Tag Archives: patient

#435046 The Challenge of Abundance: Boredom, ...

As technology continues to progress, the possibility of an abundant future seems more likely. Artificial intelligence is expected to drive down the cost of labor, infrastructure, and transport. Alternative energy systems are reducing the cost of a wide variety of goods. Poverty rates are falling around the world as more people are able to make a living, and resources that were once inaccessible to millions are becoming widely available.

But such a life presents fuel for the most common complaint against abundance: if robots take all the jobs, basic income provides us livable welfare for doing nothing, and healthcare is a guarantee free of charge, then what is the point of our lives? What would motivate us to work and excel if there are no real risks or rewards? If everything is simply given to us, how would we feel like we’ve ever earned anything?

Time has proven that humans inherently yearn to overcome challenges—in fact, this very desire likely exists as the root of most technological innovation. And the idea that struggling makes us stronger isn’t just anecdotal, it’s scientifically validated.

For instance, kids who use anti-bacterial soaps and sanitizers too often tend to develop weak immune systems, causing them to get sick more frequently and more severely. People who work out purposely suffer through torn muscles so that after a few days of healing their muscles are stronger. And when patients visit a psychologist to handle a fear that is derailing their lives, one of the most common treatments is exposure therapy: a slow increase of exposure to the suffering so that the patient gets stronger and braver each time, able to take on an incrementally more potent manifestation of their fears.

Different Kinds of Struggle
It’s not hard to understand why people might fear an abundant future as a terribly mundane one. But there is one crucial mistake made in this assumption, and it was well summarized by Indian mystic and author Sadhguru, who said during a recent talk at Google:

Stomach empty, only one problem. Stomach full—one hundred problems; because what we refer to as human really begins only after survival is taken care of.

This idea is backed up by Maslow’s hierarchy of needs, which was first presented in his 1943 paper “A Theory of Human Motivation.” Maslow shows the steps required to build to higher and higher levels of the human experience. Not surprisingly, the first two levels deal with physiological needs and the need for safety—in other words, with the body. You need to have food, water, and sleep, or you die. After that, you need to be protected from threats, from the elements, from dangerous people, and from disease and pain.

Maslow’s Hierarchy of Needs. Photo by Wikimedia User:Factoryjoe / CC BY-SA 3.0
The beauty of these first two levels is that they’re clear-cut problems with clear-cut solutions: if you’re hungry, then you eat; if you’re thirsty, then you drink; if you’re tired, then you sleep.

But what about the next tiers of the hierarchy? What of love and belonging, of self-esteem and self-actualization? If we’re lonely, can we just summon up an authentic friend or lover? If we feel neglected by society, can we demand it validate us? If we feel discouraged and disappointed in ourselves, can we simply dial up some confidence and self-esteem?

Of course not, and that’s because these psychological needs are nebulous; they don’t contain clear problems with clear solutions. They involve the external world and other people, and are complicated by the infinite flavors of nuance and compromise that are required to navigate human relationships and personal meaning.

These psychological difficulties are where we grow our personalities, outlooks, and beliefs. The truly defining characteristics of a person are dictated not by the physical situations they were forced into—like birth, socioeconomic class, or physical ailment—but instead by the things they choose. So a future of abundance helps to free us from the physical limitations so that we can truly commit to a life of purpose and meaning, rather than just feel like survival is our purpose.

The Greatest Challenge
And that’s the plot twist. This challenge to come to grips with our own individuality and freedom could actually be the greatest challenge our species has ever faced. Can you imagine waking up every day with infinite possibility? Every choice you make says no to the rest of reality, and so every decision carries with it truly life-defining purpose and meaning. That sounds overwhelming. And that’s probably because in our current socio-economic systems, it is.

Studies have shown that people in wealthier nations tend to experience more anxiety and depression. Ron Kessler, professor of health care policy at Harvard and World Health Organization (WHO) researcher, summarized his findings of global mental health by saying, “When you’re literally trying to survive, who has time for depression? Americans, on the other hand, many of whom lead relatively comfortable lives, blow other nations away in the depression factor, leading some to suggest that depression is a ‘luxury disorder.’”

This might explain why America scores in the top rankings for the most depressed and anxious country on the planet. We surpassed our survival needs, and instead became depressed because our jobs and relationships don’t fulfill our expectations for the next three levels of Maslow’s hierarchy (belonging, esteem, and self-actualization).

But a future of abundance would mean we’d have to deal with these levels. This is the challenge for the future; this is what keeps things from being mundane.

As a society, we would be forced to come to grips with our emotional intelligence, to reckon with philosophy rather than simply contemplate it. Nearly every person you meet will be passionately on their own customized life journey, not following a routine simply because of financial limitations. Such a world seems far more vibrant and interesting than one where most wander sleep-deprived and numb while attempting to survive the rat race.

We can already see the forceful hand of this paradigm shift as self-driving cars become ubiquitous. For example, consider the famous psychological and philosophical “trolley problem.” In this thought experiment, a person sees a trolley car heading towards five people on the train tracks; they see a lever that will allow them to switch the trolley car to a track that instead only has one person on it. Do you switch the lever and have a hand in killing one person, or do you let fate continue and kill five people instead?

For the longest time, this was just an interesting quandary to consider. But now, massive corporations have to have an answer, so they can program their self-driving cars with the ability to choose between hitting a kid who runs into the road or swerving into an oncoming car carrying a family of five. When companies need philosophers to make business decisions, it’s a good sign of what’s to come.

Luckily, it’s possible this forceful reckoning with philosophy and our own consciousness may be exactly what humanity needs. Perhaps our great failure as a species has been a result of advanced cognition still trapped in the first two levels of Maslow’s hierarchy due to a long history of scarcity.

As suggested in the opening scenes in 2001: A Space Odyssey, our ape-like proclivity for violence has long stayed the same while the technology we fight with and live amongst has progressed. So while well-off Americans may have comfortable lives, they still know they live in a system where there is no safety net, where a single tragic failure could still mean hunger and homelessness. And because of this, that evolutionarily hard-wired neurotic part of our brain that fears for our survival has never been able to fully relax, and so that anxiety and depression that come with too much freedom but not enough security stays ever present.

Not only might this shift in consciousness help liberate humanity, but it may be vital if we’re to survive our future creations as well. Whatever values we hold dear as a species are the ones we will imbue into the sentient robots we create. If machine learning is going to take its guidance from humanity, we need to level up humanity’s emotional maturity.

While the physical struggles of the future may indeed fall to the wayside amongst abundance, it’s unlikely to become a mundane world; instead, it will become a vibrant culture where each individual is striving against the most important struggle that affects all of us: the challenge to find inner peace, to find fulfillment, to build meaningful relationships, and ultimately, the challenge to find ourselves.

Image Credit: goffkein.pro / Shutterstock.com Continue reading

Posted in Human Robots

#434792 Extending Human Longevity With ...

Lizards can regrow entire limbs. Flatworms, starfish, and sea cucumbers regrow entire bodies. Sharks constantly replace lost teeth, often growing over 20,000 teeth throughout their lifetimes. How can we translate these near-superpowers to humans?

The answer: through the cutting-edge innovations of regenerative medicine.

While big data and artificial intelligence transform how we practice medicine and invent new treatments, regenerative medicine is about replenishing, replacing, and rejuvenating our physical bodies.

In Part 5 of this blog series on Longevity and Vitality, I detail three of the regenerative technologies working together to fully augment our vital human organs.

Replenish: Stem cells, the regenerative engine of the body
Replace: Organ regeneration and bioprinting
Rejuvenate: Young blood and parabiosis

Let’s dive in.

Replenish: Stem Cells – The Regenerative Engine of the Body
Stem cells are undifferentiated cells that can transform into specialized cells such as heart, neurons, liver, lung, skin and so on, and can also divide to produce more stem cells.

In a child or young adult, these stem cells are in large supply, acting as a built-in repair system. They are often summoned to the site of damage or inflammation to repair and restore normal function.

But as we age, our supply of stem cells begins to diminish as much as 100- to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing your body.

Imagine your stem cells as a team of repairmen in your newly constructed mansion. When the mansion is new and the repairmen are young, they can fix everything perfectly. But as the repairmen age and reduce in number, your mansion eventually goes into disrepair and finally crumbles.

What if you could restore and rejuvenate your stem cell population?

One option to accomplish this restoration and rejuvenation is to extract and concentrate your own autologous adult stem cells from places like your adipose (or fat) tissue or bone marrow.

These stem cells, however, are fewer in number and have undergone mutations (depending on your age) from their original ‘software code.’ Many scientists and physicians now prefer an alternative source, obtaining stem cells from the placenta or umbilical cord, the leftovers of birth.

These stem cells, available in large supply and expressing the undamaged software of a newborn, can be injected into joints or administered intravenously to rejuvenate and revitalize.

Think of these stem cells as chemical factories generating vital growth factors that can help to reduce inflammation, fight autoimmune disease, increase muscle mass, repair joints, and even revitalize skin and grow hair.

Over the last decade, the number of publications per year on stem cell-related research has increased 40x, and the stem cell market is expected to increase to $297 billion by 2022.

Rising research and development initiatives to develop therapeutic options for chronic diseases and growing demand for regenerative treatment options are the most significant drivers of this budding industry.

Biologists led by Kohji Nishida at Osaka University in Japan have discovered a new way to nurture and grow the tissues that make up the human eyeball. The scientists are able to grow retinas, corneas, the eye’s lens, and more, using only a small sample of adult skin.

In a Stanford study, seven of 18 stroke victims who agreed to stem cell treatments showed remarkable motor function improvements. This treatment could work for other neurodegenerative conditions such as Alzheimer’s, Parkinson’s, and ALS.

Doctors from the USC Neurorestoration Center and Keck Medicine of USC injected stem cells into the damaged cervical spine of a recently paralyzed 21-year-old man. Three months later, he showed dramatic improvement in sensation and movement of both arms.

In 2019, doctors in the U.K. cured a patient with HIV for the second time ever thanks to the efficacy of stem cells. After giving the cancer patient (who also had HIV) an allogeneic haematopoietic (e.g. blood) stem cell treatment for his Hodgkin’s lymphoma, the patient went into long-term HIV remission—18 months and counting at the time of the study’s publication.

Replace: Organ Regeneration and 3D Printing
Every 10 minutes, someone is added to the US organ transplant waiting list, totaling over 113,000 people waiting for replacement organs as of January 2019.

Countless more people in need of ‘spare parts’ never make it onto the waiting list. And on average, 20 people die each day while waiting for a transplant.

As a result, 35 percent of all US deaths (~900,000 people) could be prevented or delayed with access to organ replacements.

The excessive demand for donated organs will only intensify as technologies like self-driving cars make the world safer, given that many organ donors result from auto and motorcycle accidents. Safer vehicles mean less accidents and donations.

Clearly, replacement and regenerative medicine represent a massive opportunity.

Organ Entrepreneurs
Enter United Therapeutics CEO, Dr. Martine Rothblatt. A one-time aerospace entrepreneur (she was the founder of Sirius Satellite Radio), Rothblatt changed careers in the 1990s after her daughter developed a rare lung disease.

Her moonshot today is to create an industry of replacement organs. With an initial focus on diseases of the lung, Rothblatt set out to create replacement lungs. To accomplish this goal, her company United Therapeutics has pursued a number of technologies in parallel.

3D Printing Lungs
In 2017, United teamed up with one of the world’s largest 3D printing companies, 3D Systems, to build a collagen bioprinter and is paying another company, 3Scan, to slice up lungs and create detailed maps of their interior.

This 3D Systems bioprinter now operates according to a method called stereolithography. A UV laser flickers through a shallow pool of collagen doped with photosensitive molecules. Wherever the laser lingers, the collagen cures and becomes solid.

Gradually, the object being printed is lowered and new layers are added. The printer can currently lay down collagen at a resolution of around 20 micrometers, but will need to achieve resolution of a micrometer in size to make the lung functional.

Once a collagen lung scaffold has been printed, the next step is to infuse it with human cells, a process called recellularization.

The goal here is to use stem cells that grow on scaffolding and differentiate, ultimately providing the proper functionality. Early evidence indicates this approach can work.

In 2018, Harvard University experimental surgeon Harald Ott reported that he pumped billions of human cells (from umbilical cords and diced lungs) into a pig lung stripped of its own cells. When Ott’s team reconnected it to a pig’s circulation, the resulting organ showed rudimentary function.

Humanizing Pig Lungs
Another of Rothblatt’s organ manufacturing strategies is called xenotransplantation, the idea of transplanting an animal’s organs into humans who need a replacement.

Given the fact that adult pig organs are similar in size and shape to those of humans, United Therapeutics has focused on genetically engineering pigs to allow humans to use their organs. “It’s actually not rocket science,” said Rothblatt in her 2015 TED talk. “It’s editing one gene after another.”

To accomplish this goal, United Therapeutics made a series of investments in companies such as Revivicor Inc. and Synthetic Genomics Inc., and signed large funding agreements with the University of Maryland, University of Alabama, and New York Presbyterian/Columbia University Medical Center to create xenotransplantation programs for new hearts, kidneys, and lungs, respectively. Rothblatt hopes to see human translation in three to four years.

In preparation for that day, United Therapeutics owns a 132-acre property in Research Triangle Park and built a 275,000-square-foot medical laboratory that will ultimately have the capability to annually produce up to 1,000 sets of healthy pig lungs—known as xenolungs—from genetically engineered pigs.

Lung Ex Vivo Perfusion Systems
Beyond 3D printing and genetically engineering pig lungs, Rothblatt has already begun implementing a third near-term approach to improve the supply of lungs across the US.

Only about 30 percent of potential donor lungs meet transplant criteria in the first place; of those, only about 85 percent of those are usable once they arrive at the surgery center. As a result, nearly 75 percent of possible lungs never make it to the recipient in need.

What if these lungs could be rejuvenated? This concept informs Dr. Rothblatt’s next approach.

In 2016, United Therapeutics invested $41.8 million in TransMedics Inc., an Andover, Massachusetts company that develops ex vivo perfusion systems for donor lungs, hearts, and kidneys.

The XVIVO Perfusion System takes marginal-quality lungs that initially failed to meet transplantation standard-of-care criteria and perfuses and ventilates them at normothermic conditions, providing an opportunity for surgeons to reassess transplant suitability.

Rejuvenate Young Blood and Parabiosis
In HBO’s parody of the Bay Area tech community, Silicon Valley, one of the episodes (Season 4, Episode 5) is named “The Blood Boy.”

In this installment, tech billionaire Gavin Belson (Matt Ross) is meeting with Richard Hendricks (Thomas Middleditch) and his team, speaking about the future of the decentralized internet. A young, muscled twenty-something disrupts the meeting when he rolls in a transfusion stand and silently hooks an intravenous connection between himself and Belson.

Belson then introduces the newcomer as his “transfusion associate” and begins to explain the science of parabiosis: “Regular transfusions of the blood of a younger physically fit donor can significantly retard the aging process.”

While the sitcom is fiction, that science has merit, and the scenario portrayed in the episode is already happening today.

On the first point, research at Stanford and Harvard has demonstrated that older animals, when transfused with the blood of young animals, experience regeneration across many tissues and organs.

The opposite is also true: young animals, when transfused with the blood of older animals, experience accelerated aging. But capitalizing on this virtual fountain of youth has been tricky.

Ambrosia
One company, a San Francisco-based startup called Ambrosia, recently commenced one of the trials on parabiosis. Their protocol is simple: Healthy participants aged 35 and older get a transfusion of blood plasma from donors under 25, and researchers monitor their blood over the next two years for molecular indicators of health and aging.

Ambrosia’s founder Jesse Karmazin became interested in launching a company around parabiosis after seeing impressive data from animals and studies conducted abroad in humans: In one trial after another, subjects experience a reversal of aging symptoms across every major organ system. “The effects seem to be almost permanent,” he said. “It’s almost like there’s a resetting of gene expression.”

Infusing your own cord blood stem cells as you age may have tremendous longevity benefits. Following an FDA press release in February 2019, Ambrosia halted its consumer-facing treatment after several months of operation.

Understandably, the FDA raised concerns about the practice of parabiosis because to date, there is a marked lack of clinical data to support the treatment’s effectiveness.

Elevian
On the other end of the reputability spectrum is a startup called Elevian, spun out of Harvard University. Elevian is approaching longevity with a careful, scientifically validated strategy. (Full Disclosure: I am both an advisor to and investor in Elevian.)

CEO Mark Allen, MD, is joined by a dozen MDs and Ph.Ds out of Harvard. Elevian’s scientific founders started the company after identifying specific circulating factors that may be responsible for the “young blood” effect.

One example: A naturally occurring molecule known as “growth differentiation factor 11,” or GDF11, when injected into aged mice, reproduces many of the regenerative effects of young blood, regenerating heart, brain, muscles, lungs, and kidneys.

More specifically, GDF11 supplementation reduces age-related cardiac hypertrophy, accelerates skeletal muscle repair, improves exercise capacity, improves brain function and cerebral blood flow, and improves metabolism.

Elevian is developing a number of therapeutics that regulate GDF11 and other circulating factors. The goal is to restore our body’s natural regenerative capacity, which Elevian believes can address some of the root causes of age-associated disease with the promise of reversing or preventing many aging-related diseases and extending the healthy lifespan.

Conclusion
In 1992, futurist Leland Kaiser coined the term “regenerative medicine”:

“A new branch of medicine will develop that attempts to change the course of chronic disease and in many instances will regenerate tired and failing organ systems.”

Since then, the powerful regenerative medicine industry has grown exponentially, and this rapid growth is anticipated to continue.

A dramatic extension of the human healthspan is just over the horizon. Soon, we’ll all have the regenerative superpowers previously relegated to a handful of animals and comic books.

What new opportunities open up when anybody, anywhere, and at anytime can regenerate, replenish, and replace entire organs and metabolic systems on command?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Giovanni Cancemi / Shutterstock.com Continue reading

Posted in Human Robots

#434658 The Next Data-Driven Healthtech ...

Increasing your healthspan (i.e. making 100 years old the new 60) will depend to a large degree on artificial intelligence. And, as we saw in last week’s blog, healthcare AI systems are extremely data-hungry.

Fortunately, a slew of new sensors and data acquisition methods—including over 122 million wearables shipped in 2018—are bursting onto the scene to meet the massive demand for medical data.

From ubiquitous biosensors, to the mobile healthcare revolution, to the transformative power of the Health Nucleus, converging exponential technologies are fundamentally transforming our approach to healthcare.

In Part 4 of this blog series on Longevity & Vitality, I expand on how we’re acquiring the data to fuel today’s AI healthcare revolution.

In this blog, I’ll explore:

How the Health Nucleus is transforming “sick care” to healthcare
Sensors, wearables, and nanobots
The advent of mobile health

Let’s dive in.

Health Nucleus: Transforming ‘Sick Care’ to Healthcare
Much of today’s healthcare system is actually sick care. Most of us assume that we’re perfectly healthy, with nothing going on inside our bodies, until the day we travel to the hospital writhing in pain only to discover a serious or life-threatening condition.

Chances are that your ailment didn’t materialize that morning; rather, it’s been growing or developing for some time. You simply weren’t aware of it. At that point, once you’re diagnosed as “sick,” our medical system engages to take care of you.

What if, instead of this retrospective and reactive approach, you were constantly monitored, so that you could know the moment anything was out of whack?

Better yet, what if you more closely monitored those aspects of your body that your gene sequence predicted might cause you difficulty? Think: your heart, your kidneys, your breasts. Such a system becomes personalized, predictive, and possibly preventative.

This is the mission of the Health Nucleus platform built by Human Longevity, Inc. (HLI). While not continuous—that will come later, with the next generation of wearable and implantable sensors—the Health Nucleus was designed to ‘digitize’ you once per year to help you determine whether anything is going on inside your body that requires immediate attention.

The Health Nucleus visit provides you with the following tests during a half-day visit:

Whole genome sequencing (30x coverage)
Whole body (non-contrast) MRI
Brain magnetic resonance imaging/angiography (MRI/MRA)
CT (computed tomography) of the heart and lungs
Coronary artery calcium scoring
Electrocardiogram
Echocardiogram
Continuous cardiac monitoring
Clinical laboratory tests and metabolomics

In late 2018, HLI published the results of the first 1,190 clients through the Health Nucleus. The results were eye-opening—especially since these patients were all financially well-off, and already had access to the best doctors.

Following are the physiological and genomic findings in these clients who self-selected to undergo evaluation at HLI’s Health Nucleus.

Physiological Findings [TG]

Two percent had previously unknown tumors detected by MRI
2.5 percent had previously undetected aneurysms detected by MRI
Eight percent had cardiac arrhythmia found on cardiac rhythm monitoring, not previously known
Nine percent had moderate-severe coronary artery disease risk, not previously known
16 percent discovered previously unknown cardiac structure/function abnormalities
30 percent had elevated liver fat, not previously known

Genomic Findings [TG]

24 percent of clients uncovered a rare (unknown) genetic mutation found on WGS
63 percent of clients had a rare genetic mutation with a corresponding phenotypic finding

In summary, HLI’s published results found that 14.4 percent of clients had significant findings that are actionable, requiring immediate or near-term follow-up and intervention.

Long-term value findings were found in 40 percent of the clients we screened. Long-term clinical findings include discoveries that require medical attention or monitoring but are not immediately life-threatening.

The bottom line: most people truly don’t know their actual state of health. The ability to take a fully digital deep dive into your health status at least once per year will enable you to detect disease at stage zero or stage one, when it is most curable.

Sensors, Wearables, and Nanobots
Wearables, connected devices, and quantified self apps will allow us to continuously collect enormous amounts of useful health information.

Wearables like the Quanttus wristband and Vital Connect can transmit your electrocardiogram data, vital signs, posture, and stress levels anywhere on the planet.

In April 2017, we were proud to grant $2.5 million in prize money to the winning team in the Qualcomm Tricorder XPRIZE, Final Frontier Medical Devices.

Using a group of noninvasive sensors that collect data on vital signs, body chemistry, and biological functions, Final Frontier integrates this data in their powerful, AI-based DxtER diagnostic engine for rapid, high-precision assessments.

Their engine combines learnings from clinical emergency medicine and data analysis from actual patients.

Google is developing a full range of internal and external sensors (e.g. smart contact lenses) that can monitor the wearer’s vitals, ranging from blood sugar levels to blood chemistry.

In September 2018, Apple announced its Series 4 Apple Watch, including an FDA-approved mobile, on-the-fly ECG. Granted its first FDA approval, Apple appears to be moving deeper into the sensing healthcare market.

Further, Apple is reportedly now developing sensors that can non-invasively monitor blood sugar levels in real time for diabetic treatment. IoT-connected sensors are also entering the world of prescription drugs.

Last year, the FDA approved the first sensor-embedded pill, Abilify MyCite. This new class of digital pills can now communicate medication data to a user-controlled app, to which doctors may be granted access for remote monitoring.

Perhaps what is most impressive about the next generation of wearables and implantables is the density of sensors, processing, networking, and battery capability that we can now cheaply and compactly integrate.

Take the second-generation OURA ring, for example, which focuses on sleep measurement and management.

The OURA ring looks like a slightly thick wedding band, yet contains an impressive array of sensors and capabilities, including:

Two infrared LED
One infrared sensor
Three temperature sensors
One accelerometer
A six-axis gyro
A curved battery with a seven-day life
The memory, processing, and transmission capability required to connect with your smartphone

Disrupting Medical Imaging Hardware
In 2018, we saw lab breakthroughs that will drive the cost of an ultrasound sensor to below $100, in a packaging smaller than most bandages, powered by a smartphone. Dramatically disrupting ultrasound is just the beginning.

Nanobots and Nanonetworks
While wearables have long been able to track and transmit our steps, heart rate, and other health data, smart nanobots and ingestible sensors will soon be able to monitor countless new parameters and even help diagnose disease.

Some of the most exciting breakthroughs in smart nanotechnology from the past year include:

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) demonstrated artificial microrobots that can swim and navigate through different fluids, independent of additional sensors, electronics, or power transmission.

Researchers at the University of Chicago proposed specific arrangements of DNA-based molecular logic gates to capture the information contained in the temporal portion of our cells’ communication mechanisms. Accessing the otherwise-lost time-dependent information of these cellular signals is akin to knowing the tune of a song, rather than solely the lyrics.

MIT researchers built micron-scale robots able to sense, record, and store information about their environment. These tiny robots, about 100 micrometers in diameter (approximately the size of a human egg cell), can also carry out pre-programmed computational tasks.

Engineers at University of California, San Diego developed ultrasound-powered nanorobots that swim efficiently through your blood, removing harmful bacteria and the toxins they produce.

But it doesn’t stop there.

As nanosensor and nanonetworking capabilities develop, these tiny bots may soon communicate with each other, enabling the targeted delivery of drugs and autonomous corrective action.

Mobile Health
The OURA ring and the Series 4 Apple Watch are just the tip of the spear when it comes to our future of mobile health. This field, predicted to become a $102 billion market by 2022, puts an on-demand virtual doctor in your back pocket.

Step aside, WebMD.

In true exponential technology fashion, mobile device penetration has increased dramatically, while image recognition error rates and sensor costs have sharply declined.

As a result, AI-powered medical chatbots are flooding the market; diagnostic apps can identify anything from a rash to diabetic retinopathy; and with the advent of global connectivity, mHealth platforms enable real-time health data collection, transmission, and remote diagnosis by medical professionals.

Already available to residents across North London, Babylon Health offers immediate medical advice through AI-powered chatbots and video consultations with doctors via its app.

Babylon now aims to build up its AI for advanced diagnostics and even prescription. Others, like Woebot, take on mental health, using cognitive behavioral therapy in communications over Facebook messenger with patients suffering from depression.

In addition to phone apps and add-ons that test for fertility or autism, the now-FDA-approved Clarius L7 Linear Array Ultrasound Scanner can connect directly to iOS and Android devices and perform wireless ultrasounds at a moment’s notice.

Next, Healthy.io, an Israeli startup, uses your smartphone and computer vision to analyze traditional urine test strips—all you need to do is take a few photos.

With mHealth platforms like ClickMedix, which connects remotely-located patients to medical providers through real-time health data collection and transmission, what’s to stop us from delivering needed treatments through drone delivery or robotic telesurgery?

Welcome to the age of smartphone-as-a-medical-device.

Conclusion
With these DIY data collection and diagnostic tools, we save on transportation costs (time and money), and time bottlenecks.

No longer will you need to wait for your urine or blood results to go through the current information chain: samples will be sent to the lab, analyzed by a technician, results interpreted by your doctor, and only then relayed to you.

Just like the “sage-on-the-stage” issue with today’s education system, healthcare has a “doctor-on-the-dais” problem. Current medical procedures are too complicated and expensive for a layperson to perform and analyze on their own.

The coming abundance of healthcare data promises to transform how we approach healthcare, putting the power of exponential technologies in the patient’s hands and revolutionizing how we live.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Titima Ongkantong / Shutterstock.com Continue reading

Posted in Human Robots

#434637 AI Is Rapidly Augmenting Healthcare and ...

When it comes to the future of healthcare, perhaps the only technology more powerful than CRISPR is artificial intelligence.

Over the past five years, healthcare AI startups around the globe raised over $4.3 billion across 576 deals, topping all other industries in AI deal activity.

During this same period, the FDA has given 70 AI healthcare tools and devices ‘fast-tracked approval’ because of their ability to save both lives and money.

The pace of AI-augmented healthcare innovation is only accelerating.

In Part 3 of this blog series on longevity and vitality, I cover the different ways in which AI is augmenting our healthcare system, enabling us to live longer and healthier lives.

In this blog, I’ll expand on:

Machine learning and drug design
Artificial intelligence and big data in medicine
Healthcare, AI & China

Let’s dive in.

Machine Learning in Drug Design
What if AI systems, specifically neural networks, could predict the design of novel molecules (i.e. medicines) capable of targeting and curing any disease?

Imagine leveraging cutting-edge artificial intelligence to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.

And what if these molecules, accurately engineered by AIs, always worked? Such a feat would revolutionize our $1.3 trillion global pharmaceutical industry, which currently holds a dismal record of 1 in 10 target drugs ever reaching human trials.

It’s no wonder that drug development is massively expensive and slow. It takes over 10 years to bring a new drug to market, with costs ranging from $2.5 billion to $12 billion.

This inefficient, slow-to-innovate, and risk-averse industry is a sitting duck for disruption in the years ahead.

One of the hottest startups in digital drug discovery today is Insilico Medicine. Leveraging AI in its end-to-end drug discovery pipeline, Insilico Medicine aims to extend healthy longevity through drug discovery and aging research.

Their comprehensive drug discovery engine uses millions of samples and multiple data types to discover signatures of disease, identify the most promising protein targets, and generate perfect molecules for these targets. These molecules either already exist or can be generated de novo with the desired set of parameters.

In late 2018, Insilico’s CEO Dr. Alex Zhavoronkov announced the groundbreaking result of generating novel molecules for a challenging protein target with an unprecedented hit rate in under 46 days. This included both synthesis of the molecules and experimental validation in a biological test system—an impressive feat made possible by converging exponential technologies.

Underpinning Insilico’s drug discovery pipeline is a novel machine learning technique called Generative Adversarial Networks (GANs), used in combination with deep reinforcement learning.

Generating novel molecular structures for diseases both with and without known targets, Insilico is now pursuing drug discovery in aging, cancer, fibrosis, Parkinson’s disease, Alzheimer’s disease, ALS, diabetes, and many others. Once rolled out, the implications will be profound.

Dr. Zhavoronkov’s ultimate goal is to develop a fully-automated Health-as-a-Service (HaaS) and Longevity-as-a-Service (LaaS) engine.

Once plugged into the services of companies from Alibaba to Alphabet, such an engine would enable personalized solutions for online users, helping them prevent diseases and maintain optimal health.

Insilico, alongside other companies tackling AI-powered drug discovery, truly represents the application of the 6 D’s. What was once a prohibitively expensive and human-intensive process is now rapidly becoming digitized, dematerialized, demonetized and, perhaps most importantly, democratized.

Companies like Insilico can now do with a fraction of the cost and personnel what the pharmaceutical industry can barely accomplish with thousands of employees and a hefty bill to foot.

As I discussed in my blog on ‘The Next Hundred-Billion-Dollar Opportunity,’ Google’s DeepMind has now turned its neural networks to healthcare, entering the digitized drug discovery arena.

In 2017, DeepMind achieved a phenomenal feat by matching the fidelity of medical experts in correctly diagnosing over 50 eye disorders.

And just a year later, DeepMind announced a new deep learning tool called AlphaFold. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.

Artificial Intelligence and Data Crunching
AI is especially powerful in analyzing massive quantities of data to uncover patterns and insights that can save lives. Take WAVE, for instance. Every year, over 400,000 patients die prematurely in US hospitals as a result of heart attack or respiratory failure.

Yet these patients don’t die without leaving plenty of clues. Given information overload, however, human physicians and nurses alone have no way of processing and analyzing all necessary data in time to save these patients’ lives.

Enter WAVE, an algorithm that can process enough data to offer a six-hour early warning of patient deterioration.

Just last year, the FDA approved WAVE as an AI-based predictive patient surveillance system to predict and thereby prevent sudden death.

Another highly valuable yet difficult-to-parse mountain of medical data comprises the 2.5 million medical papers published each year.

For some time, it has become physically impossible for a human physician to read—let alone remember—all of the relevant published data.

To counter this compounding conundrum, Johnson & Johnson is teaching IBM Watson to read and understand scientific papers that detail clinical trial outcomes.

Enriching Watson’s data sources, Apple is also partnering with IBM to provide access to health data from mobile apps.

One such Watson system contains 40 million documents, ingesting an average of 27,000 new documents per day, and providing insights for thousands of users.

After only one year, Watson’s successful diagnosis rate of lung cancer has reached 90 percent, compared to the 50 percent success rate of human doctors.

But what about the vast amount of unstructured medical patient data that populates today’s ancient medical system? This includes medical notes, prescriptions, audio interview transcripts, and pathology and radiology reports.

In late 2018, Amazon announced a new HIPAA-eligible machine learning service that digests and parses unstructured data into categories, such as patient diagnoses, treatments, dosages, symptoms and signs.

Taha Kass-Hout, Amazon’s senior leader in health care and artificial intelligence, told the Wall Street Journal that internal tests demonstrated that the software even performs as well as or better than other published efforts.

On the heels of this announcement, Amazon confirmed it was teaming up with the Fred Hutchinson Cancer Research Center to evaluate “millions of clinical notes to extract and index medical conditions.”

Having already driven extraordinary algorithmic success rates in other fields, data is the healthcare industry’s goldmine for future innovation.

Healthcare, AI & China
In 2017, the Chinese government published its ambitious national plan to become a global leader in AI research by 2030, with healthcare listed as one of four core research areas during the first wave of the plan.

Just a year earlier, China began centralizing healthcare data, tackling a major roadblock to developing longevity and healthcare technologies (particularly AI systems): scattered, dispersed, and unlabeled patient data.

Backed by the Chinese government, China’s largest tech companies—particularly Tencent—have now made strong entrances into healthcare.

Just recently, Tencent participated in a $154 million megaround for China-based healthcare AI unicorn iCarbonX.

Hoping to develop a complete digital representation of your biological self, iCarbonX has acquired numerous US personalized medicine startups.

Considering Tencent’s own Miying healthcare AI platform—aimed at assisting healthcare institutions in AI-driven cancer diagnostics—Tencent is quickly expanding into the drug discovery space, participating in two multimillion-dollar, US-based AI drug discovery deals just this year.

China’s biggest, second-order move into the healthtech space comes through Tencent’s WeChat. In the course of a mere few years, already 60 percent of the 38,000 medical institutions registered on WeChat allow patients to digitally book appointments through Tencent’s mobile platform. At the same time, 2,000 Chinese hospitals accept WeChat payments.

Tencent has additionally partnered with the U.K.’s Babylon Health, a virtual healthcare assistant startup whose app now allows Chinese WeChat users to message their symptoms and receive immediate medical feedback.

Similarly, Alibaba’s healthtech focus started in 2016 when it released its cloud-based AI medical platform, ET Medical Brain, to augment healthcare processes through everything from diagnostics to intelligent scheduling.

Conclusion
As Nvidia CEO Jensen Huang has stated, “Software ate the world, but AI is going to eat software.” Extrapolating this statement to a more immediate implication, AI will first eat healthcare, resulting in dramatic acceleration of longevity research and an amplification of the human healthspan.

Next week, I’ll continue to explore this concept of AI systems in healthcare.

Particularly, I’ll expand on how we’re acquiring and using the data for these doctor-augmenting AI systems: from ubiquitous biosensors, to the mobile healthcare revolution, and finally, to the transformative power of the health nucleus.

As AI and other exponential technologies increase our healthspan by 30 to 40 years, how will you leverage these same exponential technologies to take on your moonshots and live out your massively transformative purpose?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#434534 To Extend Our Longevity, First We Must ...

Healthcare today is reactive, retrospective, bureaucratic, and expensive. It’s sick care, not healthcare.

But that is radically changing at an exponential rate.

Through this multi-part blog series on longevity, I’ll take a deep dive into aging, longevity, and healthcare technologies that are working together to dramatically extend the human lifespan, disrupting the $3 trillion healthcare system in the process.

I’ll begin the series by explaining the nine hallmarks of aging, as explained in this journal article. Next, I’ll break down the emerging technologies and initiatives working to combat these nine hallmarks. Finally, I’ll explore the transformative implications of dramatically extending the human health span.

In this blog I’ll cover:

Why the healthcare system is broken
Why, despite this, we live in the healthiest time in human history
The nine mechanisms of aging

Let’s dive in.

The System is Broken—Here’s the Data:

Doctors spend $210 billion per year on procedures that aren’t based on patient need, but fear of liability.
Americans spend, on average, $8,915 per person on healthcare—more than any other country on Earth.
Prescription drugs cost around 50 percent more in the US than in other industrialized countries.
At current rates, by 2025, nearly 25 percent of the US GDP will be spent on healthcare.
It takes 12 years and $359 million, on average, to take a new drug from the lab to a patient.
Only 5 in 5,000 of these new drugs proceed to human testing. From there, only 1 of those 5 is actually approved for human use.

And Yet, We Live in the Healthiest Time in Human History
Consider these insights, which I adapted from Max Roser’s excellent database Our World in Data:

Right now, the countries with the lowest life expectancy in the world still have higher life expectancies than the countries with the highest life expectancy did in 1800.
In 1841, a 5-year-old had a life expectancy of 55 years. Today, a 5-year-old can expect to live 82 years—an increase of 27 years.
We’re seeing a dramatic increase in healthspan. In 1845, a newborn would expect to live to 40 years old. For a 70-year-old, that number became 79. Now, people of all ages can expect to live to be 81 to 86 years old.
100 years ago, 1 of 3 children would die before the age of 5. As of 2015, the child mortality rate fell to just 4.3 percent.
The cancer mortality rate has declined 27 percent over the past 25 years.

Figure: Around the globe, life expectancy has doubled since the 1800s. | Image from Life Expectancy by Max Roser – Our World in Data / CC BY SA
Figure: A dramatic reduction in child mortality in 1800 vs. in 2015. | Image from Child Mortality by Max Roser – Our World in Data / CC BY SA
The 9 Mechanisms of Aging
*This section was adapted from CB INSIGHTS: The Future Of Aging.

Longevity, healthcare, and aging are intimately linked.

With better healthcare, we can better treat some of the leading causes of death, impacting how long we live.

By investigating how to treat diseases, we’ll inevitably better understand what causes these diseases in the first place, which directly correlates to why we age.

Following are the nine hallmarks of aging. I’ll share examples of health and longevity technologies addressing each of these later in this blog series.

Genomic instability: As we age, the environment and normal cellular processes cause damage to our genes. Activities like flying at high altitude, for example, expose us to increased radiation or free radicals. This damage compounds over the course of life and is known to accelerate aging.
Telomere attrition: Each strand of DNA in the body (known as chromosomes) is capped by telomeres. These short snippets of DNA repeated thousands of times are designed to protect the bulk of the chromosome. Telomeres shorten as our DNA replicates; if a telomere reaches a certain critical shortness, a cell will stop dividing, resulting in increased incidence of disease.
Epigenetic alterations: Over time, environmental factors will change how genes are expressed, i.e., how certain sequences of DNA are read and the instruction set implemented.
Loss of proteostasis: Over time, different proteins in our body will no longer fold and function as they are supposed to, resulting in diseases ranging from cancer to neurological disorders.
Deregulated nutrient-sensing: Nutrient levels in the body can influence various metabolic pathways. Among the affected parts of these pathways are proteins like IGF-1, mTOR, sirtuins, and AMPK. Changing levels of these proteins’ pathways has implications on longevity.
Mitochondrial dysfunction: Mitochondria (our cellular power plants) begin to decline in performance as we age. Decreased performance results in excess fatigue and other symptoms of chronic illnesses associated with aging.
Cellular senescence: As cells age, they stop dividing and cannot be removed from the body. They build up and typically cause increased inflammation.
Stem cell exhaustion: As we age, our supply of stem cells begins to diminish as much as 100 to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing the body.
Altered intercellular communication: The communication mechanisms that cells use are disrupted as cells age, resulting in decreased ability to transmit information between cells.

Conclusion
Over the past 200 years, we have seen an abundance of healthcare technologies enable a massive lifespan boom.

Now, exponential technologies like artificial intelligence, 3D printing and sensors, as well as tremendous advancements in genomics, stem cell research, chemistry, and many other fields, are beginning to tackle the fundamental issues of why we age.

In the next blog in this series, we will dive into how genome sequencing and editing, along with new classes of drugs, are augmenting our biology to further extend our healthy lives.

What will you be able to achieve with an extra 30 to 50 healthy years (or longer) in your lifespan? Personally, I’m excited for a near-infinite lifespan to take on moonshots.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: David Carbo / Shutterstock.com Continue reading

Posted in Human Robots