each new task, but deep learning is making it possible for them to quickly train themselves on a variety of perception, navigation, and dexterity tasks.

It’s not been simple, though, and the application of deep learning in robotics has lagged behind other areas. A major limitation is that the process typically requires huge amounts of training data. That’s fine when you’re dealing with image classification, but when that data needs to be generated by real-world robots it can make the approach impractical. Simulations offer the possibility to run this training faster than real time, but it’s proved difficult to translate policies learned in virtual environments into the real world.

Recent years have seen significant progress on these fronts, though, and the increasing integration of modern machine learning with robotics. In October, OpenAI imbued a robotic hand with human-level dexterity by training an algorithm in a simulation using reinforcement learning before transferring it to the real-world device. The key to ensuring the translation went smoothly was injecting random noise into the simulation to mimic some of the unpredictability of the real world.

And just a couple of weeks ago, MIT researchers demonstrated a new technique that let a robot arm learn to manipulate new objects with far less training data than is usually required. By getting the algorithm to focus on a few key points on the object necessary for picking it up, the system could learn to pick up a previously unseen object after seeing only a few dozen examples (rather than the hundreds or thousands typically required).

How quickly these innovations will trickle down to practical applications remains to be seen, but a number of startups as well as logistics behemoth Amazon are developing robots designed to flexibly pick and place the wide variety of items found in your average warehouse.

Whether the economics of using robots to replace humans at these kinds of menial tasks makes sense yet is still unclear. The collapse of collaborative robotics pioneer Rethink Robotics last year suggests there are still plenty of challenges.

But at the same time, the number of robotic warehouses is expected to leap from 4,000 today to 50,000 by 2025. It may not be long until robots are muscling in on tasks we’ve long assumed only humans could do.

Image Credit: Visual Generation / Shutterstock.com Continue reading

Posted in Human Robots

#434812 This Week’s Awesome Stories From ...

FUTURE OF FOOD
Behold the ‘Beefless Impossible Whopper’
Nathaniel Popper | The New York Times
“Burger King is introducing a Whopper made with a vegetarian patty from the start-up Impossible Foods. The deal is a big step toward the mainstream for start-ups trying to mimic and replace meat.”

ARTIFICIAL INTELLIGENCE
The Animal-AI Olympics Is Going to Treat AI Like a Lab Rat
Oscar Schwartz | MIT Technology Review
“What is being tested is not a particular type of intelligence but the ability for a single agent to adapt to diverse environments. This would demonstrate a limited form of generalized intelligence—a type of common sense that AI will need if it is ever to succeed in our homes or in our daily lives.”

SPACE
Falcon Heavy’s First Real Launch on Sunday Is the Dawn of a New Heavy-Lift Era in Space
Devin Coldewey | TechCrunch
“The Falcon Heavy has flown before, but now it’s got a payload that matters and competitors nipping at its heels. It’s the first of a new generation of launch vehicles that can take huge payloads to space cheaply and frequently, opening up a new frontier in the space race.”

ROBOTICS
Self-Driving Harvesting Robot Suctions the Fruit Off Trees
Luke Dormehl | Digital Trends
“[Abundant Robotics] has developed a cutting edge solution to the apple-picking problem in the form of an autonomous tractor-style vehicle which can navigate through orchards using Lidar. Once it spots the apples it seeks, it’s able to detect their ripeness using image recognition technology. It can then reach out and literally suction its chosen apples off the trees and into an on-board storage bin.”

CRYPTOCURRENCY
Amid Bitcoin Uncertainty ‘the Smart Money Knows That Crypto Is Not Ready’
Nathaniel Popper | The New York Times
“Some cryptocurrency enthusiasts had hoped that the entrance of Wall Street institutions would give them legitimacy with traditional investors. But their struggles—and waning interest—illustrate the difficulty in bringing Bitcoin from the fringes of the internet into the mainstream financial world.”

SCIENCE
Sorry, Graphene—Borophene Is the New Wonder Material That’s Got Everyone Excited
Emerging Technology from the arXiv | MIT Technology Review
“Stronger and more flexible than graphene, a single-atom layer of boron could revolutionize sensors, batteries, and catalytic chemistry.”

Image Credit: JoeZ / Shutterstock.com Continue reading

Posted in Human Robots

#434792 Extending Human Longevity With ...

Lizards can regrow entire limbs. Flatworms, starfish, and sea cucumbers regrow entire bodies. Sharks constantly replace lost teeth, often growing over 20,000 teeth throughout their lifetimes. How can we translate these near-superpowers to humans?

The answer: through the cutting-edge innovations of regenerative medicine.

While big data and artificial intelligence transform how we practice medicine and invent new treatments, regenerative medicine is about replenishing, replacing, and rejuvenating our physical bodies.

In Part 5 of this blog series on Longevity and Vitality, I detail three of the regenerative technologies working together to fully augment our vital human organs.

Replenish: Stem cells, the regenerative engine of the body
Replace: Organ regeneration and bioprinting
Rejuvenate: Young blood and parabiosis

Let’s dive in.

Replenish: Stem Cells – The Regenerative Engine of the Body
Stem cells are undifferentiated cells that can transform into specialized cells such as heart, neurons, liver, lung, skin and so on, and can also divide to produce more stem cells.

In a child or young adult, these stem cells are in large supply, acting as a built-in repair system. They are often summoned to the site of damage or inflammation to repair and restore normal function.

But as we age, our supply of stem cells begins to diminish as much as 100- to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing your body.

Imagine your stem cells as a team of repairmen in your newly constructed mansion. When the mansion is new and the repairmen are young, they can fix everything perfectly. But as the repairmen age and reduce in number, your mansion eventually goes into disrepair and finally crumbles.

What if you could restore and rejuvenate your stem cell population?

One option to accomplish this restoration and rejuvenation is to extract and concentrate your own autologous adult stem cells from places like your adipose (or fat) tissue or bone marrow.

These stem cells, however, are fewer in number and have undergone mutations (depending on your age) from their original ‘software code.’ Many scientists and physicians now prefer an alternative source, obtaining stem cells from the placenta or umbilical cord, the leftovers of birth.

These stem cells, available in large supply and expressing the undamaged software of a newborn, can be injected into joints or administered intravenously to rejuvenate and revitalize.

Think of these stem cells as chemical factories generating vital growth factors that can help to reduce inflammation, fight autoimmune disease, increase muscle mass, repair joints, and even revitalize skin and grow hair.

Over the last decade, the number of publications per year on stem cell-related research has increased 40x, and the stem cell market is expected to increase to $297 billion by 2022.

Rising research and development initiatives to develop therapeutic options for chronic diseases and growing demand for regenerative treatment options are the most significant drivers of this budding industry.

Biologists led by Kohji Nishida at Osaka University in Japan have discovered a new way to nurture and grow the tissues that make up the human eyeball. The scientists are able to grow retinas, corneas, the eye’s lens, and more, using only a small sample of adult skin.

In a Stanford study, seven of 18 stroke victims who agreed to stem cell treatments showed remarkable motor function improvements. This treatment could work for other neurodegenerative conditions such as Alzheimer’s, Parkinson’s, and ALS.

Doctors from the USC Neurorestoration Center and Keck Medicine of USC injected stem cells into the damaged cervical spine of a recently paralyzed 21-year-old man. Three months later, he showed dramatic improvement in sensation and movement of both arms.

In 2019, doctors in the U.K. cured a patient with HIV for the second time ever thanks to the efficacy of stem cells. After giving the cancer patient (who also had HIV) an allogeneic haematopoietic (e.g. blood) stem cell treatment for his Hodgkin’s lymphoma, the patient went into long-term HIV remission—18 months and counting at the time of the study’s publication.

Replace: Organ Regeneration and 3D Printing
Every 10 minutes, someone is added to the US organ transplant waiting list, totaling over 113,000 people waiting for replacement organs as of January 2019.

Countless more people in need of ‘spare parts’ never make it onto the waiting list. And on average, 20 people die each day while waiting for a transplant.

As a result, 35 percent of all US deaths (~900,000 people) could be prevented or delayed with access to organ replacements.

The excessive demand for donated organs will only intensify as technologies like self-driving cars make the world safer, given that many organ donors result from auto and motorcycle accidents. Safer vehicles mean less accidents and donations.

Clearly, replacement and regenerative medicine represent a massive opportunity.

Organ Entrepreneurs
Enter United Therapeutics CEO, Dr. Martine Rothblatt. A one-time aerospace entrepreneur (she was the founder of Sirius Satellite Radio), Rothblatt changed careers in the 1990s after her daughter developed a rare lung disease.

Her moonshot today is to create an industry of replacement organs. With an initial focus on diseases of the lung, Rothblatt set out to create replacement lungs. To accomplish this goal, her company United Therapeutics has pursued a number of technologies in parallel.

3D Printing Lungs
In 2017, United teamed up with one of the world’s largest 3D printing companies, 3D Systems, to build a collagen bioprinter and is paying another company, 3Scan, to slice up lungs and create detailed maps of their interior.

This 3D Systems bioprinter now operates according to a method called stereolithography. A UV laser flickers through a shallow pool of collagen doped with photosensitive molecules. Wherever the laser lingers, the collagen cures and becomes solid.

Gradually, the object being printed is lowered and new layers are added. The printer can currently lay down collagen at a resolution of around 20 micrometers, but will need to achieve resolution of a micrometer in size to make the lung functional.

Once a collagen lung scaffold has been printed, the next step is to infuse it with human cells, a process called recellularization.

The goal here is to use stem cells that grow on scaffolding and differentiate, ultimately providing the proper functionality. Early evidence indicates this approach can work.

In 2018, Harvard University experimental surgeon Harald Ott reported that he pumped billions of human cells (from umbilical cords and diced lungs) into a pig lung stripped of its own cells. When Ott’s team reconnected it to a pig’s circulation, the resulting organ showed rudimentary function.

Humanizing Pig Lungs
Another of Rothblatt’s organ manufacturing strategies is called xenotransplantation, the idea of transplanting an animal’s organs into humans who need a replacement.

Given the fact that adult pig organs are similar in size and shape to those of humans, United Therapeutics has focused on genetically engineering pigs to allow humans to use their organs. “It’s actually not rocket science,” said Rothblatt in her 2015 TED talk. “It’s editing one gene after another.”

To accomplish this goal, United Therapeutics made a series of investments in companies such as Revivicor Inc. and Synthetic Genomics Inc., and signed large funding agreements with the University of Maryland, University of Alabama, and New York Presbyterian/Columbia University Medical Center to create xenotransplantation programs for new hearts, kidneys, and lungs, respectively. Rothblatt hopes to see human translation in three to four years.

In preparation for that day, United Therapeutics owns a 132-acre property in Research Triangle Park and built a 275,000-square-foot medical laboratory that will ultimately have the capability to annually produce up to 1,000 sets of healthy pig lungs—known as xenolungs—from genetically engineered pigs.

Lung Ex Vivo Perfusion Systems
Beyond 3D printing and genetically engineering pig lungs, Rothblatt has already begun implementing a third near-term approach to improve the supply of lungs across the US.

Only about 30 percent of potential donor lungs meet transplant criteria in the first place; of those, only about 85 percent of those are usable once they arrive at the surgery center. As a result, nearly 75 percent of possible lungs never make it to the recipient in need.

What if these lungs could be rejuvenated? This concept informs Dr. Rothblatt’s next approach.

In 2016, United Therapeutics invested $41.8 million in TransMedics Inc., an Andover, Massachusetts company that develops ex vivo perfusion systems for donor lungs, hearts, and kidneys.

The XVIVO Perfusion System takes marginal-quality lungs that initially failed to meet transplantation standard-of-care criteria and perfuses and ventilates them at normothermic conditions, providing an opportunity for surgeons to reassess transplant suitability.

Rejuvenate Young Blood and Parabiosis
In HBO’s parody of the Bay Area tech community, Silicon Valley, one of the episodes (Season 4, Episode 5) is named “The Blood Boy.”

In this installment, tech billionaire Gavin Belson (Matt Ross) is meeting with Richard Hendricks (Thomas Middleditch) and his team, speaking about the future of the decentralized internet. A young, muscled twenty-something disrupts the meeting when he rolls in a transfusion stand and silently hooks an intravenous connection between himself and Belson.

Belson then introduces the newcomer as his “transfusion associate” and begins to explain the science of parabiosis: “Regular transfusions of the blood of a younger physically fit donor can significantly retard the aging process.”

While the sitcom is fiction, that science has merit, and the scenario portrayed in the episode is already happening today.

On the first point, research at Stanford and Harvard has demonstrated that older animals, when transfused with the blood of young animals, experience regeneration across many tissues and organs.

The opposite is also true: young animals, when transfused with the blood of older animals, experience accelerated aging. But capitalizing on this virtual fountain of youth has been tricky.

Ambrosia
One company, a San Francisco-based startup called Ambrosia, recently commenced one of the trials on parabiosis. Their protocol is simple: Healthy participants aged 35 and older get a transfusion of blood plasma from donors under 25, and researchers monitor their blood over the next two years for molecular indicators of health and aging.

Ambrosia’s founder Jesse Karmazin became interested in launching a company around parabiosis after seeing impressive data from animals and studies conducted abroad in humans: In one trial after another, subjects experience a reversal of aging symptoms across every major organ system. “The effects seem to be almost permanent,” he said. “It’s almost like there’s a resetting of gene expression.”

Infusing your own cord blood stem cells as you age may have tremendous longevity benefits. Following an FDA press release in February 2019, Ambrosia halted its consumer-facing treatment after several months of operation.

Understandably, the FDA raised concerns about the practice of parabiosis because to date, there is a marked lack of clinical data to support the treatment’s effectiveness.

Elevian
On the other end of the reputability spectrum is a startup called Elevian, spun out of Harvard University. Elevian is approaching longevity with a careful, scientifically validated strategy. (Full Disclosure: I am both an advisor to and investor in Elevian.)

CEO Mark Allen, MD, is joined by a dozen MDs and Ph.Ds out of Harvard. Elevian’s scientific founders started the company after identifying specific circulating factors that may be responsible for the “young blood” effect.

One example: A naturally occurring molecule known as “growth differentiation factor 11,” or GDF11, when injected into aged mice, reproduces many of the regenerative effects of young blood, regenerating heart, brain, muscles, lungs, and kidneys.

More specifically, GDF11 supplementation reduces age-related cardiac hypertrophy, accelerates skeletal muscle repair, improves exercise capacity, improves brain function and cerebral blood flow, and improves metabolism.

Elevian is developing a number of therapeutics that regulate GDF11 and other circulating factors. The goal is to restore our body’s natural regenerative capacity, which Elevian believes can address some of the root causes of age-associated disease with the promise of reversing or preventing many aging-related diseases and extending the healthy lifespan.

Conclusion
In 1992, futurist Leland Kaiser coined the term “regenerative medicine”:

“A new branch of medicine will develop that attempts to change the course of chronic disease and in many instances will regenerate tired and failing organ systems.”

Since then, the powerful regenerative medicine industry has grown exponentially, and this rapid growth is anticipated to continue.

A dramatic extension of the human healthspan is just over the horizon. Soon, we’ll all have the regenerative superpowers previously relegated to a handful of animals and comic books.

What new opportunities open up when anybody, anywhere, and at anytime can regenerate, replenish, and replace entire organs and metabolic systems on command?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Giovanni Cancemi / Shutterstock.com Continue reading

Posted in Human Robots

#434781 What Would It Mean for AI to Become ...

As artificial intelligence systems take on more tasks and solve more problems, it’s hard to say which is rising faster: our interest in them or our fear of them. Futurist Ray Kurzweil famously predicted that “By 2029, computers will have emotional intelligence and be convincing as people.”

We don’t know how accurate this prediction will turn out to be. Even if it takes more than 10 years, though, is it really possible for machines to become conscious? If the machines Kurzweil describes say they’re conscious, does that mean they actually are?

Perhaps a more relevant question at this juncture is: what is consciousness, and how do we replicate it if we don’t understand it?

In a panel discussion at South By Southwest titled “How AI Will Design the Human Future,” experts from academia and industry discussed these questions and more.

Wait, What Is AI?
Most of AI’s recent feats—diagnosing illnesses, participating in debate, writing realistic text—involve machine learning, which uses statistics to find patterns in large datasets then uses those patterns to make predictions. However, “AI” has been used to refer to everything from basic software automation and algorithms to advanced machine learning and deep learning.

“The term ‘artificial intelligence’ is thrown around constantly and often incorrectly,” said Jennifer Strong, a reporter at the Wall Street Journal and host of the podcast “The Future of Everything.” Indeed, one study found that 40 percent of European companies that claim to be working on or using AI don’t actually use it at all.

Dr. Peter Stone, associate chair of computer science at UT Austin, was the study panel chair on the 2016 One Hundred Year Study on Artificial Intelligence (or AI100) report. Based out of Stanford University, AI100 is studying and anticipating how AI will impact our work, our cities, and our lives.

“One of the first things we had to do was define AI,” Stone said. They defined it as a collection of different technologies inspired by the human brain to be able to perceive their surrounding environment and figure out what actions to take given these inputs.

Modeling on the Unknown
Here’s the crazy thing about that definition (and about AI itself): we’re essentially trying to re-create the abilities of the human brain without having anything close to a thorough understanding of how the human brain works.

“We’re starting to pair our brains with computers, but brains don’t understand computers and computers don’t understand brains,” Stone said. Dr. Heather Berlin, cognitive neuroscientist and professor of psychiatry at the Icahn School of Medicine at Mount Sinai, agreed. “It’s still one of the greatest mysteries how this three-pound piece of matter can give us all our subjective experiences, thoughts, and emotions,” she said.

This isn’t to say we’re not making progress; there have been significant neuroscience breakthroughs in recent years. “This has been the stuff of science fiction for a long time, but now there’s active work being done in this area,” said Amir Husain, CEO and founder of Austin-based AI company Spark Cognition.

Advances in brain-machine interfaces show just how much more we understand the brain now than we did even a few years ago. Neural implants are being used to restore communication or movement capabilities in people who’ve been impaired by injury or illness. Scientists have been able to transfer signals from the brain to prosthetic limbs and stimulate specific circuits in the brain to treat conditions like Parkinson’s, PTSD, and depression.

But much of the brain’s inner workings remain a deep, dark mystery—one that will have to be further solved if we’re ever to get from narrow AI, which refers to systems that can perform specific tasks and is where the technology stands today, to artificial general intelligence, or systems that possess the same intelligence level and learning capabilities as humans.

The biggest question that arises here, and one that’s become a popular theme across stories and films, is if machines achieve human-level general intelligence, does that also mean they’d be conscious?

Wait, What Is Consciousness?
As valuable as the knowledge we’ve accumulated about the brain is, it seems like nothing more than a collection of disparate facts when we try to put it all together to understand consciousness.

“If you can replace one neuron with a silicon chip that can do the same function, then replace another neuron, and another—at what point are you still you?” Berlin asked. “These systems will be able to pass the Turing test, so we’re going to need another concept of how to measure consciousness.”

Is consciousness a measurable phenomenon, though? Rather than progressing by degrees or moving through some gray area, isn’t it pretty black and white—a being is either conscious or it isn’t?

This may be an outmoded way of thinking, according to Berlin. “It used to be that only philosophers could study consciousness, but now we can study it from a scientific perspective,” she said. “We can measure changes in neural pathways. It’s subjective, but depends on reportability.”

She described three levels of consciousness: pure subjective experience (“Look, the sky is blue”), awareness of one’s own subjective experience (“Oh, it’s me that’s seeing the blue sky”), and relating one subjective experience to another (“The blue sky reminds me of a blue ocean”).

“These subjective states exist all the way down the animal kingdom. As humans we have a sense of self that gives us another depth to that experience, but it’s not necessary for pure sensation,” Berlin said.

Husain took this definition a few steps farther. “It’s this self-awareness, this idea that I exist separate from everything else and that I can model myself,” he said. “Human brains have a wonderful simulator. They can propose a course of action virtually, in their minds, and see how things play out. The ability to include yourself as an actor means you’re running a computation on the idea of yourself.”

Most of the decisions we make involve envisioning different outcomes, thinking about how each outcome would affect us, and choosing which outcome we’d most prefer.

“Complex tasks you want to achieve in the world are tied to your ability to foresee the future, at least based on some mental model,” Husain said. “With that view, I as an AI practitioner don’t see a problem implementing that type of consciousness.”

Moving Forward Cautiously (But Not too Cautiously)
To be clear, we’re nowhere near machines achieving artificial general intelligence or consciousness, and whether a “conscious machine” is possible—not to mention necessary or desirable—is still very much up for debate.

As machine intelligence continues to advance, though, we’ll need to walk the line between progress and risk management carefully.

Improving the transparency and explainability of AI systems is one crucial goal AI developers and researchers are zeroing in on. Especially in applications that could mean the difference between life and death, AI shouldn’t advance without people being able to trace how it’s making decisions and reaching conclusions.

Medicine is a prime example. “There are already advances that could save lives, but they’re not being used because they’re not trusted by doctors and nurses,” said Stone. “We need to make sure there’s transparency.” Demanding too much transparency would also be a mistake, though, because it will hinder the development of systems that could at best save lives and at worst improve efficiency and free up doctors to have more face time with patients.

Similarly, self-driving cars have great potential to reduce deaths from traffic fatalities. But even though humans cause thousands of deadly crashes every day, we’re terrified by the idea of self-driving cars that are anything less than perfect. “If we only accept autonomous cars when there’s zero probability of an accident, then we will never accept them,” Stone said. “Yet we give 16-year-olds the chance to take a road test with no idea what’s going on in their brains.”

This brings us back to the fact that, in building tech modeled after the human brain—which has evolved over millions of years—we’re working towards an end whose means we don’t fully comprehend, be it something as basic as choosing when to brake or accelerate or something as complex as measuring consciousness.

“We shouldn’t charge ahead and do things just because we can,” Stone said. “The technology can be very powerful, which is exciting, but we have to consider its implications.”

Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#434767 7 Non-Obvious Trends Shaping the Future

When you think of trends that might be shaping the future, the first things that come to mind probably have something to do with technology: Robots taking over jobs. Artificial intelligence advancing and proliferating. 5G making everything faster, connected cities making everything easier, data making everything more targeted.

Technology is undoubtedly changing the way we live, and will continue to do so—probably at an accelerating rate—in the near and far future. But there are other trends impacting the course of our lives and societies, too. They’re less obvious, and some have nothing to do with technology.

For the past nine years, entrepreneur and author Rohit Bhargava has read hundreds of articles across all types of publications, tagged and categorized them by topic, funneled frequent topics into broader trends, analyzed those trends, narrowed them down to the most significant ones, and published a book about them as part of his ‘Non-Obvious’ series. He defines a trend as “a unique curated observation of the accelerating present.”

In an encore session at South by Southwest last week (his initial talk couldn’t fit hundreds of people who wanted to attend, so a re-do was scheduled), Bhargava shared details of his creative process, why it’s hard to think non-obviously, the most important trends of this year, and how to make sure they don’t get the best of you.

Thinking Differently
“Non-obvious thinking is seeing the world in a way other people don’t see it,” Bhargava said. “The secret is curating your ideas.” Curation collects ideas and presents them in a meaningful way; museum curators, for example, decide which works of art to include in an exhibit and how to present them.

For his own curation process, Bhargava uses what he calls the haystack method. Rather than searching for a needle in a haystack, he gathers ‘hay’ (ideas and stories) then uses them to locate and define a ‘needle’ (a trend). “If you spend enough time gathering information, you can put the needle into the middle of the haystack,” he said.

A big part of gathering information is looking for it in places you wouldn’t normally think to look. In his case, that means that on top of reading what everyone else reads—the New York Times, the Washington Post, the Economist—he also buys publications like Modern Farmer, Teen Vogue, and Ink magazine. “It’s like stepping into someone else’s world who’s not like me,” he said. “That’s impossible to do online because everything is personalized.”

Three common barriers make non-obvious thinking hard.

The first is unquestioned assumptions, which are facts or habits we think will never change. When James Dyson first invented the bagless vacuum, he wanted to sell the license to it, but no one believed people would want to spend more money up front on a vacuum then not have to buy bags. The success of Dyson’s business today shows how mistaken that assumption—that people wouldn’t adapt to a product that, at the end of the day, was far more sensible—turned out to be. “Making the wrong basic assumptions can doom you,” Bhargava said.

The second barrier to thinking differently is constant disruption. “Everything is changing as industries blend together,” Bhargava said. “The speed of change makes everyone want everything, all the time, and people expect the impossible.” We’ve come to expect every alternative to be presented to us in every moment, but in many cases this doesn’t serve us well; we’re surrounded by noise and have trouble discerning what’s valuable and authentic.

This ties into the third barrier, which Bhargava calls the believability crisis. “Constant sensationalism makes people skeptical about everything,” he said. With the advent of fake news and technology like deepfakes, we’re in a post-truth, post-fact era, and are in a constant battle to discern what’s real from what’s not.

2019 Trends
Bhargava’s efforts to see past these barriers and curate information yielded 15 trends he believes are currently shaping the future. He shared seven of them, along with thoughts on how to stay ahead of the curve.

Retro Trust
We tend to trust things we have a history with. “People like nostalgic experiences,” Bhargava said. With tech moving as fast as it is, old things are quickly getting replaced by shinier, newer, often more complex things. But not everyone’s jumping on board—and some who’ve been on board are choosing to jump off in favor of what worked for them in the past.

“We’re turning back to vinyl records and film cameras, deliberately downgrading to phones that only text and call,” Bhargava said. In a period of too much change too fast, people are craving familiarity and dependability. To capitalize on that sentiment, entrepreneurs should seek out opportunities for collaboration—how can you build a product that’s new, but feels reliable and familiar?

Muddled Masculinity
Women have increasingly taken on more leadership roles, advanced in the workplace, now own more homes than men, and have higher college graduation rates. That’s all great for us ladies—but not so great for men or, perhaps more generally, for the concept of masculinity.

“Female empowerment is causing confusion about what it means to be a man today,” Bhargava said. “Men don’t know what to do—should they say something? Would that make them an asshole? Should they keep quiet? Would that make them an asshole?”

By encouraging the non-conforming, we can help take some weight off the traditional gender roles, and their corresponding divisions and pressures.

Innovation Envy
Innovation has become an over-used word, to the point that it’s thrown onto ideas and actions that aren’t really innovative at all. “We innovate by looking at someone else and doing the same,” Bhargava said. If an employee brings a radical idea to someone in a leadership role, in many companies the leadership will say they need a case study before implementing the radical idea—but if it’s already been done, it’s not innovative. “With most innovation what ends up happening is not spectacular failure, but irrelevance,” Bhargava said.

He suggests that rather than being on the defensive, companies should play offense with innovation, and when it doesn’t work “fail as if no one’s watching” (often, no one will be).

Artificial Influence
Thanks to social media and other technologies, there are a growing number of fabricated things that, despite not being real, influence how we think. “15 percent of all Twitter accounts may be fake, and there are 60 million fake Facebook accounts,” Bhargava said. There are virtual influencers and even virtual performers.

“Don’t hide the artificial ingredients,” Bhargava advised. “Some people are going to pretend it’s all real. We have to be ethical.” The creators of fabrications meant to influence the way people think, or the products they buy, or the decisions they make, should make it crystal-clear that there aren’t living, breathing people behind the avatars.

Enterprise Empathy
Another reaction to the fast pace of change these days—and the fast pace of life, for that matter—is that empathy is regaining value and even becoming a driver of innovation. Companies are searching for ways to give people a sense of reassurance. The Tesco grocery brand in the UK has a “relaxed lane” for those who don’t want to feel rushed as they check out. Starbucks opened a “signing store” in Washington DC, and most of its regular customers have learned some sign language.

“Use empathy as a principle to help yourself stand out,” Bhargava said. Besides being a good business strategy, “made with empathy” will ideally promote, well, more empathy, a quality there’s often a shortage of.

Robot Renaissance
From automating factory jobs to flipping burgers to cleaning our floors, robots have firmly taken their place in our day-to-day lives—and they’re not going away anytime soon. “There are more situations with robots than ever before,” Bhargava said. “They’re exploring underwater. They’re concierges at hotels.”

The robot revolution feels intimidating. But Bhargava suggests embracing robots with more curiosity than concern. While they may replace some tasks we don’t want replaced, they’ll also be hugely helpful in multiple contexts, from elderly care to dangerous manual tasks.

Back-storytelling
Similar to retro trust and enterprise empathy, organizations have started to tell their brand’s story to gain customer loyalty. “Stories give us meaning, and meaning is what we need in order to be able to put the pieces together,” Bhargava said. “Stories give us a way of understanding the world.”

Finding the story behind your business, brand, or even yourself, and sharing it openly, can help you connect with people, be they customers, coworkers, or friends.

Tech’s Ripple Effects
While it may not overtly sound like it, most of the trends Bhargava identified for 2019 are tied to technology, and are in fact a sort of backlash against it. Tech has made us question who to trust, how to innovate, what’s real and what’s fake, how to make the best decisions, and even what it is that makes us human.

By being aware of these trends, sharing them, and having conversations about them, we’ll help shape the way tech continues to be built, and thus the way it impacts us down the road.

Image Credit: Rohit Bhargava by Brian Smale Continue reading

Posted in Human Robots