Tag Archives: medical

#436984 Robots to the Rescue: How They Can Help ...

As the coronavirus pandemic forces people to keep their distance, could this be robots‘ time to shine? A group of scientists think so, and they’re calling for robots to do the “dull, dirty, and dangerous jobs” of infectious disease management.

Social distancing has emerged as one of the most effective strategies for slowing the spread of COVID-19, but it’s also bringing many jobs to a standstill and severely restricting our daily lives. And unfortunately, the one group that can’t rely on its protective benefits are the medical and emergency services workers we’re relying on to save us.

Robots could be a solution, according to the editorial board of Science Robotics, by helping replace humans in a host of critical tasks, from disinfecting hospitals to collecting patient samples and automating lab tests.

According to the authors, the key areas where robots could help are clinical care, logistics, and reconnaissance, which refers to tasks like identifying the infected or making sure people comply with quarantines or social distancing requirements. Outside of the medical sphere, robots could also help keep the economy and infrastructure going by standing in for humans in factories or vital utilities like waste management or power plants.

When it comes to clinical care, robots can play important roles in disease prevention, diagnosis and screening, and patient care, the researchers say. Robots have already been widely deployed to disinfect hospitals and other public spaces either using UV light that kills bugs or by repurposing agricultural robots and drones to spray disinfectant, reducing the exposure of cleaning staff to potentially contaminated surfaces. They are also being used to carry out crucial deliveries of food and medication without exposing humans.

But they could also play an important role in tracking the disease, say the researchers. Thermal cameras combined with image recognition algorithms are already being used to detect potential cases at places like airports, but incorporating them into mobile robots or drones could greatly expand the coverage of screening programs.

A more complex challenge—but one that could significantly reduce medical workers’ exposure to the virus—would be to design robots that could automate the collection of nasal swabs used to test for COVID-19. Similarly automated blood collection for tests could be of significant help, and researchers are already investigating using ultrasound to help robots locate veins to draw blood from.

Convincing people it’s safe to let a robot stick a swab up their nose or jab a needle in their arm might be a hard sell right now, but a potentially more realistic scenario would be to get robots to carry out laboratory tests on collected samples to reduce exposure to lab technicians. Commercial laboratory automation systems already exist, so this might be a more achievable near-term goal.

Not all solutions need to be automated, though. While autonomous systems will be helpful for reducing the workload of stretched health workers, remote systems can still provide useful distancing. Remote control robotics systems are already becoming increasingly common in the delicate business of surgery, so it would be entirely feasible to create remote systems to carry out more prosaic medical tasks.

Such systems would make it possible for experts to contribute remotely in many different places without having to travel. And robotic systems could combine medical tasks like patient monitoring with equally important social interaction for people who may have been shut off from human contact.

In a teleconference last week Guang-Zhong Yang, a medical roboticist from Carnegie Mellon University and founding editor of Science Robotics, highlighted the importance of including both doctors and patients in the design of these robots to ensure they are safe and effective, but also to make sure people trust them to observe social protocols and not invade their privacy.

But Yang also stressed the importance of putting the pieces in place to enable the rapid development and deployment of solutions. During the 2015 Ebola outbreak, the White House Office of Science and Technology Policy and the National Science Foundation organized workshops to identify where robotics could help deal with epidemics.

But once the threat receded, attention shifted elsewhere, and by the time the next pandemic came around little progress had been made on potential solutions. The result is that it’s unclear how much help robots will really be able to provide to the COVID-19 response.

That means it’s crucial to invest in a sustained research effort into this field, say the paper’s authors, with more funding and multidisciplinary research partnerships between government agencies and industry so that next time around we will be prepared.

“These events are rare and then it’s just that people start to direct their efforts to other applications,” said Yang. “So I think this time we really need to nail it, because without a sustained approach to this history will repeat itself and robots won’t be ready.”

Image Credit: ABB’s YuMi collaborative robot. Image courtesy of ABB Continue reading

Posted in Human Robots

#436946 Coronavirus May Mean Automation Is ...

We’re in the midst of a public health emergency, and life as we know it has ground to a halt. The places we usually go are closed, the events we were looking forward to are canceled, and some of us have lost our jobs or fear losing them soon.

But although it may not seem like it, there are some silver linings; this crisis is bringing out the worst in some (I’m looking at you, toilet paper hoarders), but the best in many. Italians on lockdown are singing together, Spaniards on lockdown are exercising together, this entrepreneur made a DIY ventilator and put it on YouTube, and volunteers in Italy 3D printed medical valves for virus treatment at a fraction of their usual cost.

Indeed, if you want to feel like there’s still hope for humanity instead of feeling like we’re about to snowball into terribleness as a species, just look at these examples—and I’m sure there are many more out there. There’s plenty of hope and opportunity to be found in this crisis.

Peter Xing, a keynote speaker and writer on emerging technologies and associate director in technology and growth initiatives at KPMG, would agree. Xing believes the coronavirus epidemic is presenting us with ample opportunities for increased automation and remote delivery of goods and services. “The upside right now is the burgeoning platform of the digital transformation ecosystem,” he said.

In a thought-provoking talk at Singularity University’s COVID-19 virtual summit this week, Xing explained how the outbreak is accelerating our transition to a highly-automated society—and painted a picture of what the future may look like.

Confronting Scarcity
You’ve probably seen them by now—the barren shelves at your local grocery store. Whether you were in the paper goods aisle, the frozen food section, or the fresh produce area, it was clear something was amiss; the shelves were empty. One of the most inexplicable items people have been panic-bulk-buying is toilet paper.

Xing described this toilet paper scarcity as a prisoner’s dilemma, pointing out that we have a scarcity problem right now in terms of our mindset, not in terms of actual supply shortages. “It’s a prisoner’s dilemma in that we’re all prisoners in our homes right now, and we can either hoard or not hoard, and the outcomes depend on how we collaborate with each other,” he said. “But it’s not a zero-sum game.”

Xing referenced a CNN article about why toilet paper, of all things, is one of the items people have been panic-buying most (I, too, have been utterly baffled by this phenomenon). But maybe there’d be less panic if we knew more about the production methods and supply chain involved in manufacturing toilet paper. It turns out it’s a highly automated process (you can learn more about it in this documentary by National Geographic) and requires very few people (though it does require about 27,000 trees a day—so stop bulk-buying it! Just stop!).

The supply chain limitation here is in the raw material; we certainly can’t keep cutting down this many trees a day forever. But—somewhat ironically, given the Costco cartloads of TP people have been stuffing into their trunks and backseats—thanks to automation, toilet paper isn’t something stores are going to stop receiving anytime soon.

Automation For All
Now we have a reason to apply this level of automation to, well, pretty much everything.

Though our current situation may force us into using more robots and automated systems sooner than we’d planned, it will end up saving us money and creating opportunity, Xing believes. He cited “fast-casual” restaurants (Chipotle, Panera, etc.) as a prime example.

Currently, people in the US spend much more to eat at home than we do to eat in fast-casual restaurants if you take into account the cost of the food we’re preparing plus the value of the time we’re spending on cooking, grocery shopping, and cleaning up after meals. According to research from investment management firm ARK Invest, taking all these costs into account makes for about $12 per meal for food cooked at home.

That’s the same as or more than the cost of grabbing a burrito or a sandwich at the joint around the corner. As more of the repetitive, low-skill tasks involved in preparing fast casual meals are automated, their cost will drop even more, giving us more incentive to forego home cooking. (But, it’s worth noting that these figures don’t take into account that eating at home is, in most cases, better for you since you’re less likely to fill your food with sugar, oil, or various other taste-enhancing but health-destroying ingredients—plus, there are those of us who get a nearly incomparable amount of joy from laboring over then savoring a homemade meal).

Now that we’re not supposed to be touching each other or touching anything anyone else has touched, but we still need to eat, automating food preparation sounds appealing (and maybe necessary). Multiple food delivery services have already implemented a contactless delivery option, where customers can choose to have their food left on their doorstep.

Besides the opportunities for in-restaurant automation, “This is an opportunity for automation to happen at the last mile,” said Xing. Delivery drones, robots, and autonomous trucks and vans could all play a part. In fact, use of delivery drones has ramped up in China since the outbreak.

Speaking of deliveries, service robots have steadily increased in numbers at Amazon; as of late 2019, the company employed around 650,000 humans and 200,000 robots—and costs have gone down as robots have gone up.

ARK Invest’s research predicts automation could add $800 billion to US GDP over the next 5 years and $12 trillion during the next 15 years. On this trajectory, GDP would end up being 40 percent higher with automation than without it.

Automating Ourselves?
This is all well and good, but what do these numbers and percentages mean for the average consumer, worker, or citizen?

“The benefits of automation aren’t being passed on to the average citizen,” said Xing. “They’re going to the shareholders of the companies creating the automation.” This is where policies like universal basic income and universal healthcare come in; in the not-too-distant future, we may see more movement toward measures like these (depending how the election goes) that spread the benefit of automation out rather than concentrating it in a few wealthy hands.

In the meantime, though, some people are benefiting from automation in ways that maybe weren’t expected. We’re in the midst of what’s probably the biggest remote-work experiment in US history, not to mention remote learning. Tools that let us digitally communicate and collaborate, like Slack, Zoom, Dropbox, and Gsuite, are enabling remote work in a way that wouldn’t have been possible 20 or even 10 years ago.

In addition, Xing said, tools like DataRobot and H2O.ai are democratizing artificial intelligence by allowing almost anyone, not just data scientists or computer engineers, to run machine learning algorithms. People are codifying the steps in their own repetitive work processes and having their computers take over tasks for them.

As 3D printing gets cheaper and more accessible, it’s also being more widely adopted, and people are finding more applications (case in point: the Italians mentioned above who figured out how to cheaply print a medical valve for coronavirus treatment).

The Mother of Invention
This movement towards a more automated society has some positives: it will help us stay healthy during times like the present, it will drive down the cost of goods and services, and it will grow our GDP in the long run. But by leaning into automation, will we be enabling a future that keeps us more physically, psychologically, and emotionally distant from each other?

We’re in a crisis, and desperate times call for desperate measures. We’re sheltering in place, practicing social distancing, and trying not to touch each other. And for most of us, this is really unpleasant and difficult. We can’t wait for it to be over.

For better or worse, this pandemic will likely make us pick up the pace on our path to automation, across many sectors and processes. The solutions people implement during this crisis won’t disappear when things go back to normal (and, depending who you talk to, they may never really do so).

But let’s make sure to remember something. Even once robots are making our food and drones are delivering it, and our computers are doing data entry and email replies on our behalf, and we all have 3D printers to make anything we want at home—we’re still going to be human. And humans like being around each other. We like seeing one another’s faces, hearing one another’s voices, and feeling one another’s touch—in person, not on a screen or in an app.

No amount of automation is going to change that, and beyond lowering costs or increasing GDP, our greatest and most crucial responsibility will always be to take care of each other.

Image Credit: Gritt Zheng on Unsplash Continue reading

Posted in Human Robots

#436944 Is Digital Learning Still Second Best?

As Covid-19 continues to spread, the world has gone digital on an unprecedented scale. Tens of thousands of employees are working from home, and huge conferences, like the Google I/O and Apple WWDC software extravaganzas, plan to experiment with digital events.

Universities too are sending students home. This might have meant an extended break from school not too long ago. But no more. As lecture halls go empty, an experiment into digital learning at scale is ramping up. In the US alone, over 100 universities, from Harvard to Duke, are offering online classes to students to keep the semester going.

While digital learning has been improving for some time, Covid-19 may not only tip us further into a more digitally connected reality, but also help us better appreciate its benefits. This is important because historically, digital learning has been viewed as inferior to traditional learning. But that may be changing.

The Inversion
We often think about digital technologies as ways to reach people without access to traditional services—online learning for children who don’t have schools nearby or telemedicine for patients with no access to doctors. And while these solutions have helped millions of people, they’re often viewed as “second best” and “better than nothing.” Even in more resource-rich environments, there’s an assumption one should pay more to attend an event in person—a concert, a football game, an exercise class—while digital equivalents are extremely cheap or free. Why is this? And is the situation about to change?

Take the case of Dr. Sanjeev Arora, a professor of medicine at the University of New Mexico. Arora started Project Echo because he was frustrated by how many late-stage cases of hepatitis C he encountered in rural New Mexico. He realized that if he had reached patients sooner, he could have prevented needless deaths. The solution? Digital learning for local health workers.

Project Echo connects rural healthcare practitioners to specialists at top health centers by video. The approach is collaborative: Specialists share best practices and work through cases with participants to apply them in the real world and learn from edge cases. Added to expert presentations, there are lots of opportunities to ask questions and interact with specialists.

The method forms a digital loop of learning, practice, assessment, and adjustment.

Since 2003, Project Echo has scaled to 800 locations in 39 countries and trained over 90,000 healthcare providers. Most notably, a study in The New England Journal of Medicine found that the outcomes of hepatitis C treatment given by Project Echo trained healthcare workers in rural and underserved areas were similar to outcomes at university medical centers. That is, digital learning in this context was equivalent to high quality in-person learning.

If that is possible today, with simple tools, will they surpass traditional medical centers and schools in the future? Can digital learning more generally follow suit and have the same success? Perhaps. Going digital brings its own special toolset to the table too.

The Benefits of Digital
If you’re training people online, you can record the session to better understand their engagement levels—or even add artificial intelligence to analyze it in real time. Ahura AI, for example, founded by Bryan Talebi, aims to upskill workers through online training. Early study of their method suggests they can significantly speed up learning by analyzing users’ real-time emotions—like frustration or distraction—and adjusting the lesson plan or difficulty on the fly.

Other benefits of digital learning include the near-instantaneous download of course materials—rather than printing and shipping books—and being able to more easily report grades and other results, a requirement for many schools and social services organizations. And of course, as other digitized industries show, digital learning can grow and scale further at much lower costs.

To that last point, 360ed, a digital learning startup founded in 2016 by Hla Hla Win, now serves millions of children in Myanmar with augmented reality lesson plans. And Global Startup Ecosystem, founded by Christine Souffrant Ntim and Einstein Kofi Ntim in 2015, is the world’s first and largest digital accelerator program. Their entirely online programs support over 1,000 companies in 90 countries. It’s astonishing how fast both of these organizations have grown.

Notably, both examples include offline experiences too. Many of the 360ed lesson plans come with paper flashcards children use with their smartphones because the online-offline interaction improves learning. The Global Startup Ecosystem also hosts about 10 additional in-person tech summits around the world on various topics through a related initiative.

Looking further ahead, probably the most important benefit of online learning will be its potential to integrate with other digital systems in the workplace.

Imagine a medical center that has perfect information about every patient and treatment in real time and that this information is (anonymously and privately) centralized, analyzed, and shared with medical centers, research labs, pharmaceutical companies, clinical trials, policy makers, and medical students around the world. Just as self-driving cars can learn to drive better by having access to the experiences of other self-driving cars, so too can any group working to solve complex, time-sensitive challenges learn from and build on each other’s experiences.

Why This Matters
While in the long term the world will likely end up combining the best aspects of traditional and digital learning, it’s important in the near term to be more aware of the assumptions we make about digital technologies. Some of the most pioneering work in education, healthcare, and other industries may not be highly visible right now because it is in a virtual setting. Most people are unaware, for example, that the busiest emergency room in rural America is already virtual.

Once they start converging with other digital technologies, these innovations will likely become the mainstream system for all of us. Which raises more questions: What is the best business model for these virtual services? If they start delivering better healthcare and educational outcomes than traditional institutions, should they charge more? Hopefully, we will see an even bigger shift occurring, in which technology allows us to provide high quality education, healthcare, and other services to everyone at more affordable prices than today.

These are some of the topics we can consider as Covid-19 forces us into uncharted territory.

Image Credit: Andras Vas / Unsplash Continue reading

Posted in Human Robots

#436550 Work in the Age of Web 3.0

What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or will tomorrow’s workplace be completely virtualized, allowing us to hang out at home in our PJs while “walking” about our virtual corporate headquarters?

This blog will look at the future of work during the age of Web 3.0, examining scenarios in which artificial intelligence, virtual reality, and the spatial web converge to transform every element of our careers, from training, to execution, to free time.

To offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.

A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.

But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments. Suddenly, all our information will be manipulated, stored, understood and experienced in spatial ways.

In this blog, I’ll be discussing the Spatial Web’s vast implications for:

Professional Training
Delocalized Business & the Virtual Workplace
Smart Permissions & Data Security

Let’s dive in.

Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market. As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training. By mid-2019, Walmart had tracked a 10-15 percent boost in employee confidence as a result of newly implemented VR training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical 6-year aircraft design process into the course of 6 months, turning physical mock-ups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.

Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands. VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.

But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.

Rise of the Virtual Workplace & Digital Data Integrity
In addition to enabling a virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.

Too good to be true? Check out an incredible publicly listed company called eXp Realty.

Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading. But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.

And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial. What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent. Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.

Delocalize with VR, and you can now hire anyone with Internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.

This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.

But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imagine showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.

Life-like virtual modules are already unlocking countless professional training camps, modifiable in real time and easily updated. Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading. And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.

Welcome to the Spatial Web workplace.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436507 The Weird, the Wacky, the Just Plain ...

As you know if you’ve ever been to, heard of, or read about the annual Consumer Electronics Show in Vegas, there’s no shortage of tech in any form: gadgets, gizmos, and concepts abound. You probably couldn’t see them all in a month even if you spent all day every day trying.

Given the sheer scale of the show, the number of exhibitors, and the inherent subjectivity of bestowing superlatives, it’s hard to pick out the coolest tech from CES. But I’m going to do it anyway; in no particular order, here are some of the products and concepts that I personally found most intriguing at this year’s event.

e-Novia’s Haptic Gloves
Italian startup e-Novia’s Weart glove uses a ‘sensing core’ to record tactile sensations and an ‘actuation core’ to reproduce those sensations onto the wearer’s skin. Haptic gloves will bring touch to VR and AR experiences, making them that much more life-like. The tech could also be applied to digitization of materials and in gaming and entertainment.

e-Novia’s modular haptic glove
I expected a full glove, but in fact there were two rings that attached to my fingers. Weart co-founder Giovanni Spagnoletti explained that they’re taking a modular approach, so as to better tailor the technology to different experiences. He then walked me through a virtual reality experience that was a sort of simulated science experiment: I had to lift a glass beaker, place it on a stove, pour in an ingredient, open a safe to access some dry ice, add that, and so on. As I went through the steps, I felt the beaker heat up and cool off at the expected times, and felt the liquid moving inside, as well as the pressure of my fingertips against the numbered buttons on the safe.

A virtual (but tactile) science experiment
There was a slight delay between my taking an action and feeling the corresponding tactile sensation, but on the whole, the haptic glove definitely made the experience more realistic—and more fun. Slightly less fun but definitely more significant, Spagnoletti told me Weart is working with a medical group to bring tactile sensations to VR training for surgeons.

Sarcos Robotics’ Exoskeleton
That tire may as well be a feather
Sarcos Robotics unveiled its Guardian XO full-body exoskeleton, which it says can safely lift up to 200 pounds across an extended work session. What’s cool about this particular exoskeleton is that it’s not just a prototype; the company announced a partnership with Delta airlines, which will be trialing the technology for aircraft maintenance, engine repair, and luggage handling. In a demo, I watched a petite female volunteer strap into the exoskeleton and easily lift a 50-pound weight with one hand, and a Sarcos employee lift and attach a heavy component of a propeller; she explained that the strength-augmenting function of the exoskeleton can easily be switched on or off—and the wearer’s hands released—to facilitate multi-step tasks.

Hyundai’s Flying Taxi
Where to?
Hyundai and Uber partnered to unveil an air taxi concept. With a 49-foot wingspan, 4 lift rotors, and 4 tilt rotors, the aircraft would be manned by a pilot and could carry 4 passengers at speeds up to 180 miles per hour. The companies say you’ll be able to ride across your city in one of these by 2030—we’ll see if the regulatory environment, public opinion, and other factors outside of technological capability let that happen.

Mercedes’ Avatar Concept Car
Welcome to the future
As evident from its name, Mercedes’ sweet new Vision AVTR concept car was inspired by the movie Avatar; director James Cameron helped design it. The all-electric car has no steering wheel, transparent doors, seats made of vegan leather, and 33 reptilian-scale-like flaps on the back; its design is meant to connect the driver with both the car and the surrounding environment in a natural, seamless way.

Next-generation scrolling
Offered the chance to ‘drive’ the car, I jumped on it. Placing my hand on the center console started the engine, and within seconds it had synced to my heartbeat, which reverberated through the car. The whole dashboard, from driver door to passenger door, is one big LED display. It showed a virtual landscape I could select by holding up my hand: as I moved my hand from left to right, different images were projected onto my open palm. Closing my hand on an image selected it, and suddenly it looked like I was in the middle of a lush green mountain range. Applying slight forward pressure on the center console made the car advance in the virtual landscape; it was essentially like playing a really cool video game.

Mercedes is aiming to have a carbon-neutral production fleet by 2039, and to reduce the amount of energy it uses during production by 40 percent by 2030. It’s unclear when—or whether—the man-machine-nature connecting features of the Vision AVTR will start showing up in production, but I for one will be on the lookout.

Waverly Labs’ In-Ear Translator
Waverly Labs unveiled its Ambassador translator earlier this year and has it on display at the show. It’s worn on the ear and uses a far-field microphone array with speech recognition to translate real-time conversations in 20 different languages. Besides in-ear audio, translations can also appear as text on an app or be broadcast live in a conference environment.

It’s kind of like a giant talking earring
I stopped by the booth and tested out the translator with Waverly senior software engineer Georgiy Konovalov. We each hooked on an earpiece, and first, he spoke to me in Russian. After a delay of a couple seconds, I heard his words in—slightly robotic, but fully comprehensible—English. Then we switched: I spoke to him in Spanish, my words popped up on his phone screen in Cyrillic, and he translated them back to English for me out loud.

On the whole, the demo was pretty cool. If you’ve ever been lost in a foreign country whose language you don’t speak, imagine how handy a gadget like this would come in. Let’s just hope that once they’re more widespread, these products don’t end up discouraging people from learning languages.

Not to be outdone, Google also announced updates to its Translate product, which is being deployed at information desks in JFK airport’s international terminal, in sports stadiums in Qatar, and by some large hotel chains.

Stratuscent’s Digital Nose
AI is making steady progress towards achieving human-like vision and hearing—but there’s been less work done on mimicking our sense of smell (maybe because it’s less useful in everyday applications). Stratuscent’s digital nose, which it says is based on NASA patents, uses chemical receptors and AI to identify both simple chemicals and complex scents. The company is aiming to create the world’s first comprehensive database of everyday scents, which it says it will use to make “intelligent decisions” for customers. What kind of decisions remains to be seen—and smelled.

Banner Image Credit: The Mercedes Vision AVTR concept car. Photo by Vanessa Bates Ramirez Continue reading

Posted in Human Robots