Tag Archives: rather

#435106 Could Artificial Photosynthesis Help ...

Plants are the planet’s lungs, but they’re struggling to keep up due to rising CO2 emissions and deforestation. Engineers are giving them a helping hand, though, by augmenting their capacity with new technology and creating artificial substitutes to help them clean up our atmosphere.

Imperial College London, one of the UK’s top engineering schools, recently announced that it was teaming up with startup Arborea to build the company’s first outdoor pilot of its BioSolar Leaf cultivation system at the university’s White City campus in West London.

Arborea is developing large solar panel-like structures that house microscopic plants and can be installed on buildings or open land. The plants absorb light and carbon dioxide as they photosynthesize, removing greenhouse gases from the air and producing organic material, which can be processed to extract valuable food additives like omega-3 fatty acids.

The idea of growing algae to produce useful materials isn’t new, but Arborea’s pitch seems to be flexibility and affordability. The more conventional approach is to grow algae in open ponds, which are less efficient and open to contamination, or in photo-bioreactors, which typically require CO2 to be piped in rather than getting it from the air and can be expensive to run.

There’s little detail on how the technology deals with issues like nutrient supply and harvesting or how efficient it is. The company claims it can remove carbon dioxide as fast as 100 trees using the surface area of just a single tree, but there’s no published research to back that up, and it’s hard to compare the surface area of flat panels to that of a complex object like a tree. If you flattened out every inch of a tree’s surface it would cover a surprisingly large area.

Nonetheless, the ability to install these panels directly on buildings could present a promising way to soak up the huge amount of CO2 produced in our cities by transport and industry. And Arborea isn’t the only one trying to give plants a helping hand.

For decades researchers have been working on ways to use light-activated catalysts to split water into oxygen and hydrogen fuel, and more recently there have been efforts to fuse this with additional processes to combine the hydrogen with carbon from CO2 to produce all kinds of useful products.

Most notably, in 2016 Harvard researchers showed that water-splitting catalysts could be augmented with bacteria that combines the resulting hydrogen with CO2 to create oxygen and biomass, fuel, or other useful products. The approach was more efficient than plants at turning CO2 to fuel and was built using cheap materials, but turning it into a commercially viable technology will take time.

Not everyone is looking to mimic or borrow from biology in their efforts to suck CO2 out of the atmosphere. There’s been a recent glut of investment in startups working on direct-air capture (DAC) technology, which had previously been written off for using too much power and space to be practical. The looming climate change crisis appears to be rewriting some of those assumptions, though.

Most approaches aim to use the concentrated CO2 to produce synthetic fuels or other useful products, creating a revenue stream that could help improve their commercial viability. But we look increasingly likely to surpass the safe greenhouse gas limits, so attention is instead turning to carbon-negative technologies.

That means capturing CO2 from the air and then putting it into long-term storage. One way could be to grow lots of biomass and then bury it, mimicking the process that created fossil fuels in the first place. Or DAC plants could pump the CO2 they produce into deep underground wells.

But the former would take up unreasonably large amounts of land to make a significant dent in emissions, while the latter would require huge amounts of already scant and expensive renewable power. According to a recent analysis, artificial photosynthesis could sidestep these issues because it’s up to five times more efficient than its natural counterpart and could be cheaper than DAC.

Whether the technology will develop quickly enough for it to be deployed at scale and in time to mitigate the worst effects of climate change remains to be seen. Emissions reductions certainly present a more sure-fire way to deal with the problem, but nonetheless, cyborg plants could soon be a common sight in our cities.

Image Credit: GiroScience / Shutterstock.com Continue reading

Posted in Human Robots

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#435046 The Challenge of Abundance: Boredom, ...

As technology continues to progress, the possibility of an abundant future seems more likely. Artificial intelligence is expected to drive down the cost of labor, infrastructure, and transport. Alternative energy systems are reducing the cost of a wide variety of goods. Poverty rates are falling around the world as more people are able to make a living, and resources that were once inaccessible to millions are becoming widely available.

But such a life presents fuel for the most common complaint against abundance: if robots take all the jobs, basic income provides us livable welfare for doing nothing, and healthcare is a guarantee free of charge, then what is the point of our lives? What would motivate us to work and excel if there are no real risks or rewards? If everything is simply given to us, how would we feel like we’ve ever earned anything?

Time has proven that humans inherently yearn to overcome challenges—in fact, this very desire likely exists as the root of most technological innovation. And the idea that struggling makes us stronger isn’t just anecdotal, it’s scientifically validated.

For instance, kids who use anti-bacterial soaps and sanitizers too often tend to develop weak immune systems, causing them to get sick more frequently and more severely. People who work out purposely suffer through torn muscles so that after a few days of healing their muscles are stronger. And when patients visit a psychologist to handle a fear that is derailing their lives, one of the most common treatments is exposure therapy: a slow increase of exposure to the suffering so that the patient gets stronger and braver each time, able to take on an incrementally more potent manifestation of their fears.

Different Kinds of Struggle
It’s not hard to understand why people might fear an abundant future as a terribly mundane one. But there is one crucial mistake made in this assumption, and it was well summarized by Indian mystic and author Sadhguru, who said during a recent talk at Google:

Stomach empty, only one problem. Stomach full—one hundred problems; because what we refer to as human really begins only after survival is taken care of.

This idea is backed up by Maslow’s hierarchy of needs, which was first presented in his 1943 paper “A Theory of Human Motivation.” Maslow shows the steps required to build to higher and higher levels of the human experience. Not surprisingly, the first two levels deal with physiological needs and the need for safety—in other words, with the body. You need to have food, water, and sleep, or you die. After that, you need to be protected from threats, from the elements, from dangerous people, and from disease and pain.

Maslow’s Hierarchy of Needs. Photo by Wikimedia User:Factoryjoe / CC BY-SA 3.0
The beauty of these first two levels is that they’re clear-cut problems with clear-cut solutions: if you’re hungry, then you eat; if you’re thirsty, then you drink; if you’re tired, then you sleep.

But what about the next tiers of the hierarchy? What of love and belonging, of self-esteem and self-actualization? If we’re lonely, can we just summon up an authentic friend or lover? If we feel neglected by society, can we demand it validate us? If we feel discouraged and disappointed in ourselves, can we simply dial up some confidence and self-esteem?

Of course not, and that’s because these psychological needs are nebulous; they don’t contain clear problems with clear solutions. They involve the external world and other people, and are complicated by the infinite flavors of nuance and compromise that are required to navigate human relationships and personal meaning.

These psychological difficulties are where we grow our personalities, outlooks, and beliefs. The truly defining characteristics of a person are dictated not by the physical situations they were forced into—like birth, socioeconomic class, or physical ailment—but instead by the things they choose. So a future of abundance helps to free us from the physical limitations so that we can truly commit to a life of purpose and meaning, rather than just feel like survival is our purpose.

The Greatest Challenge
And that’s the plot twist. This challenge to come to grips with our own individuality and freedom could actually be the greatest challenge our species has ever faced. Can you imagine waking up every day with infinite possibility? Every choice you make says no to the rest of reality, and so every decision carries with it truly life-defining purpose and meaning. That sounds overwhelming. And that’s probably because in our current socio-economic systems, it is.

Studies have shown that people in wealthier nations tend to experience more anxiety and depression. Ron Kessler, professor of health care policy at Harvard and World Health Organization (WHO) researcher, summarized his findings of global mental health by saying, “When you’re literally trying to survive, who has time for depression? Americans, on the other hand, many of whom lead relatively comfortable lives, blow other nations away in the depression factor, leading some to suggest that depression is a ‘luxury disorder.’”

This might explain why America scores in the top rankings for the most depressed and anxious country on the planet. We surpassed our survival needs, and instead became depressed because our jobs and relationships don’t fulfill our expectations for the next three levels of Maslow’s hierarchy (belonging, esteem, and self-actualization).

But a future of abundance would mean we’d have to deal with these levels. This is the challenge for the future; this is what keeps things from being mundane.

As a society, we would be forced to come to grips with our emotional intelligence, to reckon with philosophy rather than simply contemplate it. Nearly every person you meet will be passionately on their own customized life journey, not following a routine simply because of financial limitations. Such a world seems far more vibrant and interesting than one where most wander sleep-deprived and numb while attempting to survive the rat race.

We can already see the forceful hand of this paradigm shift as self-driving cars become ubiquitous. For example, consider the famous psychological and philosophical “trolley problem.” In this thought experiment, a person sees a trolley car heading towards five people on the train tracks; they see a lever that will allow them to switch the trolley car to a track that instead only has one person on it. Do you switch the lever and have a hand in killing one person, or do you let fate continue and kill five people instead?

For the longest time, this was just an interesting quandary to consider. But now, massive corporations have to have an answer, so they can program their self-driving cars with the ability to choose between hitting a kid who runs into the road or swerving into an oncoming car carrying a family of five. When companies need philosophers to make business decisions, it’s a good sign of what’s to come.

Luckily, it’s possible this forceful reckoning with philosophy and our own consciousness may be exactly what humanity needs. Perhaps our great failure as a species has been a result of advanced cognition still trapped in the first two levels of Maslow’s hierarchy due to a long history of scarcity.

As suggested in the opening scenes in 2001: A Space Odyssey, our ape-like proclivity for violence has long stayed the same while the technology we fight with and live amongst has progressed. So while well-off Americans may have comfortable lives, they still know they live in a system where there is no safety net, where a single tragic failure could still mean hunger and homelessness. And because of this, that evolutionarily hard-wired neurotic part of our brain that fears for our survival has never been able to fully relax, and so that anxiety and depression that come with too much freedom but not enough security stays ever present.

Not only might this shift in consciousness help liberate humanity, but it may be vital if we’re to survive our future creations as well. Whatever values we hold dear as a species are the ones we will imbue into the sentient robots we create. If machine learning is going to take its guidance from humanity, we need to level up humanity’s emotional maturity.

While the physical struggles of the future may indeed fall to the wayside amongst abundance, it’s unlikely to become a mundane world; instead, it will become a vibrant culture where each individual is striving against the most important struggle that affects all of us: the challenge to find inner peace, to find fulfillment, to build meaningful relationships, and ultimately, the challenge to find ourselves.

Image Credit: goffkein.pro / Shutterstock.com Continue reading

Posted in Human Robots

#435023 Inflatable Robot Astronauts and How to ...

The typical cultural image of a robot—as a steel, chrome, humanoid bucket of bolts—is often far from the reality of cutting-edge robotics research. There are difficulties, both social and technological, in realizing the image of a robot from science fiction—let alone one that can actually help around the house. Often, it’s simply the case that great expense in producing a humanoid robot that can perform dozens of tasks quite badly is less appropriate than producing some other design that’s optimized to a specific situation.

A team of scientists from Brigham Young University has received funding from NASA to investigate an inflatable robot called, improbably, King Louie. The robot was developed by Pneubotics, who have a long track record in the world of soft robotics.

In space, weight is at a premium. The world watched in awe and amusement when Commander Chris Hadfield sang “Space Oddity” from the International Space Station—but launching that guitar into space likely cost around $100,000. A good price for launching payload into outer space is on the order of $10,000 per pound ($22,000/kg).

For that price, it would cost a cool $1.7 million to launch Boston Dynamics’ famous ATLAS robot to the International Space Station, and its bulk would be inconvenient in the cramped living quarters available. By contrast, an inflatable robot like King Louie is substantially lighter and can simply be deflated and folded away when not in use. The robot can be manufactured from cheap, lightweight, and flexible materials, and minor damage is easy to repair.

Inflatable Robots Under Pressure
The concept of inflatable robots is not new: indeed, earlier prototypes of King Louie were exhibited back in 2013 at Google I/O’s After Hours, flailing away at each other in a boxing ring. Sparks might fly in fights between traditional robots, but the aim here was to demonstrate that the robots are passively safe: the soft, inflatable figures won’t accidentally smash delicate items when moving around.

Health and safety regulations form part of the reason why robots don’t work alongside humans more often, but soft robots would be far safer to use in healthcare or around children (whose first instinct, according to BYU’s promotional video, is either to hug or punch King Louie.) It’s also much harder to have nightmarish fantasies about robotic domination with these friendlier softbots: Terminator would’ve been a much shorter franchise if Skynet’s droids were inflatable.

Robotic exoskeletons are increasingly used for physical rehabilitation therapies, as well as for industrial purposes. As countries like Japan seek to care for their aging populations with robots and alleviate the burden on nurses, who suffer from some of the highest rates of back injuries of any profession, soft robots will become increasingly attractive for use in healthcare.

Precision and Proprioception
The main issue is one of control. Rigid, metallic robots may be more expensive and more dangerous, but the simple fact of their rigidity makes it easier to map out and control the precise motions of each of the robot’s limbs, digits, and actuators. Individual motors attached to these rigid robots can allow for a great many degrees of freedom—individual directions in which parts of the robot can move—and precision control.

For example, ATLAS has 28 degrees of freedom, while Shadow’s dexterous robot hand alone has 20. This is much harder to do with an inflatable robot, for precisely the same reasons that make it safer. Without hard and rigid bones, other methods of control must be used.

In the case of King Louie, the robot is made up of many expandable air chambers. An air-compressor changes the pressure levels in these air chambers, allowing them to expand and contract. This harks back to some of the earliest pneumatic automata. Pairs of chambers act antagonistically, like muscles, such that when one chamber “tenses,” another relaxes—allowing King Louie to have, for example, four degrees of freedom in each of its arms.

The robot is also surprisingly strong. Professor Killpack, who works at BYU on the project, estimates that its payload is comparable to other humanoid robots on the market, like Rethink Robotics’ Baxter (RIP).

Proprioception, that sixth sense that allows us to map out and control our own bodies and muscles in fine detail, is being enhanced for a wider range of soft, flexible robots with the use of machine learning algorithms connected to input from a whole host of sensors on the robot’s body.

Part of the reason this is so complicated with soft, flexible robots is that the shape and “map” of the robot’s body can change; that’s the whole point. But this means that every time King Louie is inflated, its body is a slightly different shape; when it becomes deformed, for example due to picking up objects, the shape changes again, and the complex ways in which the fabric can twist and bend are far more difficult to model and sense than the behavior of the rigid metal of King Louie’s hard counterparts. When you’re looking for precision, seemingly-small changes can be the difference between successfully holding an object or dropping it.

Learning to Move
Researchers at BYU are therefore spending a great deal of time on how to control the soft-bot enough to make it comparably useful. One method involves the commercial tracking technology used in the Vive VR system: by moving the game controller, which provides a constant feedback to the robot’s arm, you can control its position. Since the tracking software provides an estimate of the robot’s joint angles and continues to provide feedback until the arm is correctly aligned, this type of feedback method is likely to work regardless of small changes to the robot’s shape.

The other technologies the researchers are looking into for their softbot include arrays of flexible, tactile sensors to place on the softbot’s skin, and minimizing the complex cross-talk between these arrays to get coherent information about the robot’s environment. As with some of the new proprioception research, the project is looking into neural networks as a means of modeling the complicated dynamics—the motion and response to forces—of the softbot. This method relies on large amounts of observational data, mapping how the robot is inflated and how it moves, rather than explicitly understanding and solving the equations that govern its motion—which hopefully means the methods can work even as the robot changes.

There’s still a long way to go before soft and inflatable robots can be controlled sufficiently well to perform all the tasks they might be used for. Ultimately, no one robotic design is likely to be perfect for any situation.

Nevertheless, research like this gives us hope that one day, inflatable robots could be useful tools, or even companions, at which point the advertising slogans write themselves: Don’t let them down, and they won’t let you down!

Image Credit: Brigham Young University. Continue reading

Posted in Human Robots

#434854 New Lifelike Biomaterial Self-Reproduces ...

Life demands flux.

Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.

What if we could endow cold, static, lifeless robots with the gift of metabolism?

In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.

Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.

The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.

“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.

“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.

Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.

Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?

Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.

Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”

The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.

Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.

DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.

Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.

Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.

This “enabled a general design strategy for the DASH patterns,” they said.

In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.

These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.

Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.

“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.

Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.

In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.

Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.

Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.

The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.

In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.

A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.

DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.

Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.

“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”

Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading

Posted in Human Robots