Tag Archives: programming

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots

#433486 This AI Predicts Obesity ...

A research team at the University of Washington has trained an artificial intelligence system to spot obesity—all the way from space. The system used a convolutional neural network (CNN) to analyze 150,000 satellite images and look for correlations between the physical makeup of a neighborhood and the prevalence of obesity.

The team’s results, presented in JAMA Network Open, showed that features of a given neighborhood could explain close to two-thirds (64.8 percent) of the variance in obesity. Researchers found that analyzing satellite data could help increase understanding of the link between peoples’ environment and obesity prevalence. The next step would be to make corresponding structural changes in the way neighborhoods are built to encourage physical activity and better health.

Training AI to Spot Obesity
Convolutional neural networks (CNNs) are particularly adept at image analysis, object recognition, and identifying special hierarchies in large datasets.

Prior to analyzing 150,000 high-resolution satellite images of Bellevue, Seattle, Tacoma, Los Angeles, Memphis, and San Antonio, the researchers trained the CNN on 1.2 million images from the ImageNet database. The categorizations were correlated with obesity prevalence estimates for the six urban areas from census tracts gathered by the 500 Cities project.

The system was able to identify the presence of certain features that increased likelihood of obesity in a given area. Some of these features included tightly–packed houses, being close to roadways, and living in neighborhoods with a lack of greenery.

Visualization of features identified by the convolutional neural network (CNN) model. The images on the left column are satellite images taken from Google Static Maps API (application programming interface). Images in the middle and right columns are activation maps taken from the second convolutional layer of VGG-CNN-F network after forward pass of the respective satellite images through the network. From Google Static Maps API, DigitalGlobe, US Geological Survey (accessed July 2017). Credit: JAMA Network Open
Your Surroundings Are Key
In their discussion of the findings, the researchers stressed that there are limitations to the conclusions that can be drawn from the AI’s results. For example, socio-economic factors like income likely play a major role for obesity prevalence in a given geographic area.

However, the study concluded that the AI-powered analysis showed the prevalence of specific man-made features in neighborhoods consistently correlating with obesity prevalence and not necessarily correlating with socioeconomic status.

The system’s success rates varied between studied cities, with Memphis being the highest (73.3 percent) and Seattle being the lowest (55.8 percent).

AI Takes To the Sky
Around a third of the US population is categorized as obese. Obesity is linked to a number of health-related issues, and the AI-generated results could potentially help improve city planning and better target campaigns to limit obesity.

The study is one of the latest of a growing list that uses AI to analyze images and extrapolate insights.

A team at Stanford University has used a CNN to predict poverty via satellite imagery, assisting governments and NGOs to better target their efforts. A combination of the public Automatic Identification System for shipping, satellite imagery, and Google’s AI has proven able to identify illegal fishing activity. Researchers have even been able to use AI and Google Street View to predict what party a given city will vote for, based on what cars are parked on the streets.

In each case, the AI systems have been able to look at volumes of data about our world and surroundings that are beyond the capabilities of humans and extrapolate new insights. If one were to moralize about the good and bad sides of AI (new opportunities vs. potential job losses, for example) it could seem that it comes down to what we ask AI systems to look at—and what questions we ask of them.

Image Credit: Ocean Biology Processing Group at NASA’s Goddard Space Flight Center Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432036 The Power to Upgrade Our Own Biology Is ...

Upgrading our biology may sound like science fiction, but attempts to improve humanity actually date back thousands of years. Every day, we enhance ourselves through seemingly mundane activities such as exercising, meditating, or consuming performance-enhancing drugs, such as caffeine or adderall. However, the tools with which we upgrade our biology are improving at an accelerating rate and becoming increasingly invasive.

In recent decades, we have developed a wide array of powerful methods, such as genetic engineering and brain-machine interfaces, that are redefining our humanity. In the short run, such enhancement technologies have medical applications and may be used to treat many diseases and disabilities. Additionally, in the coming decades, they could allow us to boost our physical abilities or even digitize human consciousness.

What’s New?
Many futurists argue that our devices, such as our smartphones, are already an extension of our cortex and in many ways an abstract form of enhancement. According to philosophers Andy Clark and David Chalmers’ theory of extended mind, we use technology to expand the boundaries of the human mind beyond our skulls.

One can argue that having access to a smartphone enhances one’s cognitive capacities and abilities and is an indirect form of enhancement of its own. It can be considered an abstract form of brain-machine interface. Beyond that, wearable devices and computers are already accessible in the market, and people like athletes use them to boost their progress.

However, these interfaces are becoming less abstract.

Not long ago, Elon Musk announced a new company, Neuralink, with the goal of merging the human mind with AI. The past few years have seen remarkable developments in both the hardware and software of brain-machine interfaces. Experts are designing more intricate electrodes while programming better algorithms to interpret neural signals. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing brains to communicate with one another purely through brainwaves.

Ethical Challenges of Enhancement
There are many social and ethical implications of such advancements.

One of the most fundamental issues with cognitive and physical enhancement techniques is that they contradict the very definition of merit and success that society has relied on for millennia. Many forms of performance-enhancing drugs have been considered “cheating” for the longest time.

But perhaps we ought to revisit some of our fundamental assumptions as a society.

For example, we like to credit hard work and talent in a fair manner, where “fair” generally implies that an individual has acted in a way that has served him to merit his rewards. If you are talented and successful, it is considered to be because you chose to work hard and take advantage of the opportunities available to you. But by these standards, how much of our accomplishments can we truly be credited for?

For instance, the genetic lottery can have an enormous impact on an individual’s predisposition and personality, which can in turn affect factors such as motivation, reasoning skills, and other mental abilities. Many people are born with a natural ability or a physique that gives them an advantage in a particular area or predisposes them to learn faster. But is it justified to reward someone for excellence if their genes had a pivotal role in their path to success?

Beyond that, there are already many ways in which we take “shortcuts” to better mental performance. Seemingly mundane activities like drinking coffee, meditating, exercising, or sleeping well can boost one’s performance in any given area and are tolerated by society. Even the use of language can have positive physical and psychological effects on the human brain, which can be liberating to the individual and immensely beneficial to society at large. And let’s not forget the fact that some of us are born into more access to developing literacy than others.

Given all these reasons, one could argue that cognitive abilities and talents are currently derived more from uncontrollable factors and luck than we like to admit. If anything, technologies like brain-machine interfaces can enhance individual autonomy and allow one a choice of how capable they become.

As Karim Jebari points out (pdf), if a certain characteristic or trait is required to perform a particular role and an individual lacks this trait, would it be wrong to implement the trait through brain-machine interfaces or genetic engineering? How is this different from any conventional form of learning or acquiring a skill? If anything, this would be removing limitations on individuals that result from factors outside their control, such as biological predisposition (or even traits induced from traumatic experiences) to act or perform in a certain way.

Another major ethical concern is equality. As with any other emerging technology, there are valid concerns that cognitive enhancement tech will benefit only the wealthy, thus exacerbating current inequalities. This is where public policy and regulations can play a pivotal role in the impact of technology on society.

Enhancement technologies can either contribute to inequality or allow us to solve it. Educating and empowering the under-privileged can happen at a much more rapid rate, helping the overall rate of human progress accelerate. The “normal range” for human capacity and intelligence, however it is defined, could shift dramatically towards more positive trends.

Many have also raised concerns over the negative applications of government-led biological enhancement, including eugenics-like movements and super-soldiers. Naturally, there are also issues of safety, security, and well-being, especially within the early stages of experimentation with enhancement techniques.

Brain-machine interfaces, for instance, could have implications on autonomy. The interface involves using information extracted from the brain to stimulate or modify systems in order to accomplish a goal. This part of the process can be enhanced by implementing an artificial intelligence system onto the interface—one that exposes the possibility of a third party potentially manipulating individual’s personalities, emotions, and desires by manipulating the interface.

A Tool For Transcendence
It’s important to discuss these risks, not so that we begin to fear and avoid such technologies, but so that we continue to advance in a way that minimizes harm and allows us to optimize the benefits.

Stephen Hawking notes that “with genetic engineering, we will be able to increase the complexity of our DNA, and improve the human race.” Indeed, the potential advantages of modifying biology are revolutionary. Doctors would gain access to a powerful tool to tackle disease, allowing us to live longer and healthier lives. We might be able to extend our lifespan and tackle aging, perhaps a critical step to becoming a space-faring species. We may begin to modify the brain’s building blocks to become more intelligent and capable of solving grand challenges.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. Human enhancement is bringing us closer to such a world—it could allow us to take control of our evolution and truly shape the future of our species.

Image Credit: GrAl/ Shutterstock.com Continue reading

Posted in Human Robots

#431790 FT 300 force torque sensor

Robotiq Updates FT 300 Sensitivity For High Precision Tasks With Universal RobotsForce Torque Sensor feeds data to Universal Robots force mode
Quebec City, Canada, November 13, 2017 – Robotiq launches a 10 times more sensitive version of its FT 300 Force Torque Sensor. With Plug + Play integration on all Universal Robots, the FT 300 performs highly repeatable precision force control tasks such as finishing, product testing, assembly and precise part insertion.
This force torque sensor comes with an updated free URCap software able to feed data to the Universal Robots Force Mode. “This new feature allows the user to perform precise force insertion assembly and many finishing applications where force control with high sensitivity is required” explains Robotiq CTO Jean-Philippe Jobin*.
The URCap also includes a new calibration routine. “We’ve integrated a step-by-step procedure that guides the user through the process, which takes less than 2 minutes” adds Jobin. “A new dashboard also provides real-time force and moment readings on all 6 axes. Moreover, pre-built programming functions are now embedded in the URCap for intuitive programming.”
See some of the FT 300’s new capabilities in the following demo videos:
#1 How to calibrate with the FT 300 URCap Dashboard
#2 Linear search demo
#3 Path recording demo
Visit the FT 300 webpage or get a quote here
Get the FT 300 specs here
Get more info in the FAQ
Get free Skills to accelerate robot programming of force control tasks.
Get free robot cell deployment resources on leanrobotics.org
* Available with Universal Robots CB3.1 controller only
About Robotiq
Robotiq’s Lean Robotics methodology and products enable manufacturers to deploy productive robot cells across their factory. They leverage the Lean Robotics methodology for faster time to production and increased productivity from their robots. Production engineers standardize on Robotiq’s Plug + Play components for their ease of programming, built-in integration, and adaptability to many processes. They rely on the Flow software suite to accelerate robot projects and optimize robot performance once in production.
Robotiq is the humans behind the robots: an employee-owned business with a passionate team and an international partner network.
Media contact
David Maltais, Communications and Public Relations Coordinator
d.maltais@robotiq.com
1-418-929-2513
////
Press Release Provided by: Robotiq.Com
The post FT 300 force torque sensor appeared first on Roboticmagazine. Continue reading

Posted in Human Robots