Tag Archives: parts

#435110 5 Coming Breakthroughs in Energy and ...

The energy and transportation industries are being aggressively disrupted by converging exponential technologies.

In just five days, the sun provides Earth with an energy supply exceeding all proven reserves of oil, coal, and natural gas. Capturing just 1 part in 8,000 of this available solar energy would allow us to meet 100 percent of our energy needs.

As we leverage renewable energy supplied by the sun, wind, geothermal sources, and eventually fusion, we are rapidly heading towards a future where 100 percent of our energy needs will be met by clean tech in just 30 years.

During the past 40 years, solar prices have dropped 250-fold. And as these costs plummet, solar panel capacity continues to grow exponentially.

On the heels of energy abundance, we are additionally witnessing a new transportation revolution, which sets the stage for a future of seamlessly efficient travel at lower economic and environmental costs.

Top 5 Transportation Breakthroughs (2019-2024)
Entrepreneur and inventor Ramez Naam is my go-to expert on all things energy and environment. Currently serving as the Energy Co-Chair at Singularity University, Naam is the award-winning author of five books, including the Nexus series of science fiction novels. Having spent 13 years at Microsoft, his software has touched the lives of over a billion people. Naam holds over 20 patents, including several shared with co-inventor Bill Gates.

In the next five years, he forecasts five respective transportation and energy trends, each poised to disrupt major players and birth entirely new business models.

Let’s dive in.

Autonomous cars drive 1 billion miles on US roads. Then 10 billion

Alphabet’s Waymo alone has already reached 10 million miles driven in the US. The 600 Waymo vehicles on public roads drive a total of 25,000 miles each day, and computer simulations provide an additional 25,000 virtual cars driving constantly. Since its launch in December, the Waymo One service has transported over 1,000 pre-vetted riders in the Phoenix area.

With more training miles, the accuracy of these cars continues to improve. Since last year, GM Cruise has improved its disengagement rate by 321 percent since last year, trailing close behind with only one human intervention per 5,025 miles self-driven.

Autonomous taxis as a service in top 20 US metro areas

Along with its first quarterly earnings released last week, Lyft recently announced that it would expand its Waymo partnership with the upcoming deployment of 10 autonomous vehicles in the Phoenix area. While individuals previously had to partake in Waymo’s “early rider program” prior to trying Waymo One, the Lyft partnership will allow anyone to ride in a self-driving vehicle without a prior NDA.

Strategic partnerships will grow increasingly essential between automakers, self-driving tech companies, and rideshare services. Ford is currently working with Volkswagen, and Nvidia now collaborates with Daimler (Mercedes) and Toyota. Just last week, GM Cruise raised another $1.15 billion at a $19 billion valuation as the company aims to launch a ride-hailing service this year.

“They’re going to come to the Bay Area, Los Angeles, Houston, other cities with relatively good weather,” notes Naam. “In every major city within five years in the US and in some other parts of the world, you’re going to see the ability to hail an autonomous vehicle as a ride.”

Cambrian explosion of vehicle formats

Naam explains, “If you look today at the average ridership of a taxi, a Lyft, or an Uber, it’s about 1.1 passengers plus the driver. So, why do you need a large four-seater vehicle for that?”

Small electric, autonomous pods that seat as few as two people will begin to emerge, satisfying the majority of ride-hailing demands we see today. At the same time, larger communal vehicles will appear, such as Uber Express, that will undercut even the cheapest of transportation methods—buses, trams, and the like. Finally, last-mile scooter transit (or simply short-distance walks) might connect you to communal pick-up locations.

By 2024, an unimaginably diverse range of vehicles will arise to meet every possible need, regardless of distance or destination.

Drone delivery for lightweight packages in at least one US city

Wing, the Alphabet drone delivery startup, recently became the first company to gain approval from the Federal Aviation Administration (FAA) to make deliveries in the US. Having secured approval to deliver to 100 homes in Canberra, Australia, Wing additionally plans to begin delivering goods from local businesses in the suburbs of Virginia.

The current state of drone delivery is best suited for lightweight, urgent-demand payloads like pharmaceuticals, thumb drives, or connectors. And as Amazon continues to decrease its Prime delivery times—now as speedy as a one-day turnaround in many cities—the use of drones will become essential.

Robotic factories drive onshoring of US factories… but without new jobs

The supply chain will continue to shorten and become more agile with the re-onshoring of manufacturing jobs in the US and other countries. Naam reasons that new management and software jobs will drive this shift, as these roles develop the necessary robotics to manufacture goods. Equally as important, these robotic factories will provide a more humane setting than many of the current manufacturing practices overseas.

Top 5 Energy Breakthroughs (2019-2024)

First “1 cent per kWh” deals for solar and wind signed

Ten years ago, the lowest price of solar and wind power fell between 10 to 12 cents per kilowatt hour (kWh), over twice the price of wholesale power from coal or natural gas.

Today, the gap between solar/wind power and fossil fuel-generated electricity is nearly negligible in many parts of the world. In G20 countries, fossil fuel electricity costs between 5 to 17 cents per kWh, while the average cost per kWh of solar power in the US stands at under 10 cents.

Spanish firm Solarpack Corp Technological recently won a bid in Chile for a 120 MW solar power plant supplying energy at 2.91 cents per kWh. This deal will result in an estimated 25 percent drop in energy costs for Chilean businesses by 2021.

Naam indicates, “We will see the first unsubsidized 1.0 cent solar deals in places like Chile, Mexico, the Southwest US, the Middle East, and North Africa, and we’ll see similar prices for wind in places like Mexico, Brazil, and the US Great Plains.”

Solar and wind will reach >15 percent of US electricity, and begin to drive all growth

Just over eight percent of energy in the US comes from solar and wind sources. In total, 17 percent of American energy is derived from renewable sources, while a whopping 63 percent is sourced from fossil fuels, and 17 percent from nuclear.

Last year in the U.K., twice as much energy was generated from wind than from coal. For over a week in May, the U.K. went completely coal-free, using wind and solar to supply 35 percent and 21 percent of power, respectively. While fossil fuels remain the primary electricity source, this week-long experiment highlights the disruptive potential of solar and wind power that major countries like the U.K. are beginning to emphasize.

“Solar and wind are still a relatively small part of the worldwide power mix, only about six percent. Within five years, it’s going to be 15 percent in the US and more than close to that worldwide,” Naam predicts. “We are nearing the point where we are not building any new fossil fuel power plants.”

It will be cheaper to build new solar/wind/batteries than to run on existing coal

Last October, Northern Indiana utility company NIPSCO announced its transition from a 65 percent coal-powered state to projected coal-free status by 2028. Importantly, this decision was made purely on the basis of financials, with an estimated $4 billion in cost savings for customers. The company has already begun several initiatives in solar, wind, and batteries.

NextEra, the largest power generator in the US, has taken on a similar goal, making a deal last year to purchase roughly seven million solar panels from JinkoSolar over four years. Leading power generators across the globe have vocalized a similar economic case for renewable energy.

ICE car sales have now peaked. All car sales growth will be electric

While electric vehicles (EV) have historically been more expensive for consumers than internal combustion engine-powered (ICE) cars, EVs are cheaper to operate and maintain. The yearly cost of operating an EV in the US is about $485, less than half the $1,117 cost of operating a gas-powered vehicle.

And as battery prices continue to shrink, the upfront costs of EVs will decline until a long-term payoff calculation is no longer required to determine which type of car is the better investment. EVs will become the obvious choice.

Many experts including Naam believe that ICE-powered vehicles peaked worldwide in 2018 and will begin to decline over the next five years, as has already been demonstrated in the past five months. At the same time, EVs are expected to quadruple their market share to 1.6 percent this year.

New storage technologies will displace Li-ion batteries for tomorrow’s most demanding applications

Lithium ion batteries have dominated the battery market for decades, but Naam anticipates new storage technologies will take hold for different contexts. Flow batteries, which can collect and store solar and wind power at large scales, will supply city grids. Already, California’s Independent System Operator, the nonprofit that maintains the majority of the state’s power grid, recently installed a flow battery system in San Diego.

Solid-state batteries, which consist of entirely solid electrolytes, will supply mobile devices in cars. A growing body of competitors, including Toyota, BMW, Honda, Hyundai, and Nissan, are already working on developing solid-state battery technology. These types of batteries offer up to six times faster charging periods, three times the energy density, and eight years of added lifespan, compared to lithium ion batteries.

Final Thoughts
Major advancements in transportation and energy technologies will continue to converge over the next five years. A case in point, Tesla’s recent announcement of its “robotaxi” fleet exemplifies the growing trend towards joint priority of sustainability and autonomy.

On the connectivity front, 5G and next-generation mobile networks will continue to enable the growth of autonomous fleets, many of which will soon run on renewable energy sources. This growth demands important partnerships between energy storage manufacturers, automakers, self-driving tech companies, and ridesharing services.

In the eco-realm, increasingly obvious economic calculi will catalyze consumer adoption of autonomous electric vehicles. In just five years, Naam predicts that self-driving rideshare services will be cheaper than owning a private vehicle for urban residents. And by the same token, plummeting renewable energy costs will make these fuels far more attractive than fossil fuel-derived electricity.

As universally optimized AI systems cut down on traffic, aggregate time spent in vehicles will decimate, while hours in your (or not your) car will be applied to any number of activities as autonomous systems steer the way. All the while, sharing an electric vehicle will cut down not only on your carbon footprint but on the exorbitant costs swallowed by your previous SUV. How will you spend this extra time and money? What new natural resources will fuel your everyday life?

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: welcomia / Shutterstock.com Continue reading

Posted in Human Robots

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#435023 Inflatable Robot Astronauts and How to ...

The typical cultural image of a robot—as a steel, chrome, humanoid bucket of bolts—is often far from the reality of cutting-edge robotics research. There are difficulties, both social and technological, in realizing the image of a robot from science fiction—let alone one that can actually help around the house. Often, it’s simply the case that great expense in producing a humanoid robot that can perform dozens of tasks quite badly is less appropriate than producing some other design that’s optimized to a specific situation.

A team of scientists from Brigham Young University has received funding from NASA to investigate an inflatable robot called, improbably, King Louie. The robot was developed by Pneubotics, who have a long track record in the world of soft robotics.

In space, weight is at a premium. The world watched in awe and amusement when Commander Chris Hadfield sang “Space Oddity” from the International Space Station—but launching that guitar into space likely cost around $100,000. A good price for launching payload into outer space is on the order of $10,000 per pound ($22,000/kg).

For that price, it would cost a cool $1.7 million to launch Boston Dynamics’ famous ATLAS robot to the International Space Station, and its bulk would be inconvenient in the cramped living quarters available. By contrast, an inflatable robot like King Louie is substantially lighter and can simply be deflated and folded away when not in use. The robot can be manufactured from cheap, lightweight, and flexible materials, and minor damage is easy to repair.

Inflatable Robots Under Pressure
The concept of inflatable robots is not new: indeed, earlier prototypes of King Louie were exhibited back in 2013 at Google I/O’s After Hours, flailing away at each other in a boxing ring. Sparks might fly in fights between traditional robots, but the aim here was to demonstrate that the robots are passively safe: the soft, inflatable figures won’t accidentally smash delicate items when moving around.

Health and safety regulations form part of the reason why robots don’t work alongside humans more often, but soft robots would be far safer to use in healthcare or around children (whose first instinct, according to BYU’s promotional video, is either to hug or punch King Louie.) It’s also much harder to have nightmarish fantasies about robotic domination with these friendlier softbots: Terminator would’ve been a much shorter franchise if Skynet’s droids were inflatable.

Robotic exoskeletons are increasingly used for physical rehabilitation therapies, as well as for industrial purposes. As countries like Japan seek to care for their aging populations with robots and alleviate the burden on nurses, who suffer from some of the highest rates of back injuries of any profession, soft robots will become increasingly attractive for use in healthcare.

Precision and Proprioception
The main issue is one of control. Rigid, metallic robots may be more expensive and more dangerous, but the simple fact of their rigidity makes it easier to map out and control the precise motions of each of the robot’s limbs, digits, and actuators. Individual motors attached to these rigid robots can allow for a great many degrees of freedom—individual directions in which parts of the robot can move—and precision control.

For example, ATLAS has 28 degrees of freedom, while Shadow’s dexterous robot hand alone has 20. This is much harder to do with an inflatable robot, for precisely the same reasons that make it safer. Without hard and rigid bones, other methods of control must be used.

In the case of King Louie, the robot is made up of many expandable air chambers. An air-compressor changes the pressure levels in these air chambers, allowing them to expand and contract. This harks back to some of the earliest pneumatic automata. Pairs of chambers act antagonistically, like muscles, such that when one chamber “tenses,” another relaxes—allowing King Louie to have, for example, four degrees of freedom in each of its arms.

The robot is also surprisingly strong. Professor Killpack, who works at BYU on the project, estimates that its payload is comparable to other humanoid robots on the market, like Rethink Robotics’ Baxter (RIP).

Proprioception, that sixth sense that allows us to map out and control our own bodies and muscles in fine detail, is being enhanced for a wider range of soft, flexible robots with the use of machine learning algorithms connected to input from a whole host of sensors on the robot’s body.

Part of the reason this is so complicated with soft, flexible robots is that the shape and “map” of the robot’s body can change; that’s the whole point. But this means that every time King Louie is inflated, its body is a slightly different shape; when it becomes deformed, for example due to picking up objects, the shape changes again, and the complex ways in which the fabric can twist and bend are far more difficult to model and sense than the behavior of the rigid metal of King Louie’s hard counterparts. When you’re looking for precision, seemingly-small changes can be the difference between successfully holding an object or dropping it.

Learning to Move
Researchers at BYU are therefore spending a great deal of time on how to control the soft-bot enough to make it comparably useful. One method involves the commercial tracking technology used in the Vive VR system: by moving the game controller, which provides a constant feedback to the robot’s arm, you can control its position. Since the tracking software provides an estimate of the robot’s joint angles and continues to provide feedback until the arm is correctly aligned, this type of feedback method is likely to work regardless of small changes to the robot’s shape.

The other technologies the researchers are looking into for their softbot include arrays of flexible, tactile sensors to place on the softbot’s skin, and minimizing the complex cross-talk between these arrays to get coherent information about the robot’s environment. As with some of the new proprioception research, the project is looking into neural networks as a means of modeling the complicated dynamics—the motion and response to forces—of the softbot. This method relies on large amounts of observational data, mapping how the robot is inflated and how it moves, rather than explicitly understanding and solving the equations that govern its motion—which hopefully means the methods can work even as the robot changes.

There’s still a long way to go before soft and inflatable robots can be controlled sufficiently well to perform all the tasks they might be used for. Ultimately, no one robotic design is likely to be perfect for any situation.

Nevertheless, research like this gives us hope that one day, inflatable robots could be useful tools, or even companions, at which point the advertising slogans write themselves: Don’t let them down, and they won’t let you down!

Image Credit: Brigham Young University. Continue reading

Posted in Human Robots

#434854 New Lifelike Biomaterial Self-Reproduces ...

Life demands flux.

Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.

What if we could endow cold, static, lifeless robots with the gift of metabolism?

In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.

Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.

The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.

“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.

“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.

Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.

Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?

Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.

Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”

The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.

Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.

DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.

Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.

Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.

This “enabled a general design strategy for the DASH patterns,” they said.

In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.

These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.

Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.

“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.

Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.

In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.

Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.

Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.

The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.

In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.

A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.

DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.

Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.

“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”

Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading

Posted in Human Robots

#434797 This Week’s Awesome Stories From ...

GENE EDITING
Genome Engineers Made More Than 13,000 Genome Edits in a Single Cell
Antonio Regalado | MIT Technology Review
“The group, led by gene technologist George Church, wants to rewrite genomes at a far larger scale than has currently been possible, something it says could ultimately lead to the ‘radical redesign’ of species—even humans.”

ROBOTICS
Inside Google’s Rebooted Robotics Program
Cade Metz | The New York Times
“Google’s new lab is indicative of a broader effort to bring so-called machine learning to robotics. …Many believe that machine learning—not extravagant new devices—will be the key to developing robotics for manufacturing, warehouse automation, transportation and many other tasks.

VIDEOS
Boston Dynamics Builds the Warehouse Robot of Jeff Bezos’ Dreams
Luke Dormehl | Digital Trends
“…for anyone wondering what the future of warehouse operation is likely to look like, this offers a far more practical glimpse of the years to come than, say, a dancing dog robot. As Boston Dynamics moves toward commercializing its creations for the first time, this could turn out to be a lot closer than you might think.”

TECHNOLOGY
Europe Is Splitting the Internet Into Three
Casey Newton | The Verge
“The internet had previously been divided into two: the open web, which most of the world could access; and the authoritarian web of countries like China, which is parceled out stingily and heavily monitored. As of today, though, the web no longer feels truly worldwide. Instead we now have the American internet, the authoritarian internet, and the European internet. How does the EU Copyright Directive change our understanding of the web?”

VIRTUAL REALITY
No Man’s Sky’s Next Update Will Let You Explore Infinite Space in Virtual Reality
Taylor Hatmaker | TechCrunch
“Assuming the game runs well enough, No Man’s Sky Virtual Reality will be a far cry from gimmicky VR games that lack true depth, offering one of the most expansive—if not the most expansive—VR experiences to date.”

3D PRINTING
3D Metal Printing Tries to Break Into the Manufacturing Mainstream
Mark Anderson | IEEE Spectrum
“It’s been five or so years since 3D printing was at peak hype. Since then, the technology has edged its way into a new class of materials and started to break into more applications. Today, 3D printers are being seriously considered as a means to produce stainless steel 5G smartphones, high-strength alloy gas-turbine blades, and other complex metal parts.”

Image Credit: ale de sun / Shutterstock.com Continue reading

Posted in Human Robots