Tag Archives: rapid

#434616 What Games Are Humans Still Better at ...

Artificial intelligence (AI) systems’ rapid advances are continually crossing rows off the list of things humans do better than our computer compatriots.

AI has bested us at board games like chess and Go, and set astronomically high scores in classic computer games like Ms. Pacman. More complex games form part of AI’s next frontier.

While a team of AI bots developed by OpenAI, known as the OpenAI Five, ultimately lost to a team of professional players last year, they have since been running rampant against human opponents in Dota 2. Not to be outdone, Google’s DeepMind AI recently took on—and beat—several professional players at StarCraft II.

These victories beg the questions: what games are humans still better at than AI? And for how long?

The Making Of AlphaStar
DeepMind’s results provide a good starting point in a search for answers. The version of its AI for StarCraft II, dubbed AlphaStar, learned to play the games through supervised learning and reinforcement learning.

First, AI agents were trained by analyzing and copying human players, learning basic strategies. The initial agents then played each other in a sort of virtual death match where the strongest agents stayed on. New iterations of the agents were developed and entered the competition. Over time, the agents became better and better at the game, learning new strategies and tactics along the way.

One of the advantages of AI is that it can go through this kind of process at superspeed and quickly develop better agents. DeepMind researchers estimate that the AlphaStar agents went through the equivalent of roughly 200 years of game time in about 14 days.

Cheating or One Hand Behind the Back?
The AlphaStar AI agents faced off against human professional players in a series of games streamed on YouTube and Twitch. The AIs trounced their human opponents, winning ten games on the trot, before pro player Grzegorz “MaNa” Komincz managed to salvage some pride for humanity by winning the final game. Experts commenting on AlphaStar’s performance used words like “phenomenal” and “superhuman”—which was, to a degree, where things got a bit problematic.

AlphaStar proved particularly skilled at controlling and directing units in battle, known as micromanagement. One reason was that it viewed the whole game map at once—something a human player is not able to do—which made it seemingly able to control units in different areas at the same time. DeepMind researchers said the AIs only focused on a single part of the map at any given time, but interestingly, AlphaStar’s AI agent was limited to a more restricted camera view during the match “MaNA” won.

Potentially offsetting some of this advantage was the fact that AlphaStar was also restricted in certain ways. For example, it was prevented from performing more clicks per minute than a human player would be able to.

Where AIs Struggle
Games like StarCraft II and Dota 2 throw a lot of challenges at AIs. Complex game theory/ strategies, operating with imperfect/incomplete information, undertaking multi-variable and long-term planning, real-time decision-making, navigating a large action space, and making a multitude of possible decisions at every point in time are just the tip of the iceberg. The AIs’ performance in both games was impressive, but also highlighted some of the areas where they could be said to struggle.

In Dota 2 and StarCraft II, AI bots have seemed more vulnerable in longer games, or when confronted with surprising, unfamiliar strategies. They seem to struggle with complexity over time and improvisation/adapting to quick changes. This could be tied to how AIs learn. Even within the first few hours of performing a task, humans tend to gain a sense of familiarity and skill that takes an AI much longer. We are also better at transferring skill from one area to another. In other words, experience playing Dota 2 can help us become good at StarCraft II relatively quickly. This is not the case for AI—yet.

Dwindling Superiority
While the battle between AI and humans for absolute superiority is still on in Dota 2 and StarCraft II, it looks likely that AI will soon reign supreme. Similar things are happening to other types of games.

In 2017, a team from Carnegie Mellon University pitted its Libratus AI against four professionals. After 20 days of No Limit Texas Hold’em, Libratus was up by $1.7 million. Another likely candidate is the destroyer of family harmony at Christmas: Monopoly.

Poker involves bluffing, while Monopoly involves negotiation—skills you might not think AI would be particularly suited to handle. However, an AI experiment at Facebook showed that AI bots are more than capable of undertaking such tasks. The bots proved skilled negotiators, and developed negotiating strategies like pretending interest in one object while they were interested in another altogether—bluffing.

So, what games are we still better at than AI? There is no precise answer, but the list is getting shorter at a rapid pace.

The Aim Of the Game
While AI’s mastery of games might at first glance seem an odd area to focus research on, the belief is that the way AI learn to master a game is transferrable to other areas.

For example, the Libratus poker-playing AI employed strategies that could work in financial trading or political negotiations. The same applies to AlphaStar. As Oriol Vinyals, co-leader of the AlphaStar project, told The Verge:

“First and foremost, the mission at DeepMind is to build an artificial general intelligence. […] To do so, it’s important to benchmark how our agents perform on a wide variety of tasks.”

A 2017 survey of more than 350 AI researchers predicts AI could be a better driver than humans within ten years. By the middle of the century, AI will be able to write a best-selling novel, and a few years later, it will be better than humans at surgery. By the year 2060, AI may do everything better than us.

Whether you think this is a good or a bad thing, it’s worth noting that AI has an often overlooked ability to help us see things differently. When DeepMind’s AlphaGo beat human Go champion Lee Sedol, the Go community learned from it, too. Lee himself went on a win streak after the match with AlphaGo. The same is now happening within the Dota 2 and StarCraft II communities that are studying the human vs. AI games intensely.

More than anything, AI’s recent gaming triumphs illustrate how quickly artificial intelligence is developing. In 1997, Dr. Piet Hut, an astrophysicist at the Institute for Advanced Study at Princeton and a GO enthusiast, told the New York Times that:

”It may be a hundred years before a computer beats humans at Go—maybe even longer.”

Image Credit: Roman Kosolapov / Shutterstock.com Continue reading

Posted in Human Robots

#434508 The Top Biotech and Medicine Advances to ...

2018 was bonkers for science.

From a woman who gave birth using a transplanted uterus, to the infamous CRISPR baby scandal, to forensics adopting consumer-based genealogy test kits to track down criminals, last year was a factory churning out scientific “whoa” stories with consequences for years to come.

With CRISPR still in the headlines, Britain ready to bid Europe au revoir, and multiple scientific endeavors taking off, 2019 is shaping up to be just as tumultuous.

Here are the science and health stories that may blow up in the new year. But first, a note of caveat: predicting the future is tough. Forecasting is the lovechild between statistics and (a good deal of) intuition, and entire disciplines have been dedicated to the endeavor. But January is the perfect time to gaze into the crystal ball for wisps of insight into the year to come. Last year we predicted the widespread approval of gene therapy products—on the most part, we nailed it. This year we’re hedging our bets with multiple predictions.

Gene Drives Used in the Wild
The concept of gene drives scares many, for good reason. Gene drives are a step up in severity (and consequences) from CRISPR and other gene-editing tools. Even with germline editing, in which the sperm, egg, or embryos are altered, gene editing affects just one genetic line—one family—at least at the beginning, before they reproduce with the general population.

Gene drives, on the other hand, have the power to wipe out entire species.

In a nutshell, they’re little bits of DNA code that help a gene transfer from parent to child with almost 100 percent perfect probability. The “half of your DNA comes from dad, the other comes from mom” dogma? Gene drives smash that to bits.

In other words, the only time one would consider using a gene drive is to change the genetic makeup of an entire population. It sounds like the plot of a supervillain movie, but scientists have been toying around with the idea of deploying the technology—first in mosquitoes, then (potentially) in rodents.

By releasing just a handful of mutant mosquitoes that carry gene drives for infertility, for example, scientists could potentially wipe out entire populations that carry infectious scourges like malaria, dengue, or Zika. The technology is so potent—and dangerous—the US Defense Advances Research Projects Agency is shelling out $65 million to suss out how to deploy, control, counter, or even reverse the effects of tampering with ecology.

Last year, the U.N. gave a cautious go-ahead for the technology to be deployed in the wild in limited terms. Now, the first release of a genetically modified mosquito is set for testing in Burkina Faso in Africa—the first-ever field experiment involving gene drives.

The experiment will only release mosquitoes in the Anopheles genus, which are the main culprits transferring disease. As a first step, over 10,000 male mosquitoes are set for release into the wild. These dudes are genetically sterile but do not cause infertility, and will help scientists examine how they survive and disperse as a preparation for deploying gene-drive-carrying mosquitoes.

Hot on the project’s heels, the nonprofit consortium Target Malaria, backed by the Bill and Melinda Gates foundation, is engineering a gene drive called Mosq that will spread infertility across the population or kill out all female insects. Their attempt to hack the rules of inheritance—and save millions in the process—is slated for 2024.

A Universal Flu Vaccine
People often brush off flu as a mere annoyance, but the infection kills hundreds of thousands each year based on the CDC’s statistical estimates.

The flu virus is actually as difficult of a nemesis as HIV—it mutates at an extremely rapid rate, making effective vaccines almost impossible to engineer on time. Scientists currently use data to forecast the strains that will likely explode into an epidemic and urge the public to vaccinate against those predictions. That’s partly why, on average, flu vaccines only have a success rate of roughly 50 percent—not much better than a coin toss.

Tired of relying on educated guesses, scientists have been chipping away at a universal flu vaccine that targets all strains—perhaps even those we haven’t yet identified. Often referred to as the “holy grail” in epidemiology, these vaccines try to alert our immune systems to parts of a flu virus that are least variable from strain to strain.

Last November, a first universal flu vaccine developed by BiondVax entered Phase 3 clinical trials, which means it’s already been proven safe and effective in a small numbers and is now being tested in a broader population. The vaccine doesn’t rely on dead viruses, which is a common technique. Rather, it uses a small chain of amino acids—the chemical components that make up proteins—to stimulate the immune system into high alert.

With the government pouring $160 million into the research and several other universal candidates entering clinical trials, universal flu vaccines may finally experience a breakthrough this year.

In-Body Gene Editing Shows Further Promise
CRISPR and other gene editing tools headed the news last year, including both downers suggesting we already have immunity to the technology and hopeful news of it getting ready for treating inherited muscle-wasting diseases.

But what wasn’t widely broadcasted was the in-body gene editing experiments that have been rolling out with gusto. Last September, Sangamo Therapeutics in Richmond, California revealed that they had injected gene-editing enzymes into a patient in an effort to correct a genetic deficit that prevents him from breaking down complex sugars.

The effort is markedly different than the better-known CAR-T therapy, which extracts cells from the body for genetic engineering before returning them to the hosts. Rather, Sangamo’s treatment directly injects viruses carrying the edited genes into the body. So far, the procedure looks to be safe, though at the time of reporting it was too early to determine effectiveness.

This year the company hopes to finally answer whether it really worked.

If successful, it means that devastating genetic disorders could potentially be treated with just a few injections. With a gamut of new and more precise CRISPR and other gene-editing tools in the works, the list of treatable inherited diseases is likely to grow. And with the CRISPR baby scandal potentially dampening efforts at germline editing via regulations, in-body gene editing will likely receive more attention if Sangamo’s results return positive.

Neuralink and Other Brain-Machine Interfaces
Neuralink is the stuff of sci fi: tiny implanted particles into the brain could link up your biological wetware with silicon hardware and the internet.

But that’s exactly what Elon Musk’s company, founded in 2016, seeks to develop: brain-machine interfaces that could tinker with your neural circuits in an effort to treat diseases or even enhance your abilities.

Last November, Musk broke his silence on the secretive company, suggesting that he may announce something “interesting” in a few months, that’s “better than anyone thinks is possible.”

Musk’s aspiration for achieving symbiosis with artificial intelligence isn’t the driving force for all brain-machine interfaces (BMIs). In the clinics, the main push is to rehabilitate patients—those who suffer from paralysis, memory loss, or other nerve damage.

2019 may be the year that BMIs and neuromodulators cut the cord in the clinics. These devices may finally work autonomously within a malfunctioning brain, applying electrical stimulation only when necessary to reduce side effects without requiring external monitoring. Or they could allow scientists to control brains with light without needing bulky optical fibers.

Cutting the cord is just the first step to fine-tuning neurological treatments—or enhancements—to the tune of your own brain, and 2019 will keep on bringing the music.

Image Credit: angellodeco / Shutterstock.com Continue reading

Posted in Human Robots

#434303 Making Superhumans Through Radical ...

Imagine trying to read War and Peace one letter at a time. The thought alone feels excruciating. But in many ways, this painful idea holds parallels to how human-machine interfaces (HMI) force us to interact with and process data today.

Designed back in the 1970s at Xerox PARC and later refined during the 1980s by Apple, today’s HMI was originally conceived during fundamentally different times, and specifically, before people and machines were generating so much data. Fast forward to 2019, when humans are estimated to produce 44 zettabytes of data—equal to two stacks of books from here to Pluto—and we are still using the same HMI from the 1970s.

These dated interfaces are not equipped to handle today’s exponential rise in data, which has been ushered in by the rapid dematerialization of many physical products into computers and software.

Breakthroughs in perceptual and cognitive computing, especially machine learning algorithms, are enabling technology to process vast volumes of data, and in doing so, they are dramatically amplifying our brain’s abilities. Yet even with these powerful technologies that at times make us feel superhuman, the interfaces are still crippled with poor ergonomics.

Many interfaces are still designed around the concept that human interaction with technology is secondary, not instantaneous. This means that any time someone uses technology, they are inevitably multitasking, because they must simultaneously perform a task and operate the technology.

If our aim, however, is to create technology that truly extends and amplifies our mental abilities so that we can offload important tasks, the technology that helps us must not also overwhelm us in the process. We must reimagine interfaces to work in coherence with how our minds function in the world so that our brains and these tools can work together seamlessly.

Embodied Cognition
Most technology is designed to serve either the mind or the body. It is a problematic divide, because our brains use our entire body to process the world around us. Said differently, our minds and bodies do not operate distinctly. Our minds are embodied.

Studies using MRI scans have shown that when a person feels an emotion in their gut, blood actually moves to that area of the body. The body and the mind are linked in this way, sharing information back and forth continuously.

Current technology presents data to the brain differently from how the brain processes data. Our brains, for example, use sensory data to continually encode and decipher patterns within the neocortex. Our brains do not create a linguistic label for each item, which is how the majority of machine learning systems operate, nor do our brains have an image associated with each of these labels.

Our bodies move information through us instantaneously, in a sense “computing” at the speed of thought. What if our technology could do the same?

Using Cognitive Ergonomics to Design Better Interfaces
Well-designed physical tools, as philosopher Martin Heidegger once meditated on while using the metaphor of a hammer, seem to disappear into the “hand.” They are designed to amplify a human ability and not get in the way during the process.

The aim of physical ergonomics is to understand the mechanical movement of the human body and then adapt a physical system to amplify the human output in accordance. By understanding the movement of the body, physical ergonomics enables ergonomically sound physical affordances—or conditions—so that the mechanical movement of the body and the mechanical movement of the machine can work together harmoniously.

Cognitive ergonomics applied to HMI design uses this same idea of amplifying output, but rather than focusing on physical output, the focus is on mental output. By understanding the raw materials the brain uses to comprehend information and form an output, cognitive ergonomics allows technologists and designers to create technological affordances so that the brain can work seamlessly with interfaces and remove the interruption costs of our current devices. In doing so, the technology itself “disappears,” and a person’s interaction with technology becomes fluid and primary.

By leveraging cognitive ergonomics in HMI design, we can create a generation of interfaces that can process and present data the same way humans process real-world information, meaning through fully-sensory interfaces.

Several brain-machine interfaces are already on the path to achieving this. AlterEgo, a wearable device developed by MIT researchers, uses electrodes to detect and understand nonverbal prompts, which enables the device to read the user’s mind and act as an extension of the user’s cognition.

Another notable example is the BrainGate neural device, created by researchers at Stanford University. Just two months ago, a study was released showing that this brain implant system allowed paralyzed patients to navigate an Android tablet with their thoughts alone.

These are two extraordinary examples of what is possible for the future of HMI, but there is still a long way to go to bring cognitive ergonomics front and center in interface design.

Disruptive Innovation Happens When You Step Outside Your Existing Users
Most of today’s interfaces are designed by a narrow population, made up predominantly of white, non-disabled men who are prolific in the use of technology (you may recall The New York Times viral article from 2016, Artificial Intelligence’s White Guy Problem). If you ask this population if there is a problem with today’s HMIs, most will say no, and this is because the technology has been designed to serve them.

This lack of diversity means a limited perspective is being brought to interface design, which is problematic if we want HMI to evolve and work seamlessly with the brain. To use cognitive ergonomics in interface design, we must first gain a more holistic understanding of how people with different abilities understand the world and how they interact with technology.

Underserved groups, such as people with physical disabilities, operate on what Clayton Christensen coined in The Innovator’s Dilemma as the fringe segment of a market. Developing solutions that cater to fringe groups can in fact disrupt the larger market by opening a downward, much larger market.

Learning From Underserved Populations
When technology fails to serve a group of people, that group must adapt the technology to meet their needs.

The workarounds created are often ingenious, specifically because they have not been arrived at by preferences, but out of necessity that has forced disadvantaged users to approach the technology from a very different vantage point.

When a designer or technologist begins learning from this new viewpoint and understanding challenges through a different lens, they can bring new perspectives to design—perspectives that otherwise can go unseen.

Designers and technologists can also learn from people with physical disabilities who interact with the world by leveraging other senses that help them compensate for one they may lack. For example, some blind people use echolocation to detect objects in their environments.

The BrainPort device developed by Wicab is an incredible example of technology leveraging one human sense to serve or compliment another. The BrainPort device captures environmental information with a wearable video camera and converts this data into soft electrical stimulation sequences that are sent to a device on the user’s tongue—the most sensitive touch receptor in the body. The user learns how to interpret the patterns felt on their tongue, and in doing so, become able to “see” with their tongue.

Key to the future of HMI design is learning how different user groups navigate the world through senses beyond sight. To make cognitive ergonomics work, we must understand how to leverage the senses so we’re not always solely relying on our visual or verbal interactions.

Radical Inclusion for the Future of HMI
Bringing radical inclusion into HMI design is about gaining a broader lens on technology design at large, so that technology can serve everyone better.

Interestingly, cognitive ergonomics and radical inclusion go hand in hand. We can’t design our interfaces with cognitive ergonomics without bringing radical inclusion into the picture, and we also will not arrive at radical inclusion in technology so long as cognitive ergonomics are not considered.

This new mindset is the only way to usher in an era of technology design that amplifies the collective human ability to create a more inclusive future for all.

Image Credit: jamesteohart / Shutterstock.com Continue reading

Posted in Human Robots

#434260 The Most Surprising Tech Breakthroughs ...

Development across the entire information technology landscape certainly didn’t slow down this year. From CRISPR babies, to the rapid decline of the crypto markets, to a new robot on Mars, and discovery of subatomic particles that could change modern physics as we know it, there was no shortage of headline-grabbing breakthroughs and discoveries.

As 2018 comes to a close, we can pause and reflect on some of the biggest technology breakthroughs and scientific discoveries that occurred this year.

I reached out to a few Singularity University speakers and faculty across the various technology domains we cover asking what they thought the biggest breakthrough was in their area of expertise. The question posed was:

“What, in your opinion, was the biggest development in your area of focus this year? Or, what was the breakthrough you were most surprised by in 2018?”

I can share that for me, hands down, the most surprising development I came across in 2018 was learning that a publicly-traded company that was briefly valued at over $1 billion, and has over 12,000 employees and contractors spread around the world, has no physical office space and the entire business is run and operated from inside an online virtual world. This is Ready Player One stuff happening now.

For the rest, here’s what our experts had to say.

DIGITAL BIOLOGY
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

“That’s easy: CRISPR babies. I knew it was technically possible, and I’ve spent two years predicting it would happen first in China. I knew it was just a matter of time but I failed to predict the lack of oversight, the dubious consent process, the paucity of publicly-available data, and the targeting of a disease that we already know how to prevent and treat and that the children were at low risk of anyway.

I’m not convinced that this counts as a technical breakthrough, since one of the girls probably isn’t immune to HIV, but it sure was a surprise.”

For more, read Dr. Vora’s summary of this recent stunning news from China regarding CRISPR-editing human embryos.

QUANTUM COMPUTING
Andrew Fursman | Co-Founder/CEO 1Qbit, Faculty, Quantum Computing, Singularity University

“There were two last-minute holiday season surprise quantum computing funding and technology breakthroughs:

First, right before the government shutdown, one priority legislative accomplishment will provide $1.2 billion in quantum computing research over the next five years. Second, there’s the rise of ions as a truly viable, scalable quantum computing architecture.”

*Read this Gizmodo profile on an exciting startup in the space to learn more about this type of quantum computing

ENERGY
Ramez Naam | Chair, Energy and Environmental Systems, Singularity University

“2018 had plenty of energy surprises. In solar, we saw unsubsidized prices in the sunny parts of the world at just over two cents per kwh, or less than half the price of new coal or gas electricity. In the US southwest and Texas, new solar is also now cheaper than new coal or gas. But even more shockingly, in Germany, which is one of the least sunny countries on earth (it gets less sunlight than Canada) the average bid for new solar in a 2018 auction was less than 5 US cents per kwh. That’s as cheap as new natural gas in the US, and far cheaper than coal, gas, or any other new electricity source in most of Europe.

In fact, it’s now cheaper in some parts of the world to build new solar or wind than to run existing coal plants. Think tank Carbon Tracker calculates that, over the next 10 years, it will become cheaper to build new wind or solar than to operate coal power in most of the world, including specifically the US, most of Europe, and—most importantly—India and the world’s dominant burner of coal, China.

Here comes the sun.”

GLOBAL GRAND CHALLENGES
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

“In 2018 we saw a lot of areas in the Global Grand Challenges move forward—advancements in robotic farming technology and cultured meat, low-cost 3D printed housing, more sophisticated types of online education expanding to every corner of the world, and governments creating new policies to deal with the ethics of the digital world. These were the areas we were watching and had predicted there would be change.

What most surprised me was to see young people, especially teenagers, start to harness technology in powerful ways and use it as a platform to make their voices heard and drive meaningful change in the world. In 2018 we saw teenagers speak out on a number of issues related to their well-being and launch digital movements around issues such as gun and school safety, global warming and environmental issues. We often talk about the harm technology can cause to young people, but on the flip side, it can be a very powerful tool for youth to start changing the world today and something I hope we see more of in the future.”

BUSINESS STRATEGY
Pascal Finette | Chair, Entrepreneurship and Open Innovation, Singularity University

“Without a doubt the rapid and massive adoption of AI, specifically deep learning, across industries, sectors, and organizations. What was a curiosity for most companies at the beginning of the year has quickly made its way into the boardroom and leadership meetings, and all the way down into the innovation and IT department’s agenda. You are hard-pressed to find a mid- to large-sized company today that is not experimenting or implementing AI in various aspects of its business.

On the slightly snarkier side of answering this question: The very rapid decline in interest in blockchain (and cryptocurrencies). The blockchain party was short, ferocious, and ended earlier than most would have anticipated, with a huge hangover for some. The good news—with the hot air dissipated, we can now focus on exploring the unique use cases where blockchain does indeed offer real advantages over centralized approaches.”

*Author note: snark is welcome and appreciated

ROBOTICS
Hod Lipson | Director, Creative Machines Lab, Columbia University

“The biggest surprise for me this year in robotics was learning dexterity. For decades, roboticists have been trying to understand and imitate dexterous manipulation. We humans seem to be able to manipulate objects with our fingers with incredible ease—imagine sifting through a bunch of keys in the dark, or tossing and catching a cube. And while there has been much progress in machine perception, dexterous manipulation remained elusive.

There seemed to be something almost magical in how we humans can physically manipulate the physical world around us. Decades of research in grasping and manipulation, and millions of dollars spent on robot-hand hardware development, has brought us little progress. But in late 2018, the Berkley OpenAI group demonstrated that this hurdle may finally succumb to machine learning as well. Given 200 years worth of practice, machines learned to manipulate a physical object with amazing fluidity. This might be the beginning of a new age for dexterous robotics.”

MACHINE LEARNING
Jeremy Howard | Founding Researcher, fast.ai, Founder/CEO, Enlitic, Faculty Data Science, Singularity University

“The biggest development in machine learning this year has been the development of effective natural language processing (NLP).

The New York Times published an article last month titled “Finally, a Machine That Can Finish Your Sentence,” which argued that NLP neural networks have reached a significant milestone in capability and speed of development. The “finishing your sentence” capability mentioned in the title refers to a type of neural network called a “language model,” which is literally a model that learns how to finish your sentences.

Earlier this year, two systems (one, called ELMO, is from the Allen Institute for AI, and the other, called ULMFiT, was developed by me and Sebastian Ruder) showed that such a model could be fine-tuned to dramatically improve the state-of-the-art in nearly every NLP task that researchers study. This work was further developed by OpenAI, which in turn was greatly scaled up by Google Brain, who created a system called BERT which reached human-level performance on some of NLP’s toughest challenges.

Over the next year, expect to see fine-tuned language models used for everything from understanding medical texts to building disruptive social media troll armies.”

DIGITAL MANUFACTURING
Andre Wegner | Founder/CEO Authentise, Chair, Digital Manufacturing, Singularity University

“Most surprising to me was the extent and speed at which the industry finally opened up.

While previously, only few 3D printing suppliers had APIs and knew what to do with them, 2018 saw nearly every OEM (or original equipment manufacturer) enabling data access and, even more surprisingly, shying away from proprietary standards and adopting MTConnect, as stalwarts such as 3D Systems and Stratasys have been. This means that in two to three years, data access to machines will be easy, commonplace, and free. The value will be in what is being done with that data.

Another example of this openness are the seemingly endless announcements of integrated workflows: GE’s announcement with most major software players to enable integrated solutions, EOS’s announcement with Siemens, and many more. It’s clear that all actors in the additive ecosystem have taken a step forward in terms of openness. The result is a faster pace of innovation, particularly in the software and data domains that are crucial to enabling comprehensive digital workflow to drive agile and resilient manufacturing.

I’m more optimistic we’ll achieve that now than I was at the end of 2017.”

SCIENCE AND DISCOVERY
Paul Saffo | Chair, Future Studies, Singularity University, Distinguished Visiting Scholar, Stanford Media-X Research Network

“The most important development in technology this year isn’t a technology, but rather the astonishing science surprises made possible by recent technology innovations. My short list includes the discovery of the “neptmoon”, a Neptune-scale moon circling a Jupiter-scale planet 8,000 lightyears from us; the successful deployment of the Mars InSight Lander a month ago; and the tantalizing ANITA detection (what could be a new subatomic particle which would in turn blow the standard model wide open). The highest use of invention is to support science discovery, because those discoveries in turn lead us to the future innovations that will improve the state of the world—and fire up our imaginations.”

ROBOTICS
Pablos Holman | Inventor, Hacker, Faculty, Singularity University

“Just five or ten years ago, if you’d asked any of us technologists “What is harder for robots? Eyes, or fingers?” We’d have all said eyes. Robots have extraordinary eyes now, but even in a surgical robot, the fingers are numb and don’t feel anything. Stanford robotics researchers have invented fingertips that can feel, and this will be a kingpin that allows robots to go everywhere they haven’t been yet.”

BLOCKCHAIN
Nathana Sharma | Blockchain, Policy, Law, and Ethics, Faculty, Singularity University

“2017 was the year of peak blockchain hype. 2018 has been a year of resetting expectations and technological development, even as the broader cryptocurrency markets have faced a winter. It’s now about seeing adoption and applications that people want and need to use rise. An incredible piece of news from December 2018 is that Facebook is developing a cryptocurrency for users to make payments through Whatsapp. That’s surprisingly fast mainstream adoption of this new technology, and indicates how powerful it is.”

ARTIFICIAL INTELLIGENCE
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

“I think one of the most visible improvements in AI was illustrated by the Boston Dynamics Parkour video. This was not due to an improvement in brushless motors, accelerometers, or gears. It was due to improvements in AI algorithms and training data. To be fair, the video released was cherry-picked from numerous attempts, many of which ended with a crash. However, the fact that it could be accomplished at all in 2018 was a real win for both AI and robotics.”

NEUROSCIENCE
Divya Chander | Chair, Neuroscience, Singularity University

“2018 ushered in a new era of exponential trends in non-invasive brain modulation. Changing behavior or restoring function takes on a new meaning when invasive interfaces are no longer needed to manipulate neural circuitry. The end of 2018 saw two amazing announcements: the ability to grow neural organoids (mini-brains) in a dish from neural stem cells that started expressing electrical activity, mimicking the brain function of premature babies, and the first (known) application of CRISPR to genetically alter two fetuses grown through IVF. Although this was ostensibly to provide genetic resilience against HIV infections, imagine what would happen if we started tinkering with neural circuitry and intelligence.”

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#434235 The Milestones of Human Progress We ...

When you look back at 2018, do you see a good or a bad year? Chances are, your perception of the year involves fixating on all the global and personal challenges it brought. In fact, every year, we tend to look back at the previous year as “one of the most difficult” and hope that the following year is more exciting and fruitful.

But in the grander context of human history, 2018 was an extraordinarily positive year. In fact, every year has been getting progressively better.

Before we dive into some of the highlights of human progress from 2018, let’s make one thing clear. There is no doubt that there are many overwhelming global challenges facing our species. From climate change to growing wealth inequality, we are far from living in a utopia.

Yet it’s important to recognize that both our news outlets and audiences have been disproportionately fixated on negative news. This emphasis on bad news is detrimental to our sense of empowerment as a species.

So let’s take a break from all the disproportionate negativity and have a look back on how humanity pushed boundaries in 2018.

On Track to Becoming an Interplanetary Species
We often forget how far we’ve come since the very first humans left the African savanna, populated the entire planet, and developed powerful technological capabilities. Our desire to explore the unknown has shaped the course of human evolution and will continue to do so.

This year, we continued to push the boundaries of space exploration. As depicted in the enchanting short film Wanderers, humanity’s destiny is the stars. We are born to be wanderers of the cosmos and the everlasting unknown.

SpaceX had 21 successful launches in 2018 and closed the year with a successful GPS launch. The latest test flight by Virgin Galactic was also an incredible milestone, as SpaceShipTwo was welcomed into space. Richard Branson and his team expect that space tourism will be a reality within the next 18 months.

Our understanding of the cosmos is also moving forward with continuous breakthroughs in astrophysics and astronomy. One notable example is the MARS InSight Mission, which uses cutting-edge instruments to study Mars’ interior structure and has even given us the first recordings of sound on Mars.

Understanding and Tackling Disease
Thanks to advancements in science and medicine, we are currently living longer, healthier, and wealthier lives than at any other point in human history. In fact, for most of human history, life expectancy at birth was around 30. Today it is more than 70 worldwide, and in the developed parts of the world, more than 80.

Brilliant researchers around the world are pushing for even better health outcomes. This year, we saw promising treatments emerge against Alzheimers disease, rheumatoid arthritis, multiple scleroris, and even the flu.

The deadliest disease of them all, cancer, is also being tackled. According to the American Association of Cancer Research, 22 revolutionary treatments for cancer were approved in the last year, and the death rate in adults is also in decline. Advancements in immunotherapy, genetic engineering, stem cells, and nanotechnology are all powerful resources to tackle killer diseases.

Breakthrough Mental Health Therapy
While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. According to the World Economic Forum, mental health disorders affect one in four people globally, and in many places they are significantly under-reported. More people are beginning to realize that our mental health is just as important as our physical health, and that we ought to take care of our minds just as much as our bodies.

We are seeing the rise of applications that put mental well-being at their center. Breakthrough advancements in genetics are allowing us to better understand the genetic makeup of disorders like clinical depression or Schizophrenia, and paving the way for personalized medical treatment. We are also seeing the rise of increasingly effective therapeutic treatments for anxiety.

This year saw many milestones for a whole new revolutionary area in mental health: psychedelic therapy. Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment for depression and anxiety.

Moral and Social Progress
Innovation is often associated with economic and technological progress. However, we also need leaps of progress in our morality, values, and policies. Throughout the 21st century, we’ve made massive strides in rights for women and children, civil rights, LGBT rights, animal rights, and beyond. However, with rising nationalism and xenophobia in many parts of the developed world, there is significant work to be done on this front.

All hope is not lost, as we saw many noteworthy milestones this year. In January 2018, Iceland introduced the equal wage law, bringing an end to the gender wage gap. On September 6th, the Indian Supreme Court decriminalized homosexuality, marking a historical moment. Earlier in December, the European Commission released a draft of ethics guidelines for trustworthy artificial intelligence. Such are just a few examples of positive progress in social justice, ethics, and policy.

We are also seeing a global rise in social impact entrepreneurship. Emerging startups are no longer valued simply based on their profits and revenue, but also on the level of positive impact they are having on the world at large. The world’s leading innovators are not asking themselves “How can I become rich?” but rather “How can I solve this global challenge?”

Intelligently Optimistic for 2019
It’s becoming more and more clear that we are living in the most exciting time in human history. Even more, we mustn’t be afraid to be optimistic about 2019.

An optimistic mindset can be grounded in rationality and evidence. Intelligent optimism is all about being excited about the future in an informed and rational way. The mindset is critical if we are to get everyone excited about the future by highlighting the rapid progress we have made and recognizing the tremendous potential humans have to find solutions to our problems.

In his latest TED talk, Steven Pinker points out, “Progress does not mean that everything becomes better for everyone everywhere all the time. That would be a miracle, and progress is not a miracle but problem-solving. Problems are inevitable and solutions create new problems which have to be solved in their turn.”

Let us not forget that in cosmic time scales, our entire species’ lifetime, including all of human history, is the equivalent of the blink of an eye. The probability of us existing both as an intelligent species and as individuals is so astoundingly low that it’s practically non-existent. We are the products of 14 billion years of cosmic evolution and extraordinarily good fortune. Let’s recognize and leverage this wondrous opportunity, and pave an exciting way forward.

Image Credit: Virgin Galactic / Virgin Galactic 2018. Continue reading

Posted in Human Robots