Tag Archives: mit

#431181 Workspace Sentry collaborative robotics ...

PRINCETON, NJ September 13, 2017 – – ST Robotics announces the availability of its Workspace Sentry collaborative robotics safety system, specifically designed to meet the International Organization for Standardization (ISO)/Technical Specification (TS) 15066 on collaborative operation. The new ISO/TS 15066, a game changer for the robotics industry, provides guidelines for the design and implementation of a collaborative workspace that reduces risks to people.

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends infrared beams across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area.
Photo Credit: ST Robotics – www.robot.md
“A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken,” states President and CEO of ST Robotics David Sands.

ST Robotics, widely known for ‘robotics within reach’, has offices in Princeton, New Jersey and Cambridge, England, as well as in Asia. One of the first manufacturers of bench-top robot arms, ST Robotics has been providing the lowest-priced, easy-to-program boxed robots for the past 30 years. ST’s robots are utilized the world over by companies and institutions such as Lockheed-Martin, Motorola, Honeywell, MIT, NASA, Pfizer, Sony and NXP. The numerous applications for ST’s robots benefit the manufacturing, nuclear, pharmaceutical, laboratory and semiconductor industries.

For additional information on ST Robotics, contact:
(609) 584 7522

For press inquiries, contact:
Joanne Pransky
World’s First Robotic Psychiatrist®
(650) ROBOT-MD

The post Workspace Sentry collaborative robotics safety system appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots

#430686 This Week’s Awesome Stories From ...

DeepMind’s AI Is Teaching Itself Parkour, and the Results Are AdorableJames Vincent | The Verge“The research explores how reinforcement learning (or RL) can be used to teach a computer to navigate unfamiliar and complex environments. It’s the sort of fundamental AI research that we’re now testing in virtual worlds, but that will one day help program robots that can navigate the stairs in your house.”
Now You Can Broadcast Facebook Live Videos From Virtual RealityDaniel Terdiman | Fast Company“The idea is fairly simple. Spaces allows up to four people—each of whom must have an Oculus Rift VR headset—to hang out together in VR. Together, they can talk, chat, draw, create new objects, watch 360-degree videos, share photos, and much more. And now, they can live-broadcast everything they do in Spaces, much the same way that any Facebook user can produce live video of real life and share it with the world.”
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
Scientists Used CRISPR to Put a GIF Inside a Living Organism’s DNAEmily Mullin | MIT Technology Review“They delivered the GIF into the living bacteria in the form of five frames: images of a galloping horse and rider, taken by English photographer Eadweard Muybridge…The researchers were then able to retrieve the data by sequencing the bacterial DNA. They reconstructed the movie with 90 percent accuracy by reading the pixel nucleotide code.”
AI Creates Fake ObamaCharles Q. Choi | IEEE Spectrum“In the new study, the neural net learned what mouth shapes were linked to various sounds. The researchers took audio clips and dubbed them over the original sound files of a video. They next took mouth shapes that matched the new audio clips and grafted and blended them onto the video. Essentially, the researchers synthesized videos where Obama lip-synched words he said up to decades beforehand.”
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots

#430556 Forget Flying Cars, the Future Is ...

Flying car concepts have been around nearly as long as their earthbound cousins, but no one has yet made them a commercial success. MIT engineers think we’ve been coming at the problem from the wrong direction; rather than putting wings on cars, we should be helping drones to drive.
The team from the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) added wheels to a fleet of eight mini-quadcopters and tested driving and flying them around a tiny toy town made out of cardboard and fabric.
Adding the ability to drive reduced the distance the drone could fly by 14 percent compared to a wheel-less version. But while driving was slower, the drone could travel 150 percent further than when flying. The result is a vehicle that combines the speed and mobility of flying with the energy-efficiency of driving.

CSAIL director Daniela Rus told MIT News their work suggested that when looking to create flying cars, it might make more sense to build on years of research into drones rather than trying to simply “put wings on cars.”
Historically, flying car concepts have looked like someone took apart a Cessna light aircraft and a family sedan, mixed all the parts up, and bolted them back together again. Not everyone has abandoned this approach—two of the most developed flying car designs from Terrafugia and AeroMobil are cars with folding wings that need an airstrip to take off.
But flying car concepts are looking increasingly drone-like these days, with multiple small rotors, electric propulsion and vertical take-off abilities. Take the eHang 184 autonomous aerial vehicle being developed in China, the Kitty Hawk all-electric aircraft backed by Google founder Larry Page, which is little more than a quadcopter with a seat, the AirQuadOne designed by UK consortium Neva Aerospace, or Lilium Aviation’s Jet.
The attraction is obvious. Electric-powered drones are more compact, maneuverable, and environmentally friendly, making them suitable for urban environments.
Most of these vehicles are not quite the same as those proposed by the MIT engineers, as they’re pure flying machines. But a recent Airbus concept builds on the same principle that the future of urban mobility is vehicles that can both fly and drive. Its Pop.Up design is a two-passenger pod that can either be clipped to a set of wheels or hang under a quadcopter.
Importantly, they envisage their creation being autonomous in both flight and driving modes. And they’re not the only ones who think the future of flying cars is driverless. Uber has committed to developing a network of autonomous air taxis within a decade. This spring, Dubai announced it would launch a pilotless passenger drone service using the Ehang 184 as early as next month (July).
While integrating fully-fledged autonomous flying cars into urban environments will be far more complex, the study by Rus and her colleagues provides a good starting point for the kind of 3D route-planning and collision avoidance capabilities this would require.
The team developed multi-robot path planning algorithms that were able to control all eight drones as they flew and drove around their mock up city, while also making sure they didn’t crash into each other and avoided no-fly zones.
“This work provides an algorithmic solution for large-scale, mixed-mode transportation and shows its applicability to real-world problems,” Jingjin Yu, a computer science professor at Rutgers University who was not involved in the research, told MIT News.
This vision of a driverless future for flying cars might be a bit of a disappointment for those who’d envisaged themselves one day piloting their own hover car just like George Jetson. But autonomy and Uber-like ride-hailing business models are likely to be attractive, as they offer potential solutions to three of the biggest hurdles drone-like passenger vehicles face.
Firstly, it makes the vehicles accessible to anyone by removing the need to learn how to safely pilot an aircraft. Secondly, battery life still limits most electric vehicles to flight times measured in minutes. For personal vehicles this could be frustrating, but if you’re just hopping in a driverless air taxi for a five minute trip across town it’s unlikely to become apparent to you.
Operators of the service simply need to make sure they have a big enough fleet to ensure a charged vehicle is never too far away, or they’ll need a way to swap out batteries easily, such as the one suggested by the makers of the Volocopter electric helicopter.
Finally, there has already been significant progress in developing technology and regulations needed to integrate autonomous drones into our airspace that future driverless flying cars can most likely piggyback off of.
Safety requirements will inevitably be more stringent, but adding more predictable and controllable autonomous drones to the skies is likely to be more attractive to regulators than trying to license and police thousands of new amateur pilots.
Image Credit: Lilium Continue reading

Posted in Human Robots

#430550 This Week’s Awesome Stories From ...

MIT Is Building Autonomous Drones That Can Both Drive and FlyApril Glaser | Recode“The drones, which were built at MIT’s Computer Science and Artificial Intelligence Laboratory, also include route-planning software that can help calculate when the flying robot switches from air to ground in order to optimize its battery life.”
SpaceX Is Making Commercial Space Launches Look Like Child’s PlayJamie Condliffe | MIT Technology Review“Late Friday, SpaceX launched a satellite into orbit from Florida using one of its refurbished Falcon 9 rockets. Then on Sunday, for good measure, it lofted 10 smaller satellites using a new version of the same rocket, which it launched from California. The feat is a sign that the private space company seems more likely than ever to turn its vision of competitively priced, rapid-turnaround rocket launches into reality.”
A New Ransomware Attack Is Infecting Airlines, Banks, and Utilities Across EuropeRussell Brandom | The Verge“The origins of the attack are still unclear, but the involvement of Ukraine’s electric utilities is likely to cast suspicion on Russia. Ukraine’s power grid was hit by a persistent and sophisticated attack in December 2015, which many attributed to Russia. The attack ultimately left 230,000 residents without power for as long as six hours.”
Mark Zuckerberg’s Probably Nonexistent 2020 Presidential Campaign, ExplainedTimothy B. Lee | VOX“After all, the kind of outreach Zuckerberg would do in a presidential campaign isn’t that different from the kind of outreach he’d do if he were simply trying to understand Facebook users better and build public goodwill for his massive social media site.”
Riding in a Robocar That Sees Around CornersPhilip E. Ross | IEEE Spectrum“It takes 20 to 30 minutes to fit a car with the necessary hardware: a GPS sensor and a wireless transceiver. Here in the MCity compound, at least, the GPS system uses a repeater to enhance its accuracy down to centimeter level—good enough to locate a car precisely and to allow other cars to figure out its trajectory and measure its speed.”
Image Credit: SpaceX / Flickr Continue reading

Posted in Human Robots