Tag Archives: president

#432884 This Week’s Awesome Stories From ...

ROBOTICS
Boston Dynamics’ SpotMini Robot Dog Goes on Sale in 2019
Stephen Shankland | CNET
“The company has 10 SpotMini prototypes now and will work with manufacturing partners to build 100 this year, said company co-founder and President Marc Raibert at a TechCrunch robotics conference Friday. ‘That’s a prelude to getting into a higher rate of production’ in anticipation of sales next year, he said. Who’ll buy it? Probably not you.”

Also from Boston Dynamics’ this week:

SPACE
Made In Space Wins NASA Contract for Next-Gen ‘Vulcan’ Manufacturing System
Mike Wall | Space.com
“’The Vulcan hybrid manufacturing system allows for flexible augmentation and creation of metallic components on demand with high precision,’ Mike Snyder, Made In Space chief engineer and principal investigator, said in a statement. …When Vulcan is ready to go, Made In Space aims to demonstrate the technology on the ISS, showing Vulcan’s potential usefulness for a variety of exploration missions.”

ARTIFICIAL INTELLIGENCE
Duplex Shows Google Failing at Ethical and Creative AI Design
Natasha Lomas | TechCrunch
“But while the home crowd cheered enthusiastically at how capable Google had seemingly made its prototype robot caller—with Pichai going on to sketch a grand vision of the AI saving people and businesses time—the episode is worryingly suggestive of a company that views ethics as an after-the-fact consideration. One it does not allow to trouble the trajectory of its engineering ingenuity.”

DESIGN
What Artists Can Tech Us About Making Technology More Human
Elizabeth Stinson| Wired
“For the last year, Park, along with the artist Sougwen Chung and dancers Jason Oremus and Garrett Coleman of the dance collective Hammerstep, have been working out of Bell Labs as part of a residency called Experiments in Art and Technology. The year-long residency, a collaboration between Bell Labs and the New Museum’s incubator, New Inc, culminated in ‘Only Human,’ a recently-opened exhibition at Mana where the artists’ pieces will be on display through the end of May.”

GOVERNANCE
The White House Says a New AI Task Force Will Protect Workers and Keep America First
Will Knight | MIT Technology Review
“The meeting and the select committee signal that the administration takes the impact of artificial intellgence seriously. This has not always been apparent. In his campaign speeches, Trump suggested reviving industries that have already been overhauled by automation. The Treasury secretary, Steven Mnuchin, also previously said that the idea of robots and AI taking people’s jobs was ‘not even on my radar screen.’”

Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432293 An Innovator’s City Guide to Shanghai

Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.

Meet Your Guide

Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century

Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance

1. Coworking Space: Mixpace

With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.

2. Makerspace: XinCheJian

The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.

3. Local meetups/ networks: FinTech Connector

FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.

4. Best coffee shop with free WiFi: Seesaw

Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.

5. The startup neighborhood: Knowledge & Innovation Community (KIC)

Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.

6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen

Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.

7. Best way to get around: Metro

Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.

8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.

Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.

9. City’s best-kept secret: Barber Shop

This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).

10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund

On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.

11. Local volunteering opportunity: Shanghai Volunteer

Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.

12. Local University with great resources: Shanghai Jiao Tong University

Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.

This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.

Image Credits: Qinsong (Dora) Ke

Banner Image Credit: ESB Professional / Shutterstock.com Continue reading

Posted in Human Robots

#432262 How We Can ‘Robot-Proof’ Education ...

Like millions of other individuals in the workforce, you’re probably wondering if you will one day be replaced by a machine. If you’re a student, you’re probably wondering if your chosen profession will even exist by the time you’ve graduated. From driving to legal research, there isn’t much that technology hasn’t already automated (or begun to automate). Many of us will need to adapt to this disruption in the workforce.

But it’s not enough for students and workers to adapt, become lifelong learners, and re-skill themselves. We also need to see innovation and initiative at an institutional and governmental level. According to research by The Economist, almost half of all jobs could be automated by computers within the next two decades, and no government in the world is prepared for it.

While many see the current trend in automation as a terrifying threat, others see it as an opportunity. In Robot-Proof: Higher Education in the Age of Artificial Intelligence, Northeastern University president Joseph Aoun proposes educating students in a way that will allow them to do the things that machines can’t. He calls for a new paradigm that teaches young minds “to invent, to create, and to discover”—filling the relevant needs of our world that robots simply can’t fill. Aoun proposes a much-needed novel framework that will allow us to “robot-proof” education.

Literacies and Core Cognitive Capacities of the Future
Aoun lays a framework for a new discipline, humanics, which discusses the important capacities and literacies for emerging education systems. At its core, the framework emphasizes our uniquely human abilities and strengths.

The three key literacies include data literacy (being able to manage and analyze big data), technological literacy (being able to understand exponential technologies and conduct computational thinking), and human literacy (being able to communicate and evaluate social, ethical, and existential impact).

Beyond the literacies, at the heart of Aoun’s framework are four cognitive capacities that are crucial to develop in our students if they are to be resistant to automation: critical thinking, systems thinking, entrepreneurship, and cultural agility.

“These capacities are mindsets rather than bodies of knowledge—mental architecture rather than mental furniture,” he writes. “Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace, but that alone will not be enough when intelligent machines are doing much of the heavy lifting of information. To succeed, tomorrow’s employees will have to demonstrate a higher order of thought.”

Like many other experts in education, Joseph Aoun emphasizes the importance of critical thinking. This is important not just when it comes to taking a skeptical approach to information, but also being able to logically break down a claim or problem into multiple layers of analysis. We spend so much time teaching students how to answer questions that we often neglect to teach them how to ask questions. Asking questions—and asking good ones—is a foundation of critical thinking. Before you can solve a problem, you must be able to critically analyze and question what is causing it. This is why critical thinking and problem solving are coupled together.

The second capacity, systems thinking, involves being able to think holistically about a problem. The most creative problem-solvers and thinkers are able to take a multidisciplinary perspective and connect the dots between many different fields. According to Aoun, it “involves seeing across areas that machines might be able to comprehend individually but that they cannot analyze in an integrated way, as a whole.” It represents the absolute opposite of how most traditional curricula is structured with emphasis on isolated subjects and content knowledge.

Among the most difficult-to-automate tasks or professions is entrepreneurship.

In fact, some have gone so far as to claim that in the future, everyone will be an entrepreneur. Yet traditionally, initiative has been something students show in spite of or in addition to their schoolwork. For most students, developing a sense of initiative and entrepreneurial skills has often been part of their extracurricular activities. It needs to be at the core of our curricula, not a supplement to it. At its core, teaching entrepreneurship is about teaching our youth to solve complex problems with resilience, to become global leaders, and to solve grand challenges facing our species.

Finally, with an increasingly globalized world, there is a need for more workers with cultural agility, the ability to build amongst different cultural contexts and norms.

One of the major trends today is the rise of the contingent workforce. We are seeing an increasing percentage of full-time employees working on the cloud. Multinational corporations have teams of employees collaborating at different offices across the planet. Collaboration across online networks requires a skillset of its own. As education expert Tony Wagner points out, within these digital contexts, leadership is no longer about commanding with top-down authority, but rather about leading by influence.

An Emphasis on Creativity
The framework also puts an emphasis on experiential or project-based learning, wherein the heart of the student experience is not lectures or exams but solving real-life problems and learning by doing, creating, and executing. Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.

In fact, technological trends are giving rise to what many thought leaders refer to as the imagination economy. This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Consequently, we need to develop our students’ creative abilities to ensure their success against machines.

In its simplest form, creativity represents the ability to imagine radical ideas and then go about executing them in reality.

In many ways, we are already living in our creative imaginations. Consider this: every invention or human construct—whether it be the spaceship, an architectural wonder, or a device like an iPhone—once existed as a mere idea, imagined in someone’s mind. The world we have designed and built around us is an extension of our imaginations and is only possible because of our creativity. Creativity has played a powerful role in human progress—now imagine what the outcomes would be if we tapped into every young mind’s creative potential.

The Need for a Radical Overhaul
What is clear from the recommendations of Aoun and many other leading thinkers in this space is that an effective 21st-century education system is radically different from the traditional systems we currently have in place. There is a dramatic contrast between these future-oriented frameworks and the way we’ve structured our traditional, industrial-era and cookie-cutter-style education systems.

It’s time for a change, and incremental changes or subtle improvements are no longer enough. What we need to see are more moonshots and disruption in the education sector. In a world of exponential growth and accelerating change, it is never too soon for a much-needed dramatic overhaul.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots

#432181 Putting AI in Your Pocket: MIT Chip Cuts ...

Neural networks are powerful things, but they need a lot of juice. Engineers at MIT have now developed a new chip that cuts neural nets’ power consumption by up to 95 percent, potentially allowing them to run on battery-powered mobile devices.

Smartphones these days are getting truly smart, with ever more AI-powered services like digital assistants and real-time translation. But typically the neural nets crunching the data for these services are in the cloud, with data from smartphones ferried back and forth.

That’s not ideal, as it requires a lot of communication bandwidth and means potentially sensitive data is being transmitted and stored on servers outside the user’s control. But the huge amounts of energy needed to power the GPUs neural networks run on make it impractical to implement them in devices that run on limited battery power.

Engineers at MIT have now designed a chip that cuts that power consumption by up to 95 percent by dramatically reducing the need to shuttle data back and forth between a chip’s memory and processors.

Neural nets consist of thousands of interconnected artificial neurons arranged in layers. Each neuron receives input from multiple neurons in the layer below it, and if the combined input passes a certain threshold it then transmits an output to multiple neurons above it. The strength of the connection between neurons is governed by a weight, which is set during training.

This means that for every neuron, the chip has to retrieve the input data for a particular connection and the connection weight from memory, multiply them, store the result, and then repeat the process for every input. That requires a lot of data to be moved around, expending a lot of energy.

The new MIT chip does away with that, instead computing all the inputs in parallel within the memory using analog circuits. That significantly reduces the amount of data that needs to be shoved around and results in major energy savings.

The approach requires the weights of the connections to be binary rather than a range of values, but previous theoretical work had suggested this wouldn’t dramatically impact accuracy, and the researchers found the chip’s results were generally within two to three percent of the conventional non-binary neural net running on a standard computer.

This isn’t the first time researchers have created chips that carry out processing in memory to reduce the power consumption of neural nets, but it’s the first time the approach has been used to run powerful convolutional neural networks popular for image-based AI applications.

“The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays,” Dario Gil, vice president of artificial intelligence at IBM, said in a statement.

“It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future.”

It’s not just research groups working on this, though. The desire to get AI smarts into devices like smartphones, household appliances, and all kinds of IoT devices is driving the who’s who of Silicon Valley to pile into low-power AI chips.

Apple has already integrated its Neural Engine into the iPhone X to power things like its facial recognition technology, and Amazon is rumored to be developing its own custom AI chips for the next generation of its Echo digital assistant.

The big chip companies are also increasingly pivoting towards supporting advanced capabilities like machine learning, which has forced them to make their devices ever more energy-efficient. Earlier this year ARM unveiled two new chips: the Arm Machine Learning processor, aimed at general AI tasks from translation to facial recognition, and the Arm Object Detection processor for detecting things like faces in images.

Qualcomm’s latest mobile chip, the Snapdragon 845, features a GPU and is heavily focused on AI. The company has also released the Snapdragon 820E, which is aimed at drones, robots, and industrial devices.

Going a step further, IBM and Intel are developing neuromorphic chips whose architectures are inspired by the human brain and its incredible energy efficiency. That could theoretically allow IBM’s TrueNorth and Intel’s Loihi to run powerful machine learning on a fraction of the power of conventional chips, though they are both still highly experimental at this stage.

Getting these chips to run neural nets as powerful as those found in cloud services without burning through batteries too quickly will be a big challenge. But at the current pace of innovation, it doesn’t look like it will be too long before you’ll be packing some serious AI power in your pocket.

Image Credit: Blue Planet Studio / Shutterstock.com Continue reading

Posted in Human Robots