Tag Archives: material

#431343 How Technology Is Driving Us Toward Peak ...

At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.

“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”

An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.

“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”

This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431186 The Coming Creativity Explosion Belongs ...

Does creativity make human intelligence special?
It may appear so at first glance. Though machines can calculate, analyze, and even perceive, creativity may seem far out of reach. Perhaps this is because we find it mysterious, even in ourselves. How can the output of a machine be anything more than that which is determined by its programmers?
Increasingly, however, artificial intelligence is moving into creativity’s hallowed domain, from art to industry. And though much is already possible, the future is sure to bring ever more creative machines.
What Is Machine Creativity?
Robotic art is just one example of machine creativity, a rapidly growing sub-field that sits somewhere between the study of artificial intelligence and human psychology.
The winning paintings from the 2017 Robot Art Competition are strikingly reminiscent of those showcased each spring at university exhibitions for graduating art students. Like the works produced by skilled artists, the compositions dreamed up by the competition’s robotic painters are aesthetically ambitious. One robot-made painting features a man’s bearded face gazing intently out from the canvas, his eyes locking with the viewer’s. Another abstract painting, “inspired” by data from EEG signals, visually depicts the human emotion of misery with jagged, gloomy stripes of black and purple.
More broadly, a creative machine is software (sometimes encased in a robotic body) that synthesizes inputs to generate new and valuable ideas, solutions to complex scientific problems, or original works of art. In a process similar to that followed by a human artist or scientist, a creative machine begins its work by framing a problem. Next, its software specifies the requirements the solution should have before generating “answers” in the form of original designs, patterns, or some other form of output.
Although the notion of machine creativity sounds a bit like science fiction, the basic concept is one that has been slowly developing for decades.
Nearly 50 years ago while a high school student, inventor and futurist Ray Kurzweil created software that could analyze the patterns in musical compositions and then compose new melodies in a similar style. Aaron, one of the world’s most famous painting robots, has been hard at work since the 1970s.
Industrial designers have used an automated, algorithm-driven process for decades to design computer chips (or machine parts) whose layout (or form) is optimized for a particular function or environment. Emily Howell, a computer program created by David Cope, writes original works in the style of classical composers, some of which have been performed by human orchestras to live audiences.
What’s different about today’s new and emerging generation of robotic artists, scientists, composers, authors, and product designers is their ubiquity and power.

“The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives.”

I’ve already mentioned the rapidly advancing fields of robotic art and music. In the realm of scientific research, so-called “robotic scientists” such as Eureqa and Adam and Eve develop new scientific hypotheses; their “insights” have contributed to breakthroughs that are cited by hundreds of academic research papers. In the medical industry, creative machines are hard at work creating chemical compounds for new pharmaceuticals. After it read over seven million words of 20th century English poetry, a neural network developed by researcher Jack Hopkins learned to write passable poetry in a number of different styles and meters.
The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives, including faster processors, ubiquitous sensors and wireless networks, and better algorithms.
As they continue to improve, creative machines—like humans—will perform a broad range of creative activities, ranging from everyday problem solving (sometimes known as “Little C” creativity) to producing once-in-a-century masterpieces (“Big C” creativity). A creative machine’s outputs could range from a design for a cast for a marble sculpture to a schematic blueprint for a clever new gadget for opening bottles of wine.
In the coming decades, by automating the process of solving complex problems, creative machines will again transform our world. Creative machines will serve as a versatile source of on-demand talent.
In the battle to recruit a workforce that can solve complex problems, creative machines will put small businesses on equal footing with large corporations. Art and music lovers will enjoy fresh creative works that re-interpret the style of ancient disciplines. People with a health condition will benefit from individualized medical treatments, and low-income people will receive top-notch legal advice, to name but a few potentially beneficial applications.
How Can We Make Creative Machines, Unless We Understand Our Own Creativity?
One of the most intriguing—yet unsettling—aspects of watching robotic arms skillfully oil paint is that we humans still do not understand our own creative process. Over the centuries, several different civilizations have devised a variety of models to explain creativity.
The ancient Greeks believed that poets drew inspiration from a transcendent realm parallel to the material world where ideas could take root and flourish. In the Middle Ages, philosophers and poets attributed our peculiarly human ability to “make something of nothing” to an external source, namely divine inspiration. Modern academic study of human creativity has generated vast reams of scholarship, but despite the value of these insights, the human imagination remains a great mystery, second only to that of consciousness.
Today, the rise of machine creativity demonstrates (once again), that we do not have to fully understand a biological process in order to emulate it with advanced technology.
Past experience has shown that jet planes can fly higher and faster than birds by using the forward thrust of an engine rather than wings. Submarines propel themselves forward underwater without fins or a tail. Deep learning neural networks identify objects in randomly-selected photographs with super-human accuracy. Similarly, using a fairly straightforward software architecture, creative software (sometimes paired with a robotic body) can paint, write, hypothesize, or design with impressive originality, skill, and boldness.
At the heart of machine creativity is simple iteration. No matter what sort of output they produce, creative machines fall into one of three categories depending on their internal architecture.
Briefly, the first group consists of software programs that use traditional rule-based, or symbolic AI, the second group uses evolutionary algorithms, and the third group uses a variation of a form of machine learning called deep learning that has already revolutionized voice and facial recognition software.
1) Symbolic creative machines are the oldest artificial artists and musicians. In this approach—also known as “good old-fashioned AI (GOFAI) or symbolic AI—the human programmer plays a key role by writing a set of step-by-step instructions to guide the computer through a task. Despite the fact that symbolic AI is limited in its ability to adapt to environmental changes, it’s still possible for a robotic artist programmed this way to create an impressively wide variety of different outputs.
2) Evolutionary algorithms (EA) have been in use for several decades and remain powerful tools for design. In this approach, potential solutions “compete” in a software simulator in a Darwinian process reminiscent of biological evolution. The human programmer specifies a “fitness criterion” that will be used to score and rank the solutions generated by the software. The software then generates a “first generation” population of random solutions (which typically are pretty poor in quality), scores this first generation of solutions, and selects the top 50% (those random solutions deemed to be the best “fit”). The software then takes another pass and recombines the “winning” solutions to create the next generation and repeats this process for thousands (and sometimes millions) of generations.
3) Generative deep learning (DL) neural networks represent the newest software architecture of the three, since DL is data-dependent and resource-intensive. First, a human programmer “trains” a DL neural network to recognize a particular feature in a dataset, for example, an image of a dog in a stream of digital images. Next, the standard “feed forward” process is reversed and the DL neural network begins to generate the feature, for example, eventually producing new and sometimes original images of (or poetry about) dogs. Generative DL networks have tremendous and unexplored creative potential and are able to produce a broad range of original outputs, from paintings to music to poetry.
The Coming Explosion of Machine Creativity
In the near future as Moore’s Law continues its work, we will see sophisticated combinations of these three basic architectures. Since the 1950s, artificial intelligence has steadily mastered one human ability after another, and in the process of doing so, has reduced the cost of calculation, analysis, and most recently, perception. When creative software becomes as inexpensive and ubiquitous as analytical software is today, humans will no longer be the only intelligent beings capable of creative work.
This is why I have to bite my tongue when I hear the well-intended (but shortsighted) advice frequently dispensed to young people that they should pursue work that demands creativity to help them “AI-proof” their futures.
Instead, students should gain skills to harness the power of creative machines.
There are two skills in which humans excel that will enable us to remain useful in a world of ever-advancing artificial intelligence. One, the ability to frame and define a complex problem so that it can be handed off to a creative machine to solve. And two, the ability to communicate the value of both the framework and the proposed solution to the other humans involved.
What will happen to people when creative machines begin to capably tread on intellectual ground that was once considered the sole domain of the human mind, and before that, the product of divine inspiration? While machines engaging in Big C creativity—e.g., oil painting and composing new symphonies—tend to garner controversy and make the headlines, I suspect the real world-changing application of machine creativity will be in the realm of everyday problem solving, or Little C. The mainstream emergence of powerful problem-solving tools will help people create abundance where there was once scarcity.
Image Credit: adike / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431110 Soft robotics: self-contained soft ...

Researchers at Columbia Engineering have solved a long-standing issue in the creation of untethered soft robots whose actions and movements can help mimic natural biological systems. A group in the Creative Machines lab led by Hod Lipson, professor of mechanical engineering, has developed a 3D-printable synthetic soft muscle, a one-of-a-kind artificial active tissue with intrinsic expansion ability that does not require an external compressor or high voltage equipment as previous muscles required. The new material has a strain density (expansion per gram) that is 15 times larger than natural muscle, and can lift 1000 times its own weight. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Soft robotics: self-contained soft ...

#430855 Why Education Is the Hardest Sector of ...

We’ve all heard the warning cries: automation will disrupt entire industries and put millions of people out of jobs. In fact, up to 45 percent of existing jobs can be automated using current technology.
However, this may not necessarily apply to the education sector. After a detailed analysis of more than 2,000-plus work activities for more than 800 occupations, a report by McKinsey & Co states that of all the sectors examined, “…the technical feasibility of automation is lowest in education.”
There is no doubt that technological trends will have a powerful impact on global education, both by improving the overall learning experience and by increasing global access to education. Massive open online courses (MOOCs), chatbot tutors, and AI-powered lesson plans are just a few examples of the digital transformation in global education. But will robots and artificial intelligence ever fully replace teachers?
The Most Difficult Sector to Automate
While various tasks revolving around education—like administrative tasks or facilities maintenance—are open to automation, teaching itself is not.
Effective education involves more than just transfer of information from a teacher to a student. Good teaching requires complex social interactions and adaptation to the individual student’s learning needs. An effective teacher is not just responsive to each student’s strengths and weaknesses, but is also empathetic towards the student’s state of mind. It’s about maximizing human potential.
Furthermore, students don’t just rely on effective teachers to teach them the course material, but also as a source of life guidance and career mentorship. Deep and meaningful human interaction is crucial and is something that is very difficult, if not impossible, to automate.
Automating teaching is an example of a task that would require artificial general intelligence (as opposed to narrow or specific intelligence). In other words, this is the kind of task that would require an AI that understands natural human language, can be empathetic towards emotions, plan, strategize and make impactful decisions under unpredictable circumstances.
This would be the kind of machine that can do anything a human can do, and it doesn’t exist—at least, not yet.
We’re Getting There
Let’s not forget how quickly AI is evolving. Just because it’s difficult to fully automate teaching, it doesn’t mean the world’s leading AI experts aren’t trying.
Meet Jill Watson, the teaching assistant from Georgia Institute of Technology. Watson isn’t your average TA. She’s an IBM-powered artificial intelligence that is being implemented in universities around the world. Watson is able to answer students’ questions with 97 percent certainty.
Technologies like this also have applications in grading and providing feedback. Some AI algorithms are being trained and refined to perform automatic essay scoring. One project has achieved a 0.945 correlation with human graders.
All of this will have a remarkable impact on online education as we know it and dramatically increase online student retention rates.

Any student with a smartphone can access a wealth of information and free courses from universities around the world. MOOCs have allowed valuable courses to become available to millions of students. But at the moment, not all participants can receive customized feedback for their work. Currently, this is limited by manpower, but in the future that may not be the case.
What chatbots like Jill Watson allow is the opportunity for hundreds of thousands, if not millions, of students to have their work reviewed and all their questions answered at a minimal cost.
AI algorithms also have a significant role to play in personalization of education. Every student is unique and has a different set of strengths and weaknesses. Data analysis can be used to improve individual student results, assess each student’s strengths and weaknesses, and create mass-customized programs. Algorithms can analyze student data and consequently make flexible programs that adapt to the learner based on real-time feedback. According to the McKinsey Global Institute, all of this data in education could unlock between $900 billion and $1.2 trillion in global economic value.
Beyond Automated Teaching
It’s important to recognize that technological automation alone won’t fix the many issues in our global education system today. Dominated by outdated curricula, standardized tests, and an emphasis on short-term knowledge, many experts are calling for a transformation of how we teach.
It is not enough to simply automate the process. We can have a completely digital learning experience that continues to focus on outdated skills and fails to prepare students for the future. In other words, we must not only be innovative with our automation capabilities, but also with educational content, strategy, and policies.
Are we equipping students with the most important survival skills? Are we inspiring young minds to create a better future? Are we meeting the unique learning needs of each and every student? There’s no point automating and digitizing a system that is already flawed. We need to ensure the system that is being digitized is itself being transformed for the better.
Stock Media provided by davincidig / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Why Education Is the Hardest Sector of ...

#430830 Biocomputers Made From Cells Can Now ...

When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.

Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Biocomputers Made From Cells Can Now ...