Tag Archives: reliable

#435224 Can AI Save the Internet from Fake News?

There’s an old proverb that says “seeing is believing.” But in the age of artificial intelligence, it’s becoming increasingly difficult to take anything at face value—literally.

The rise of so-called “deepfakes,” in which different types of AI-based techniques are used to manipulate video content, has reached the point where Congress held its first hearing last month on the potential abuses of the technology. The congressional investigation coincided with the release of a doctored video of Facebook CEO Mark Zuckerberg delivering what appeared to be a sinister speech.

View this post on Instagram

‘Imagine this…’ (2019) Mark Zuckerberg reveals the truth about Facebook and who really owns the future… see more @sheffdocfest VDR technology by @cannyai #spectreknows #privacy #democracy #surveillancecapitalism #dataism #deepfake #deepfakes #contemporaryartwork #digitalart #generativeart #newmediaart #codeart #markzuckerberg #artivism #contemporaryart

A post shared by Bill Posters (@bill_posters_uk) on Jun 7, 2019 at 7:15am PDT

Scientists are scrambling for solutions on how to combat deepfakes, while at the same time others are continuing to refine the techniques for less nefarious purposes, such as automating video content for the film industry.

At one end of the spectrum, for example, researchers at New York University’s Tandon School of Engineering have proposed implanting a type of digital watermark using a neural network that can spot manipulated photos and videos.

The idea is to embed the system directly into a digital camera. Many smartphone cameras and other digital devices already use AI to boost image quality and make other corrections. The authors of the study out of NYU say their prototype platform increased the chances of detecting manipulation from about 45 percent to more than 90 percent without sacrificing image quality.

On the other hand, researchers at Carnegie Mellon University recently hit on a technique for automatically and rapidly converting large amounts of video content from one source into the style of another. In one example, the scientists transferred the facial expressions of comedian John Oliver onto the bespectacled face of late night show host Stephen Colbert.

The CMU team says the method could be a boon to the movie industry, such as by converting black and white films to color, though it also conceded that the technology could be used to develop deepfakes.

Words Matter with Fake News
While the current spotlight is on how to combat video and image manipulation, a prolonged trench warfare on fake news is being fought by academia, nonprofits, and the tech industry.

This isn’t the fake news that some have come to use as a knee-jerk reaction to fact-based information that might be less than flattering to the subject of the report. Rather, fake news is deliberately-created misinformation that is spread via the internet.

In a recent Pew Research Center poll, Americans said fake news is a bigger problem than violent crime, racism, and terrorism. Fortunately, many of the linguistic tools that have been applied to determine when people are being deliberately deceitful can be baked into algorithms for spotting fake news.

That’s the approach taken by a team at the University of Michigan (U-M) to develop an algorithm that was better than humans at identifying fake news—76 percent versus 70 percent—by focusing on linguistic cues like grammatical structure, word choice, and punctuation.

For example, fake news tends to be filled with hyperbole and exaggeration, using terms like “overwhelming” or “extraordinary.”

“I think that’s a way to make up for the fact that the news is not quite true, so trying to compensate with the language that’s being used,” Rada Mihalcea, a computer science and engineering professor at U-M, told Singularity Hub.

The paper “Automatic Detection of Fake News” was based on the team’s previous studies on how people lie in general, without necessarily having the intention of spreading fake news, she said.

“Deception is a complicated and complex phenomenon that requires brain power,” Mihalcea noted. “That often results in simpler language, where you have shorter sentences or shorter documents.”

AI Versus AI
While most fake news is still churned out by humans with identifiable patterns of lying, according to Mihalcea, other researchers are already anticipating how to detect misinformation manufactured by machines.

A group led by Yejin Choi, with the Allen Institute of Artificial Intelligence and the University of Washington in Seattle, is one such team. The researchers recently introduced the world to Grover, an AI platform that is particularly good at catching autonomously-generated fake news because it’s equally good at creating it.

“This is due to a finding that is perhaps counterintuitive: strong generators for neural fake news are themselves strong detectors of it,” wrote Rowan Zellers, a PhD student and team member, in a Medium blog post. “A generator of fake news will be most familiar with its own peculiarities, such as using overly common or predictable words, as well as the peculiarities of similar generators.”

The team found that the best current discriminators can classify neural fake news from real, human-created text with 73 percent accuracy. Grover clocks in with 92 percent accuracy based on a training set of 5,000 neural network-generated fake news samples. Zellers wrote that Grover got better at scale, identifying 97.5 percent of made-up machine mumbo jumbo when trained on 80,000 articles.

It performed almost as well against fake news created by a powerful new text-generation system called GPT-2 built by OpenAI, a nonprofit research lab founded by Elon Musk, classifying 96.1 percent of the machine-written articles.

OpenAI had so feared that the platform could be abused that it has only released limited versions of the software. The public can play with a scaled-down version posted by a machine learning engineer named Adam King, where the user types in a short prompt and GPT-2 bangs out a short story or poem based on the snippet of text.

No Silver AI Bullet
While real progress is being made against fake news, the challenges of using AI to detect and correct misinformation are abundant, according to Hugo Williams, outreach manager for Logically, a UK-based startup that is developing different detectors using elements of deep learning and natural language processing, among others. He explained that the Logically models analyze information based on a three-pronged approach.

Publisher metadata: Is the article from a known, reliable, and trustworthy publisher with a history of credible journalism?
Network behavior: Is the article proliferating through social platforms and networks in ways typically associated with misinformation?
Content: The AI scans articles for hundreds of known indicators typically found in misinformation.

“There is no single algorithm which is capable of doing this,” Williams wrote in an email to Singularity Hub. “Even when you have a collection of different algorithms which—when combined—can give you relatively decent indications of what is unreliable or outright false, there will always need to be a human layer in the pipeline.”

The company released a consumer app in India back in February just before that country’s election cycle that was a “great testing ground” to refine its technology for the next app release, which is scheduled in the UK later this year. Users can submit articles for further scrutiny by a real person.

“We see our technology not as replacing traditional verification work, but as a method of simplifying and streamlining a very manual process,” Williams said. “In doing so, we’re able to publish more fact checks at a far quicker pace than other organizations.”

“With heightened analysis and the addition of more contextual information around the stories that our users are reading, we are not telling our users what they should or should not believe, but encouraging critical thinking based upon reliable, credible, and verified content,” he added.

AI may never be able to detect fake news entirely on its own, but it can help us be smarter about what we read on the internet.

Image Credit: Dennis Lytyagin / Shutterstock.com Continue reading

Posted in Human Robots

#435080 12 Ways Big Tech Can Take Big Action on ...

Bill Gates and Mark Zuckerberg have invested $1 billion in Breakthrough Energy to fund next-generation solutions to tackle climate. But there is a huge risk that any successful innovation will only reach the market as the world approaches 2030 at the earliest.

We now know that reducing the risk of dangerous climate change means halving global greenhouse gas emissions by that date—in just 11 years. Perhaps Gates, Zuckerberg, and all the tech giants should invest equally in innovations to do with how their own platforms —search, social media, eCommerce—can support societal behavior changes to drive down emissions.

After all, the tech giants influence the decisions of four billion consumers every day. It is time for a social contract between tech and society.

Recently myself and collaborator Johan Falk published a report during the World Economic Forum in Davos outlining 12 ways the tech sector can contribute to supporting societal goals to stabilize Earth’s climate.

Become genuine climate guardians

Tech giants go to great lengths to show how serious they are about reducing their emissions. But I smell cognitive dissonance. Google and Microsoft are working in partnership with oil companies to develop AI tools to help maximize oil recovery. This is not the behavior of companies working flat-out to stabilize Earth’s climate. Indeed, few major tech firms have visions that indicate a stable and resilient planet might be a good goal, yet AI alone has the potential to slash greenhouse gas emissions by four percent by 2030—equivalent to the emissions of Australia, Canada, and Japan combined.

We are now developing a playbook, which we plan to publish later this year at the UN climate summit, about making it as simple as possible for a CEO to become a climate guardian.

Hey Alexa, do you care about the stability of Earth’s climate?

Increasingly, consumers are delegating their decisions to narrow artificial intelligence like Alexa and Siri. Welcome to a world of zero-click purchases.

Should algorithms and information architecture be designed to nudge consumer behavior towards low-carbon choices, for example by making these options the default? We think so. People don’t mind being nudged; in fact, they welcome efforts to make their lives better. For instance, if I want to lose weight, I know I will need all the help I can get. Let’s ‘nudge for good’ and experiment with supporting societal goals.

Use social media for good

Facebook’s goal is to bring the world closer together. With 2.2 billion users on the platform, CEO Mark Zuckerberg can reasonably claim this goal is possible. But social media has changed the flow of information in the world, creating a lucrative industry around a toxic brown-cloud of confusion and anger, with frankly terrifying implications for democracy. This has been linked to the rise of nationalism and populism, and to the election of leaders who shun international cooperation, dismiss scientific knowledge, and reverse climate action at a moment when we need it more than ever.

Social media tools need re-engineering to help people make sense of the world, support democratic processes, and build communities around societal goals. Make this your mission.

Design for a future on Earth

Almost everything is designed with computer software, from buildings to mobile phones to consumer packaging. It is time to make zero-carbon design the new default and design products for sharing, re-use and disassembly.

The future is circular

Halving emissions in a decade will require all companies to adopt circular business models to reduce material use. Some tech companies are leading the charge. Apple has committed to becoming 100 percent circular as soon as possible. Great.

While big tech companies strive to be market leaders here, many other companies lack essential knowledge. Tech companies can support rapid adoption in different economic sectors, not least because they have the know-how to scale innovations exponentially. It makes business sense. If economies of scale drive the price of recycled steel and aluminium down, everyone wins.

Reward low-carbon consumption

eCommerce platforms can create incentives for low-carbon consumption. The world’s largest experiment in greening consumer behavior is Ant Forest, set up by Chinese fintech giant Ant Financial.

An estimated 300 million customers—similar to the population of the United States—gain points for making low-carbon choices such as walking to work, using public transport, or paying bills online. Virtual points are eventually converted into real trees. Sure, big questions remain about its true influence on emissions, but this is a space for rapid experimentation for big impact.

Make information more useful

Science is our tool for defining reality. Scientific consensus is how we attain reliable knowledge. Even after the information revolution, reliable knowledge about the world remains fragmented and unstructured. Build the next generation of search engines to genuinely make the world’s knowledge useful for supporting societal goals.

We need to put these tools towards supporting shared world views of the state of the planet based on the best science. New AI tools being developed by startups like Iris.ai can help see through the fog. From Alexa to Google Home and Siri, the future is “Voice”, but who chooses the information source? The highest bidder? Again, the implications for climate are huge.

Create new standards for digital advertising and marketing

Half of global ad revenue will soon be online, and largely going to a small handful of companies. How about creating a novel ethical standard on what is advertised and where? Companies could consider promoting sustainable choices and healthy lifestyles and limiting advertising of high-emissions products such as cheap flights.

We are what we eat

It is no secret that tech is about to disrupt grocery. The supermarkets of the future will be built on personal consumer data. With about two billion people either obese or overweight, revolutions in choice architecture could support positive diet choices, reduce meat consumption, halve food waste and, into the bargain, slash greenhouse gas emissions.

The future of transport is not cars, it’s data

The 2020s look set to be the biggest disruption of the automobile industry since Henry Ford unveiled the Model T. Two seismic shifts are on their way.

First, electric cars now compete favorably with petrol engines on range. Growth will reach an inflection point within a year or two once prices reach parity. The death of the internal combustion engine in Europe and Asia is assured with end dates announced by China, India, France, the UK, and most of Scandinavia. Dates range from 2025 (Norway) to 2040 (UK and China).

Tech giants can accelerate the demise. Uber recently announced a passenger surcharge to help London drivers save around $1,500 a year towards the cost of an electric car.

Second, driverless cars can shift the transport economic model from ownership to service and ride sharing. A complete shift away from privately-owned vehicles is around the corner, with large implications for emissions.

Clean-energy living and working

Most buildings are barely used and inefficiently heated and cooled. Digitization can slash this waste and its corresponding emissions through measurement, monitoring, and new business models to use office space. While, just a few unicorns are currently in this space, the potential is enormous. Buildings are one of the five biggest sources of emissions, yet have the potential to become clean energy producers in a distributed energy network.

Creating liveable cities

More cities are setting ambitious climate targets to halve emissions in a decade or even less. Tech companies can support this transition by driving demand for low-carbon services for their workforces and offices, but also by providing tools to help monitor emissions and act to reduce them. Google, for example, is collecting travel and other data from across cities to estimate emissions in real time. This is possible through technologies like artificial intelligence and the internet of things. But beware of smart cities that turn out to be not so smart. Efficiencies can reduce resilience when cities face crises.

It’s a Start
Of course, it will take more than tech to solve the climate crisis. But tech is a wildcard. The actions of the current tech giants and their acolytes could serve to destabilize the climate further or bring it under control.

We need a new social contract between tech companies and society to achieve societal goals. The alternative is unthinkable. Without drastic action now, climate chaos threatens to engulf us all. As this future approaches, regulators will be forced to take ever more draconian action to rein in the problem. Acting now will reduce that risk.

Note: A version of this article was originally published on World Economic Forum

Image Credit: Bruce Rolff / Shutterstock.com Continue reading

Posted in Human Robots

#434837 In Defense of Black Box AI

Deep learning is powering some amazing new capabilities, but we find it hard to scrutinize the workings of these algorithms. Lack of interpretability in AI is a common concern and many are trying to fix it, but is it really always necessary to know what’s going on inside these “black boxes”?

In a recent perspective piece for Science, Elizabeth Holm, a professor of materials science and engineering at Carnegie Mellon University, argued in defense of the black box algorithm. I caught up with her last week to find out more.

Edd Gent: What’s your experience with black box algorithms?

Elizabeth Holm: I got a dual PhD in materials science and engineering and scientific computing. I came to academia about six years ago and part of what I wanted to do in making this career change was to refresh and revitalize my computer science side.

I realized that computer science had changed completely. It used to be about algorithms and making codes run fast, but now it’s about data and artificial intelligence. There are the interpretable methods like random forest algorithms, where we can tell how the machine is making its decisions. And then there are the black box methods, like convolutional neural networks.

Once in a while we can find some information about their inner workings, but most of the time we have to accept their answers and kind of probe around the edges to figure out the space in which we can use them and how reliable and accurate they are.

EG: What made you feel like you had to mount a defense of these black box algorithms?

EH: When I started talking with my colleagues, I found that the black box nature of many of these algorithms was a real problem for them. I could understand that because we’re scientists, we always want to know why and how.

It got me thinking as a bit of a contrarian, “Are black boxes all bad? Must we reject them?” Surely not, because human thought processes are fairly black box. We often rely on human thought processes that the thinker can’t necessarily explain.

It’s looking like we’re going to be stuck with these methods for a while, because they’re really helpful. They do amazing things. And so there’s a very pragmatic realization that these are the best methods we’ve got to do some really important problems, and we’re not right now seeing alternatives that are interpretable. We’re going to have to use them, so we better figure out how.

EG: In what situations do you think we should be using black box algorithms?

EH: I came up with three rules. The simplest rule is: when the cost of a bad decision is small and the value of a good decision is high, it’s worth it. The example I gave in the paper is targeted advertising. If you send an ad no one wants it doesn’t cost a lot. If you’re the receiver it doesn’t cost a lot to get rid of it.

There are cases where the cost is high, and that’s then we choose the black box if it’s the best option to do the job. Things get a little trickier here because we have to ask “what are the costs of bad decisions, and do we really have them fully characterized?” We also have to be very careful knowing that our systems may have biases, they may have limitations in where you can apply them, they may be breakable.

But at the same time, there are certainly domains where we’re going to test these systems so extensively that we know their performance in virtually every situation. And if their performance is better than the other methods, we need to do it. Self driving vehicles are a significant example—it’s almost certain they’re going to have to use black box methods, and that they’re going to end up being better drivers than humans.

The third rule is the more fun one for me as a scientist, and that’s the case where the black box really enlightens us as to a new way to look at something. We have trained a black box to recognize the fracture energy of breaking a piece of metal from a picture of the broken surface. It did a really good job, and humans can’t do this and we don’t know why.

What the computer seems to be seeing is noise. There’s a signal in that noise, and finding it is very difficult, but if we do we may find something significant to the fracture process, and that would be an awesome scientific discovery.

EG: Do you think there’s been too much emphasis on interpretability?

EH: I think the interpretability problem is a fundamental, fascinating computer science grand challenge and there are significant issues where we need to have an interpretable model. But how I would frame it is not that there’s too much emphasis on interpretability, but rather that there’s too much dismissiveness of uninterpretable models.

I think that some of the current social and political issues surrounding some very bad black box outcomes have convinced people that all machine learning and AI should be interpretable because that will somehow solve those problems.

Asking humans to explain their rationale has not eliminated bias, or stereotyping, or bad decision-making in humans. Relying too much on interpreted ability perhaps puts the responsibility in the wrong place for getting better results. I can make a better black box without knowing exactly in what way the first one was bad.

EG: Looking further into the future, do you think there will be situations where humans will have to rely on black box algorithms to solve problems we can’t get our heads around?

EH: I do think so, and it’s not as much of a stretch as we think it is. For example, humans don’t design the circuit map of computer chips anymore. We haven’t for years. It’s not a black box algorithm that designs those circuit boards, but we’ve long since given up trying to understand a particular computer chip’s design.

With the billions of circuits in every computer chip, the human mind can’t encompass it, either in scope or just the pure time that it would take to trace every circuit. There are going to be cases where we want a system so complex that only the patience that computers have and their ability to work in very high-dimensional spaces is going to be able to do it.

So we can continue to argue about interpretability, but we need to acknowledge that we’re going to need to use black boxes. And this is our opportunity to do our due diligence to understand how to use them responsibly, ethically, and with benefits rather than harm. And that’s going to be a social conversation as well as as a scientific one.

*Responses have been edited for length and style

Image Credit: Chingraph / Shutterstock.com Continue reading

Posted in Human Robots

#434767 7 Non-Obvious Trends Shaping the Future

When you think of trends that might be shaping the future, the first things that come to mind probably have something to do with technology: Robots taking over jobs. Artificial intelligence advancing and proliferating. 5G making everything faster, connected cities making everything easier, data making everything more targeted.

Technology is undoubtedly changing the way we live, and will continue to do so—probably at an accelerating rate—in the near and far future. But there are other trends impacting the course of our lives and societies, too. They’re less obvious, and some have nothing to do with technology.

For the past nine years, entrepreneur and author Rohit Bhargava has read hundreds of articles across all types of publications, tagged and categorized them by topic, funneled frequent topics into broader trends, analyzed those trends, narrowed them down to the most significant ones, and published a book about them as part of his ‘Non-Obvious’ series. He defines a trend as “a unique curated observation of the accelerating present.”

In an encore session at South by Southwest last week (his initial talk couldn’t fit hundreds of people who wanted to attend, so a re-do was scheduled), Bhargava shared details of his creative process, why it’s hard to think non-obviously, the most important trends of this year, and how to make sure they don’t get the best of you.

Thinking Differently
“Non-obvious thinking is seeing the world in a way other people don’t see it,” Bhargava said. “The secret is curating your ideas.” Curation collects ideas and presents them in a meaningful way; museum curators, for example, decide which works of art to include in an exhibit and how to present them.

For his own curation process, Bhargava uses what he calls the haystack method. Rather than searching for a needle in a haystack, he gathers ‘hay’ (ideas and stories) then uses them to locate and define a ‘needle’ (a trend). “If you spend enough time gathering information, you can put the needle into the middle of the haystack,” he said.

A big part of gathering information is looking for it in places you wouldn’t normally think to look. In his case, that means that on top of reading what everyone else reads—the New York Times, the Washington Post, the Economist—he also buys publications like Modern Farmer, Teen Vogue, and Ink magazine. “It’s like stepping into someone else’s world who’s not like me,” he said. “That’s impossible to do online because everything is personalized.”

Three common barriers make non-obvious thinking hard.

The first is unquestioned assumptions, which are facts or habits we think will never change. When James Dyson first invented the bagless vacuum, he wanted to sell the license to it, but no one believed people would want to spend more money up front on a vacuum then not have to buy bags. The success of Dyson’s business today shows how mistaken that assumption—that people wouldn’t adapt to a product that, at the end of the day, was far more sensible—turned out to be. “Making the wrong basic assumptions can doom you,” Bhargava said.

The second barrier to thinking differently is constant disruption. “Everything is changing as industries blend together,” Bhargava said. “The speed of change makes everyone want everything, all the time, and people expect the impossible.” We’ve come to expect every alternative to be presented to us in every moment, but in many cases this doesn’t serve us well; we’re surrounded by noise and have trouble discerning what’s valuable and authentic.

This ties into the third barrier, which Bhargava calls the believability crisis. “Constant sensationalism makes people skeptical about everything,” he said. With the advent of fake news and technology like deepfakes, we’re in a post-truth, post-fact era, and are in a constant battle to discern what’s real from what’s not.

2019 Trends
Bhargava’s efforts to see past these barriers and curate information yielded 15 trends he believes are currently shaping the future. He shared seven of them, along with thoughts on how to stay ahead of the curve.

Retro Trust
We tend to trust things we have a history with. “People like nostalgic experiences,” Bhargava said. With tech moving as fast as it is, old things are quickly getting replaced by shinier, newer, often more complex things. But not everyone’s jumping on board—and some who’ve been on board are choosing to jump off in favor of what worked for them in the past.

“We’re turning back to vinyl records and film cameras, deliberately downgrading to phones that only text and call,” Bhargava said. In a period of too much change too fast, people are craving familiarity and dependability. To capitalize on that sentiment, entrepreneurs should seek out opportunities for collaboration—how can you build a product that’s new, but feels reliable and familiar?

Muddled Masculinity
Women have increasingly taken on more leadership roles, advanced in the workplace, now own more homes than men, and have higher college graduation rates. That’s all great for us ladies—but not so great for men or, perhaps more generally, for the concept of masculinity.

“Female empowerment is causing confusion about what it means to be a man today,” Bhargava said. “Men don’t know what to do—should they say something? Would that make them an asshole? Should they keep quiet? Would that make them an asshole?”

By encouraging the non-conforming, we can help take some weight off the traditional gender roles, and their corresponding divisions and pressures.

Innovation Envy
Innovation has become an over-used word, to the point that it’s thrown onto ideas and actions that aren’t really innovative at all. “We innovate by looking at someone else and doing the same,” Bhargava said. If an employee brings a radical idea to someone in a leadership role, in many companies the leadership will say they need a case study before implementing the radical idea—but if it’s already been done, it’s not innovative. “With most innovation what ends up happening is not spectacular failure, but irrelevance,” Bhargava said.

He suggests that rather than being on the defensive, companies should play offense with innovation, and when it doesn’t work “fail as if no one’s watching” (often, no one will be).

Artificial Influence
Thanks to social media and other technologies, there are a growing number of fabricated things that, despite not being real, influence how we think. “15 percent of all Twitter accounts may be fake, and there are 60 million fake Facebook accounts,” Bhargava said. There are virtual influencers and even virtual performers.

“Don’t hide the artificial ingredients,” Bhargava advised. “Some people are going to pretend it’s all real. We have to be ethical.” The creators of fabrications meant to influence the way people think, or the products they buy, or the decisions they make, should make it crystal-clear that there aren’t living, breathing people behind the avatars.

Enterprise Empathy
Another reaction to the fast pace of change these days—and the fast pace of life, for that matter—is that empathy is regaining value and even becoming a driver of innovation. Companies are searching for ways to give people a sense of reassurance. The Tesco grocery brand in the UK has a “relaxed lane” for those who don’t want to feel rushed as they check out. Starbucks opened a “signing store” in Washington DC, and most of its regular customers have learned some sign language.

“Use empathy as a principle to help yourself stand out,” Bhargava said. Besides being a good business strategy, “made with empathy” will ideally promote, well, more empathy, a quality there’s often a shortage of.

Robot Renaissance
From automating factory jobs to flipping burgers to cleaning our floors, robots have firmly taken their place in our day-to-day lives—and they’re not going away anytime soon. “There are more situations with robots than ever before,” Bhargava said. “They’re exploring underwater. They’re concierges at hotels.”

The robot revolution feels intimidating. But Bhargava suggests embracing robots with more curiosity than concern. While they may replace some tasks we don’t want replaced, they’ll also be hugely helpful in multiple contexts, from elderly care to dangerous manual tasks.

Back-storytelling
Similar to retro trust and enterprise empathy, organizations have started to tell their brand’s story to gain customer loyalty. “Stories give us meaning, and meaning is what we need in order to be able to put the pieces together,” Bhargava said. “Stories give us a way of understanding the world.”

Finding the story behind your business, brand, or even yourself, and sharing it openly, can help you connect with people, be they customers, coworkers, or friends.

Tech’s Ripple Effects
While it may not overtly sound like it, most of the trends Bhargava identified for 2019 are tied to technology, and are in fact a sort of backlash against it. Tech has made us question who to trust, how to innovate, what’s real and what’s fake, how to make the best decisions, and even what it is that makes us human.

By being aware of these trends, sharing them, and having conversations about them, we’ll help shape the way tech continues to be built, and thus the way it impacts us down the road.

Image Credit: Rohit Bhargava by Brian Smale Continue reading

Posted in Human Robots

#434759 To Be Ethical, AI Must Become ...

As over-hyped as artificial intelligence is—everyone’s talking about it, few fully understand it, it might leave us all unemployed but also solve all the world’s problems—its list of accomplishments is growing. AI can now write realistic-sounding text, give a debating champ a run for his money, diagnose illnesses, and generate fake human faces—among much more.

After training these systems on massive datasets, their creators essentially just let them do their thing to arrive at certain conclusions or outcomes. The problem is that more often than not, even the creators don’t know exactly why they’ve arrived at those conclusions or outcomes. There’s no easy way to trace a machine learning system’s rationale, so to speak. The further we let AI go down this opaque path, the more likely we are to end up somewhere we don’t want to be—and may not be able to come back from.

In a panel at the South by Southwest interactive festival last week titled “Ethics and AI: How to plan for the unpredictable,” experts in the field shared their thoughts on building more transparent, explainable, and accountable AI systems.

Not New, but Different
Ryan Welsh, founder and director of explainable AI startup Kyndi, pointed out that having knowledge-based systems perform advanced tasks isn’t new; he cited logistical, scheduling, and tax software as examples. What’s new is the learning component, our inability to trace how that learning occurs, and the ethical implications that could result.

“Now we have these systems that are learning from data, and we’re trying to understand why they’re arriving at certain outcomes,” Welsh said. “We’ve never actually had this broad society discussion about ethics in those scenarios.”

Rather than continuing to build AIs with opaque inner workings, engineers must start focusing on explainability, which Welsh broke down into three subcategories. Transparency and interpretability come first, and refer to being able to find the units of high influence in a machine learning network, as well as the weights of those units and how they map to specific data and outputs.

Then there’s provenance: knowing where something comes from. In an ideal scenario, for example, Open AI’s new text generator would be able to generate citations in its text that reference academic (and human-created) papers or studies.

Explainability itself is the highest and final bar and refers to a system’s ability to explain itself in natural language to the average user by being able to say, “I generated this output because x, y, z.”

“Humans are unique in our ability and our desire to ask why,” said Josh Marcuse, executive director of the Defense Innovation Board, which advises Department of Defense senior leaders on innovation. “The reason we want explanations from people is so we can understand their belief system and see if we agree with it and want to continue to work with them.”

Similarly, we need to have the ability to interrogate AIs.

Two Types of Thinking
Welsh explained that one big barrier standing in the way of explainability is the tension between the deep learning community and the symbolic AI community, which see themselves as two different paradigms and historically haven’t collaborated much.

Symbolic or classical AI focuses on concepts and rules, while deep learning is centered around perceptions. In human thought this is the difference between, for example, deciding to pass a soccer ball to a teammate who is open (you make the decision because conceptually you know that only open players can receive passes), and registering that the ball is at your feet when someone else passes it to you (you’re taking in information without making a decision about it).

“Symbolic AI has abstractions and representation based on logic that’s more humanly comprehensible,” Welsh said. To truly mimic human thinking, AI needs to be able to both perceive information and conceptualize it. An example of perception (deep learning) in an AI is recognizing numbers within an image, while conceptualization (symbolic learning) would give those numbers a hierarchical order and extract rules from the hierachy (4 is greater than 3, and 5 is greater than 4, therefore 5 is also greater than 3).

Explainability comes in when the system can say, “I saw a, b, and c, and based on that decided x, y, or z.” DeepMind and others have recently published papers emphasizing the need to fuse the two paradigms together.

Implications Across Industries
One of the most prominent fields where AI ethics will come into play, and where the transparency and accountability of AI systems will be crucial, is defense. Marcuse said, “We’re accountable beings, and we’re responsible for the choices we make. Bringing in tech or AI to a battlefield doesn’t strip away that meaning and accountability.”

In fact, he added, rather than worrying about how AI might degrade human values, people should be asking how the tech could be used to help us make better moral choices.

It’s also important not to conflate AI with autonomy—a worst-case scenario that springs to mind is an intelligent destructive machine on a rampage. But in fact, Marcuse said, in the defense space, “We have autonomous systems today that don’t rely on AI, and most of the AI systems we’re contemplating won’t be autonomous.”

The US Department of Defense released its 2018 artificial intelligence strategy last month. It includes developing a robust and transparent set of principles for defense AI, investing in research and development for AI that’s reliable and secure, continuing to fund research in explainability, advocating for a global set of military AI guidelines, and finding ways to use AI to reduce the risk of civilian casualties and other collateral damage.

Though these were designed with defense-specific aims in mind, Marcuse said, their implications extend across industries. “The defense community thinks of their problems as being unique, that no one deals with the stakes and complexity we deal with. That’s just wrong,” he said. Making high-stakes decisions with technology is widespread; safety-critical systems are key to aviation, medicine, and self-driving cars, to name a few.

Marcuse believes the Department of Defense can invest in AI safety in a way that has far-reaching benefits. “We all depend on technology to keep us alive and safe, and no one wants machines to harm us,” he said.

A Creation Superior to Its Creator
That said, we’ve come to expect technology to meet our needs in just the way we want, all the time—servers must never be down, GPS had better not take us on a longer route, Google must always produce the answer we’re looking for.

With AI, though, our expectations of perfection may be less reasonable.

“Right now we’re holding machines to superhuman standards,” Marcuse said. “We expect them to be perfect and infallible.” Take self-driving cars. They’re conceived of, built by, and programmed by people, and people as a whole generally aren’t great drivers—just look at traffic accident death rates to confirm that. But the few times self-driving cars have had fatal accidents, there’s been an ensuing uproar and backlash against the industry, as well as talk of implementing more restrictive regulations.

This can be extrapolated to ethics more generally. We as humans have the ability to explain our decisions, but many of us aren’t very good at doing so. As Marcuse put it, “People are emotional, they confabulate, they lie, they’re full of unconscious motivations. They don’t pass the explainability test.”

Why, then, should explainability be the standard for AI?

Even if humans aren’t good at explaining our choices, at least we can try, and we can answer questions that probe at our decision-making process. A deep learning system can’t do this yet, so working towards being able to identify which input data the systems are triggering on to make decisions—even if the decisions and the process aren’t perfect—is the direction we need to head.

Image Credit: a-image / Shutterstock.com Continue reading

Posted in Human Robots