Tag Archives: phone

#433892 The Spatial Web Will Map Our 3D ...

The boundaries between digital and physical space are disappearing at a breakneck pace. What was once static and boring is becoming dynamic and magical.

For all of human history, looking at the world through our eyes was the same experience for everyone. Beyond the bounds of an over-active imagination, what you see is the same as what I see.

But all of this is about to change. Over the next two to five years, the world around us is about to light up with layer upon layer of rich, fun, meaningful, engaging, and dynamic data. Data you can see and interact with.

This magical future ahead is called the Spatial Web and will transform every aspect of our lives, from retail and advertising, to work and education, to entertainment and social interaction.

Massive change is underway as a result of a series of converging technologies, from 5G global networks and ubiquitous artificial intelligence, to 30+ billion connected devices (known as the IoT), each of which will generate scores of real-world data every second, everywhere.

The current AI explosion will make everything smart, autonomous, and self-programming. Blockchain and cloud-enabled services will support a secure data layer, putting data back in the hands of users and allowing us to build complex rule-based infrastructure in tomorrow’s virtual worlds.

And with the rise of online-merge-offline (OMO) environments, two-dimensional screens will no longer serve as our exclusive portal to the web. Instead, virtual and augmented reality eyewear will allow us to interface with a digitally-mapped world, richly layered with visual data.

Welcome to the Spatial Web. Over the next few months, I’ll be doing a deep dive into the Spatial Web (a.k.a. Web 3.0), covering what it is, how it works, and its vast implications across industries, from real estate and healthcare to entertainment and the future of work. In this blog, I’ll discuss the what, how, and why of Web 3.0—humanity’s first major foray into our virtual-physical hybrid selves (BTW, this year at Abundance360, we’ll be doing a deep dive into the Spatial Web with the leaders of HTC, Magic Leap, and High-Fidelity).

Let’s dive in.

What is the Spatial Web?
While we humans exist in three dimensions, our web today is flat.

The web was designed for shared information, absorbed through a flat screen. But as proliferating sensors, ubiquitous AI, and interconnected networks blur the lines between our physical and online worlds, we need a spatial web to help us digitally map a three-dimensional world.

To put Web 3.0 in context, let’s take a trip down memory lane. In the late 1980s, the newly-birthed world wide web consisted of static web pages and one-way information—a monumental system of publishing and linking information unlike any unified data system before it. To connect, we had to dial up through unstable modems and struggle through insufferably slow connection speeds.

But emerging from this revolutionary (albeit non-interactive) infodump, Web 2.0 has connected the planet more in one decade than empires did in millennia.

Granting democratized participation through newly interactive sites and applications, today’s web era has turbocharged information-sharing and created ripple effects of scientific discovery, economic growth, and technological progress on an unprecedented scale.

We’ve seen the explosion of social networking sites, wikis, and online collaboration platforms. Consumers have become creators; physically isolated users have been handed a global microphone; and entrepreneurs can now access billions of potential customers.

But if Web 2.0 took the world by storm, the Spatial Web emerging today will leave it in the dust.

While there’s no clear consensus about its definition, the Spatial Web refers to a computing environment that exists in three-dimensional space—a twinning of real and virtual realities—enabled via billions of connected devices and accessed through the interfaces of virtual and augmented reality.

In this way, the Spatial Web will enable us to both build a twin of our physical reality in the virtual realm and bring the digital into our real environments.

It’s the next era of web-like technologies:

Spatial computing technologies, like augmented and virtual reality;
Physical computing technologies, like IoT and robotic sensors;
And decentralized computing: both blockchain—which enables greater security and data authentication—and edge computing, which pushes computing power to where it’s most needed, speeding everything up.

Geared with natural language search, data mining, machine learning, and AI recommendation agents, the Spatial Web is a growing expanse of services and information, navigable with the use of ever-more-sophisticated AI assistants and revolutionary new interfaces.

Where Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and social media on two-dimensional screens. But converging technologies are quickly transcending the laptop, and will even disrupt the smartphone in the next decade.

With the rise of wearables, smart glasses, AR / VR interfaces, and the IoT, the Spatial Web will integrate seamlessly into our physical environment, overlaying every conversation, every road, every object, conference room, and classroom with intuitively-presented data and AI-aided interaction.

Think: the Oasis in Ready Player One, where anyone can create digital personas, build and invest in smart assets, do business, complete effortless peer-to-peer transactions, and collect real estate in a virtual world.

Or imagine a virtual replica or “digital twin” of your office, each conference room authenticated on the blockchain, requiring a cryptographic key for entry.

As I’ve discussed with my good friend and “VR guru” Philip Rosedale, I’m absolutely clear that in the not-too-distant future, every physical element of every building in the world is going to be fully digitized, existing as a virtual incarnation or even as N number of these. “Meet me at the top of the Empire State Building?” “Sure, which one?”

This digitization of life means that suddenly every piece of information can become spatial, every environment can be smarter by virtue of AI, and every data point about me and my assets—both virtual and physical—can be reliably stored, secured, enhanced, and monetized.

In essence, the Spatial Web lets us interface with digitally-enhanced versions of our physical environment and build out entirely fictional virtual worlds—capable of running simulations, supporting entire economies, and even birthing new political systems.

But while I’ll get into the weeds of different use cases next week, let’s first concretize.

How Does It Work?
Let’s start with the stack. In the PC days, we had a database accompanied by a program that could ingest that data and present it to us as digestible information on a screen.

Then, in the early days of the web, data migrated to servers. Information was fed through a website, with which you would interface via a browser—whether Mosaic or Mozilla.

And then came the cloud.

Resident at either the edge of the cloud or on your phone, today’s rapidly proliferating apps now allow us to interact with previously read-only data, interfacing through a smartphone. But as Siri and Alexa have brought us verbal interfaces, AI-geared phone cameras can now determine your identity, and sensors are beginning to read our gestures.

And now we’re not only looking at our screens but through them, as the convergence of AI and AR begins to digitally populate our physical worlds.

While Pokémon Go sent millions of mobile game-players on virtual treasure hunts, IKEA is just one of the many companies letting you map virtual furniture within your physical home—simulating everything from cabinets to entire kitchens. No longer the one-sided recipients, we’re beginning to see through sensors, creatively inserting digital content in our everyday environments.

Let’s take a look at how the latest incarnation might work. In this new Web 3.0 stack, my personal AI would act as an intermediary, accessing public or privately-authorized data through the blockchain on my behalf, and then feed it through an interface layer composed of everything from my VR headset, to numerous wearables, to my smart environment (IoT-connected devices or even in-home robots).

But as we attempt to build a smart world with smart infrastructure, smart supply chains and smart everything else, we need a set of basic standards with addresses for people, places, and things. Just like our web today relies on the Internet Protocol (TCP/IP) and other infrastructure, by which your computer is addressed and data packets are transferred, we need infrastructure for the Spatial Web.

And a select group of players is already stepping in to fill this void. Proposing new structural designs for Web 3.0, some are attempting to evolve today’s web model from text-based web pages in 2D to three-dimensional AR and VR web experiences located in both digitally-mapped physical worlds and newly-created virtual ones.

With a spatial programming language analogous to HTML, imagine building a linkable address for any physical or virtual space, granting it a format that then makes it interchangeable and interoperable with all other spaces.

But it doesn’t stop there.

As soon as we populate a virtual room with content, we then need to encode who sees it, who can buy it, who can move it…

And the Spatial Web’s eventual governing system (for posting content on a centralized grid) would allow us to address everything from the room you’re sitting in, to the chair on the other side of the table, to the building across the street.

Just as we have a DNS for the web and the purchasing of web domains, once we give addresses to spaces (akin to granting URLs), we then have the ability to identify and visit addressable locations, physical objects, individuals, or pieces of digital content in cyberspace.

And these not only apply to virtual worlds, but to the real world itself. As new mapping technologies emerge, we can now map rooms, objects, and large-scale environments into virtual space with increasing accuracy.

We might then dictate who gets to move your coffee mug in a virtual conference room, or when a team gets to use the room itself. Rules and permissions would be set in the grid, decentralized governance systems, or in the application layer.

Taken one step further, imagine then monetizing smart spaces and smart assets. If you have booked the virtual conference room, perhaps you’ll let me pay you 0.25 BTC to let me use it instead?

But given the Spatial Web’s enormous technological complexity, what’s allowing it to emerge now?

Why Is It Happening Now?
While countless entrepreneurs have already started harnessing blockchain technologies to build decentralized apps (or dApps), two major developments are allowing today’s birth of Web 3.0:

High-resolution wireless VR/AR headsets are finally catapulting virtual and augmented reality out of a prolonged winter.

The International Data Corporation (IDC) predicts the VR and AR headset market will reach 65.9 million units by 2022. Already in the next 18 months, 2 billion devices will be enabled with AR. And tech giants across the board have long begun investing heavy sums.

In early 2019, HTC is releasing the VIVE Focus, a wireless self-contained VR headset. At the same time, Facebook is charging ahead with its Project Santa Cruz—the Oculus division’s next-generation standalone, wireless VR headset. And Magic Leap has finally rolled out its long-awaited Magic Leap One mixed reality headset.

Mass deployment of 5G will drive 10 to 100-gigabit connection speeds in the next 6 years, matching hardware progress with the needed speed to create virtual worlds.

We’ve already seen tremendous leaps in display technology. But as connectivity speeds converge with accelerating GPUs, we’ll start to experience seamless VR and AR interfaces with ever-expanding virtual worlds.

And with such democratizing speeds, every user will be able to develop in VR.

But accompanying these two catalysts is also an important shift towards the decentralized web and a demand for user-controlled data.

Converging technologies, from immutable ledgers and blockchain to machine learning, are now enabling the more direct, decentralized use of web applications and creation of user content. With no central point of control, middlemen are removed from the equation and anyone can create an address, independently interacting with the network.

Enabled by a permission-less blockchain, any user—regardless of birthplace, gender, ethnicity, wealth, or citizenship—would thus be able to establish digital assets and transfer them seamlessly, granting us a more democratized Internet.

And with data stored on distributed nodes, this also means no single point of failure. One could have multiple backups, accessible only with digital authorization, leaving users immune to any single server failure.

Implications Abound–What’s Next…
With a newly-built stack and an interface built from numerous converging technologies, the Spatial Web will transform every facet of our everyday lives—from the way we organize and access our data, to our social and business interactions, to the way we train employees and educate our children.

We’re about to start spending more time in the virtual world than ever before. Beyond entertainment or gameplay, our livelihoods, work, and even personal decisions are already becoming mediated by a web electrified with AI and newly-emerging interfaces.

In our next blog on the Spatial Web, I’ll do a deep dive into the myriad industry implications of Web 3.0, offering tangible use cases across sectors.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘on ramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Comeback01 / Shutterstock.com Continue reading

Posted in Human Robots

#433689 The Rise of Dataism: A Threat to Freedom ...

What would happen if we made all of our data public—everything from wearables monitoring our biometrics, all the way to smartphones monitoring our location, our social media activity, and even our internet search history?

Would such insights into our lives simply provide companies and politicians with greater power to invade our privacy and manipulate us by using our psychological profiles against us?

A burgeoning new philosophy called dataism doesn’t think so.

In fact, this trending ideology believes that liberating the flow of data is the supreme value of the universe, and that it could be the key to unleashing the greatest scientific revolution in the history of humanity.

What Is Dataism?
First mentioned by David Brooks in his 2013 New York Times article “The Philosophy of Data,” dataism is an ethical system that has been most heavily explored and popularized by renowned historian, Yuval Noah Harari.

In his 2016 book Homo Deus, Harari described dataism as a new form of religion that celebrates the growing importance of big data.

Its core belief centers around the idea that the universe gives greater value and support to systems, individuals, and societies that contribute most heavily and efficiently to data processing. In an interview with Wired, Harari stated, “Humans were special and important because up until now they were the most sophisticated data processing system in the universe, but this is no longer the case.”

Now, big data and machine learning are proving themselves more sophisticated, and dataists believe we should hand over as much information and power to these algorithms as possible, allowing the free flow of data to unlock innovation and progress unlike anything we’ve ever seen before.

Pros: Progress and Personal Growth
When you let data run freely, it’s bound to be mixed and matched in new ways that inevitably spark progress. And as we enter the exponential future where every person is constantly connected and sharing their data, the potential for such collaborative epiphanies becomes even greater.

We can already see important increases in quality of life thanks to companies like Google. With Google Maps on your phone, your position is constantly updating on their servers. This information, combined with everyone else on the planet using a phone with Google Maps, allows your phone to inform you of traffic conditions. Based on the speed and location of nearby phones, Google can reroute you to less congested areas or help you avoid accidents. And since you trust that these algorithms have more data than you, you gladly hand over your power to them, following your GPS’s directions rather than your own.

We can do the same sort of thing with our bodies.

Imagine, for instance, a world where each person has biosensors in their bloodstreams—a not unlikely or distant possibility when considering diabetic people already wear insulin pumps that constantly monitor their blood sugar levels. And let’s assume this data was freely shared to the world.

Now imagine a virus like Zika or the Bird Flu breaks out. Thanks to this technology, the odd change in biodata coming from a particular region flags an artificial intelligence that feeds data to the CDC (Center for Disease Control and Prevention). Recognizing that a pandemic could be possible, AIs begin 3D printing vaccines on-demand, predicting the number of people who may be afflicted. When our personal AIs tell us the locations of the spreading epidemic and to take the vaccine it just delivered by drone to our homes, are we likely to follow its instructions? Almost certainly—and if so, it’s likely millions, if not billions, of lives will have been saved.

But to quickly create such vaccines, we’ll also need to liberate research.

Currently, universities and companies seeking to benefit humankind with medical solutions have to pay extensively to organize clinical trials and to find people who match their needs. But if all our biodata was freely aggregated, perhaps they could simply say “monitor all people living with cancer” to an AI, and thanks to the constant stream of data coming in from the world’s population, a machine learning program may easily be able to detect a pattern and create a cure.

As always in research, the more sample data you have, the higher the chance that such patterns will emerge. If data is flowing freely, then anyone in the world can suddenly decide they have a hunch they want to explore, and without having to spend months and months of time and money hunting down the data, they can simply test their hypothesis.

Whether garage tinkerers, at-home scientists, or PhD students—an abundance of free data allows for science to progress unhindered, each person able to operate without being slowed by lack of data. And any progress they make is immediately liberated, becoming free data shared with anyone else that may find a use for it.

Any individual with a curious passion would have the entire world’s data at their fingertips, empowering every one of us to become an expert in any subject that inspires us. Expertise we can then share back into the data stream—a positive feedback loop spearheading progress for the entirety of humanity’s knowledge.

Such exponential gains represent a dataism utopia.

Unfortunately, our current incentives and economy also show us the tragic failures of this model.

As Harari has pointed out, the rise of datism means that “humanism is now facing an existential challenge and the idea of ‘free will’ is under threat.”

Cons: Manipulation and Extortion
In 2017, The Economist declared that data was the most valuable resource on the planet—even more valuable than oil.

Perhaps this is because data is ‘priceless’: it represents understanding, and understanding represents control. And so, in the world of advertising and politics, having data on your consumers and voters gives you an incredible advantage.

This was evidenced by the Cambridge Analytica scandal, in which it’s believed that Donald Trump and the architects of Brexit leveraged users’ Facebook data to create psychological profiles that enabled them to manipulate the masses.

How powerful are these psychological models?

A team who built a model similar to that used by Cambridge Analytica said their model could understand someone as well as a coworker with access to only 10 Facebook likes. With 70 likes they could know them as well as a friend might, 150 likes to match their parents’ understanding, and at 300 likes they could even come to know someone better than their lovers. With more likes, they could even come to know someone better than that person knows themselves.

Proceeding With Caution
In a capitalist democracy, do we want businesses and politicians to know us better than we know ourselves?

In spite of the remarkable benefits that may result for our species by freely giving away our information, do we run the risk of that data being used to exploit and manipulate the masses towards a future without free will, where our daily lives are puppeteered by those who own our data?

It’s extremely possible.

And it’s for this reason that one of the most important conversations we’ll have as a species centers around data ownership: do we just give ownership of the data back to the users, allowing them to choose who to sell or freely give their data to? Or will that simply deter the entrepreneurial drive and cause all of the free services we use today, like Google Search and Facebook, to begin charging inaccessible prices? How much are we willing to pay for our freedom? And how much do we actually care?

If recent history has taught us anything, it’s that humans are willing to give up more privacy than they like to think. Fifteen years ago, it would have been crazy to suggest we’d all allow ourselves to be tracked by our cars, phones, and daily check-ins to our favorite neighborhood locations; but now most of us see it as a worthwhile trade for optimized commutes and dating. As we continue navigating that fine line between exploitation and innovation into a more technological future, what other trade-offs might we be willing to make?

Image Credit: graphicINmotion / Shutterstock.com Continue reading

Posted in Human Robots

#433284 Tech Can Sustainably Feed Developing ...

In the next 30 years, virtually all net population growth will occur in urban regions of developing countries. At the same time, worldwide food production will become increasingly limited by the availability of land, water, and energy. These constraints will be further worsened by climate change and the expected addition of two billion people to today’s four billion now living in urban regions. Meanwhile, current urban food ecosystems in the developing world are inefficient and critically inadequate to meet the challenges of the future.

Combined, these trends could have catastrophic economic and political consequences. A new path forward for urban food ecosystems needs to be found. But what is that path?

New technologies, coupled with new business models and supportive government policies, can create more resilient urban food ecosystems in the coming decades. These tech-enabled systems can sustainably link rural, peri-urban (areas just outside cities), and urban producers and consumers, increase overall food production, and generate opportunities for new businesses and jobs (Figure 1).

Figure 1: The urban food value chain nodes from rural, peri-urban and urban producers
to servicing end customers in urban and peri-urban markets.
Here’s a glimpse of the changes technology may bring to the systems feeding cities in the future.

A technology-linked urban food ecosystem would create unprecedented opportunities for small farms to reach wider markets and progress from subsistence farming to commercially producing niche cash crops and animal protein, such as poultry, fish, pork, and insects.

Meanwhile, new opportunities within cities will appear with the creation of vertical farms and other controlled-environment agricultural systems as well as production of plant-based and 3D printed foods and cultured meat. Uberized facilitation of production and distribution of food will reduce bottlenecks and provide new business opportunities and jobs. Off-the-shelf precision agriculture technology will increasingly be the new norm, from smallholders to larger producers.

As part of Agricultural Revolution 4.0, all this will be integrated into the larger collaborative economy—connected by digital platforms, the cloud, and the Internet of Things and powered by artificial intelligence. It will more efficiently and effectively use resources and people to connect the nexus of food, water, energy, nutrition, and human health. It will also aid in the development of a circular economy that is designed to be restorative and regenerative, minimizing waste and maximizing recycling and reuse to build economic, natural, and social capital.

In short, technology will enable transformation of urban food ecosystems, from expanded production in cities to more efficient and inclusive distribution and closer connections with rural farmers. Here’s a closer look at seven tech-driven trends that will help feed tomorrow’s cities.

1. Worldwide Connectivity: Information, Learning, and Markets
Connectivity from simple cell phone SMS communication to internet-enabled smartphones and cloud services are providing platforms for the increasingly powerful technologies enabling development of a new agricultural revolution. Internet connections currently reach more than 4 billion people, about 55% of the global population. That number will grow fast in coming years.

These information and communications technologies connect food producers to consumers with just-in-time data, enhanced good agricultural practices, mobile money and credit, telecommunications, market information and merchandising, and greater transparency and traceability of goods and services throughout the value chain. Text messages on mobile devices have become the one-stop-shop for small farmers to place orders, gain technology information for best management practices, and access market information to increase profitability.

Hershey’s CocoaLink in Ghana, for example, uses text and voice messages with cocoa industry experts and small farm producers. Digital Green is a technology-enabled communication system in Asia and Africa to bring needed agricultural and management practices to small farmers in their own language by filming and recording successful farmers in their own communities. MFarm is a mobile app that connects Kenyan farmers with urban markets via text messaging.

2. Blockchain Technology: Greater Access to Basic Financial Services and Enhanced Food Safety
Gaining access to credit and executing financial transactions have been persistent constraints for small farm producers. Blockchain promises to help the unbanked access basic financial services.

The Gates Foundation has released an open source platform, Mojaloop, to allow software developers and banks and financial service providers to build secure digital payment platforms at scale. Mojaloop software uses more secure blockchain technology to enable urban food system players in the developing world to conduct business and trade. The free software reduces complexity and cost in building payment platforms to connect small farmers with customers, merchants, banks, and mobile money providers. Such digital financial services will allow small farm producers in the developing world to conduct business without a brick-and-mortar bank.

Blockchain is also important for traceability and transparency requirements to meet food regulatory and consumer requirement during the production, post-harvest, shipping, processing and distribution to consumers. Combining blockchain with RFID technologies also will enhance food safety.

3. Uberized Services: On-Demand Equipment, Storage, and More
Uberized services can advance development of the urban food ecosystem across the spectrum, from rural to peri-urban to urban food production and distribution. Whereas Uber and Airbnb enable sharing of rides and homes, the model can be extended in the developing world to include on-demand use of expensive equipment, such as farm machinery, or storage space.

This includes uberization of planting and harvesting equipment (Hello Tractor), transportation vehicles, refrigeration facilities for temporary storage of perishable product, and “cloud kitchens” (EasyAppetite in Nigeria, FoodCourt in Rwanda, and Swiggy and Zomto in India) that produce fresh meals to be delivered to urban customers, enabling young people with motorbikes and cell phones to become entrepreneurs or contractors delivering meals to urban customers.

Another uberized service is marketing and distributing “ugly food” or imperfect produce to reduce food waste. About a third of the world’s food goes to waste, often because of appearance; this is enough to feed two billion people. Such services supply consumers with cheaper, nutritious, tasty, healthy fruits and vegetables that would normally be discarded as culls due to imperfections in shape or size.

4. Technology for Producing Plant-Based Foods in Cities
We need to change diet choices through education and marketing and by developing tasty plant-based substitutes. This is not only critical for environmental sustainability, but also offers opportunities for new businesses and services. It turns out that current agricultural production systems for “red meat” have a far greater detrimental impact on the environment than automobiles.

There have been great advances in plant-based foods, like the Impossible Burger and Beyond Meat, that can satisfy the consumer’s experience and perception of meat. Rather than giving up the experience of eating red meat, technology is enabling marketable, attractive plant-based products that can potentially drastically reduce world per capita consumption of red meat.

5. Cellular Agriculture, Lab-Grown Meat, and 3D Printed Food
Lab-grown meat, literally meat grown from cultured cells, may radically change where and how protein and food is produced, including the cities where it is consumed. There is a wide range of innovative alternatives to traditional meats that can supplement the need for livestock, farms, and butchers. The history of innovation is about getting rid of the bottleneck in the system, and with meat, the bottleneck is the animal. Finless Foods is a new company trying to replicate fish fillets, for example, while Memphis meats is working on beef and poultry.

3D printing or additive manufacturing is a “general purpose technology” used for making, plastic toys, human tissues, aircraft parts, and buildings. 3D printing can also be used to convert alternative ingredients such as proteins from algae, beet leaves, or insects into tasty and healthy products that can be produced by small, inexpensive printers in home kitchens. The food can be customized for individual health needs as well as preferences. 3D printing can also contribute to the food ecosystem by making possible on-demand replacement parts—which are badly needed in the developing world for tractors, pumps, and other equipment. Catapult Design 3D prints tractor replacement parts as well as corn shellers, cart designs, prosthetic limbs, and rolling water barrels for the Indian market.

6. Alt Farming: Vertical Farms to Produce Food in Urban Centers
Urban food ecosystem production systems will rely not only on field-grown crops, but also on production of food within cities. There are a host of new, alternative production systems using “controlled environmental agriculture.” These include low-cost, protected poly hoop houses, greenhouses, roof-top and sack/container gardens, and vertical farming in buildings using artificial lighting. Vertical farms enable year-round production of selected crops, regardless of weather—which will be increasingly important in response to climate change—and without concern for deteriorating soil conditions that affect crop quality and productivity. AeroFarms claims 390 times more productivity per square foot than normal field production.

7. Biotechnology and Nanotechnology for Sustainable Intensification of Agriculture
CRISPR is a promising gene editing technology that can be used to enhance crop productivity while avoiding societal concerns about GMOs. CRISPR can accelerate traditional breeding and selection programs for developing new climate and disease-resistant, higher-yielding, nutritious crops and animals.

Plant-derived coating materials, developed with nanotechnology, can decrease waste, extend shelf-life and transportability of fruits and vegetables, and significantly reduce post-harvest crop loss in developing countries that lack adequate refrigeration. Nanotechnology is also used in polymers to coat seeds to increase their shelf-life and increase their germination success and production for niche, high-value crops.

Putting It All Together
The next generation “urban food industry” will be part of the larger collaborative economy that is connected by digital platforms, the cloud, and the Internet of Things. A tech-enabled urban food ecosystem integrated with new business models and smart agricultural policies offers the opportunity for sustainable intensification (doing more with less) of agriculture to feed a rapidly growing global urban population—while also creating viable economic opportunities for rural and peri-urban as well as urban producers and value-chain players.

Image Credit: Akarawut / Shutterstock.com Continue reading

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#432882 Why the Discovery of Room-Temperature ...

Superconductors are among the most bizarre and exciting materials yet discovered. Counterintuitive quantum-mechanical effects mean that, below a critical temperature, they have zero electrical resistance. This property alone is more than enough to spark the imagination.

A current that could flow forever without losing any energy means transmission of power with virtually no losses in the cables. When renewable energy sources start to dominate the grid and high-voltage transmission across continents becomes important to overcome intermittency, lossless cables will result in substantial savings.

What’s more, a superconducting wire carrying a current that never, ever diminishes would act as a perfect store of electrical energy. Unlike batteries, which degrade over time, if the resistance is truly zero, you could return to the superconductor in a billion years and find that same old current flowing through it. Energy could be captured and stored indefinitely!

With no resistance, a huge current could be passed through the superconducting wire and, in turn, produce magnetic fields of incredible power.

You could use them to levitate trains and produce astonishing accelerations, thereby revolutionizing the transport system. You could use them in power plants—replacing conventional methods which spin turbines in magnetic fields to generate electricity—and in quantum computers as the two-level system required for a “qubit,” in which the zeros and ones are replaced by current flowing clockwise or counterclockwise in a superconductor.

Arthur C. Clarke famously said that any sufficiently advanced technology is indistinguishable from magic; superconductors can certainly seem like magical devices. So, why aren’t they busy remaking the world? There’s a problem—that critical temperature.

For all known materials, it’s hundreds of degrees below freezing. Superconductors also have a critical magnetic field; beyond a certain magnetic field strength, they cease to work. There’s a tradeoff: materials with an intrinsically high critical temperature can also often provide the largest magnetic fields when cooled well below that temperature.

This has meant that superconductor applications so far have been limited to situations where you can afford to cool the components of your system to close to absolute zero: in particle accelerators and experimental nuclear fusion reactors, for example.

But even as some aspects of superconductor technology become mature in limited applications, the search for higher temperature superconductors moves on. Many physicists still believe a room-temperature superconductor could exist. Such a discovery would unleash amazing new technologies.

The Quest for Room-Temperature Superconductors
After Heike Kamerlingh Onnes discovered superconductivity by accident while attempting to prove Lord Kelvin’s theory that resistance would increase with decreasing temperature, theorists scrambled to explain the new property in the hope that understanding it might allow for room-temperature superconductors to be synthesized.

They came up with the BCS theory, which explained some of the properties of superconductors. It also predicted that the dream of technologists, a room-temperature superconductor, could not exist; the maximum temperature for superconductivity according to BCS theory was just 30 K.

Then, in the 1980s, the field changed again with the discovery of unconventional, or high-temperature, superconductivity. “High temperature” is still very cold: the highest temperature for superconductivity achieved was -70°C for hydrogen sulphide at extremely high pressures. For normal pressures, -140°C is near the upper limit. Unfortunately, high-temperature superconductors—which require relatively cheap liquid nitrogen, rather than liquid helium, to cool—are mostly brittle ceramics, which are expensive to form into wires and have limited application.

Given the limitations of high-temperature superconductors, researchers continue to believe there’s a better option awaiting discovery—an incredible new material that checks boxes like superconductivity approaching room temperature, affordability, and practicality.

Tantalizing Clues
Without a detailed theoretical understanding of how this phenomenon occurs—although incremental progress happens all the time—scientists can occasionally feel like they’re taking educated guesses at materials that might be likely candidates. It’s a little like trying to guess a phone number, but with the periodic table of elements instead of digits.

Yet the prospect remains, in the words of one researcher, tantalizing. A Nobel Prize and potentially changing the world of energy and electricity is not bad for a day’s work.

Some research focuses on cuprates, complex crystals that contain layers of copper and oxygen atoms. Doping cuprates with various different elements, such exotic compounds as mercury barium calcium copper oxide, are amongst the best superconductors known today.

Research also continues into some anomalous but unexplained reports that graphite soaked in water can act as a room-temperature superconductor, but there’s no indication that this could be used for technological applications yet.

In early 2017, as part of the ongoing effort to explore the most extreme and exotic forms of matter we can create on Earth, researchers managed to compress hydrogen into a metal.

The pressure required to do this was more than that at the core of the Earth and thousands of times higher than that at the bottom of the ocean. Some researchers in the field, called condensed-matter physics, doubt that metallic hydrogen was produced at all.

It’s considered possible that metallic hydrogen could be a room-temperature superconductor. But getting the samples to stick around long enough for detailed testing has proved tricky, with the diamonds containing the metallic hydrogen suffering a “catastrophic failure” under the pressure.

Superconductivity—or behavior that strongly resembles it—was also observed in yttrium barium copper oxide (YBCO) at room temperature in 2014. The only catch was that this electron transport lasted for a tiny fraction of a second and required the material to be bombarded with pulsed lasers.

Not very practical, you might say, but tantalizing nonetheless.

Other new materials display enticing properties too. The 2016 Nobel Prize in Physics was awarded for the theoretical work that characterizes topological insulators—materials that exhibit similarly strange quantum behaviors. They can be considered perfect insulators for the bulk of the material but extraordinarily good conductors in a thin layer on the surface.

Microsoft is betting on topological insulators as the key component in their attempt at a quantum computer. They’ve also been considered potentially important components in miniaturized circuitry.

A number of remarkable electronic transport properties have also been observed in new, “2D” structures—like graphene, these are materials synthesized to be as thick as a single atom or molecule. And research continues into how we can utilize the superconductors we’ve already discovered; for example, some teams are trying to develop insulating material that prevents superconducting HVDC cable from overheating.

Room-temperature superconductivity remains as elusive and exciting as it has been for over a century. It is unclear whether a room-temperature superconductor can exist, but the discovery of high-temperature superconductors is a promising indicator that unconventional and highly useful quantum effects may be discovered in completely unexpected materials.

Perhaps in the future—through artificial intelligence simulations or the serendipitous discoveries of a 21st century Kamerlingh Onnes—this little piece of magic could move into the realm of reality.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots