Tag Archives: less

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots

#436507 The Weird, the Wacky, the Just Plain ...

As you know if you’ve ever been to, heard of, or read about the annual Consumer Electronics Show in Vegas, there’s no shortage of tech in any form: gadgets, gizmos, and concepts abound. You probably couldn’t see them all in a month even if you spent all day every day trying.

Given the sheer scale of the show, the number of exhibitors, and the inherent subjectivity of bestowing superlatives, it’s hard to pick out the coolest tech from CES. But I’m going to do it anyway; in no particular order, here are some of the products and concepts that I personally found most intriguing at this year’s event.

e-Novia’s Haptic Gloves
Italian startup e-Novia’s Weart glove uses a ‘sensing core’ to record tactile sensations and an ‘actuation core’ to reproduce those sensations onto the wearer’s skin. Haptic gloves will bring touch to VR and AR experiences, making them that much more life-like. The tech could also be applied to digitization of materials and in gaming and entertainment.

e-Novia’s modular haptic glove
I expected a full glove, but in fact there were two rings that attached to my fingers. Weart co-founder Giovanni Spagnoletti explained that they’re taking a modular approach, so as to better tailor the technology to different experiences. He then walked me through a virtual reality experience that was a sort of simulated science experiment: I had to lift a glass beaker, place it on a stove, pour in an ingredient, open a safe to access some dry ice, add that, and so on. As I went through the steps, I felt the beaker heat up and cool off at the expected times, and felt the liquid moving inside, as well as the pressure of my fingertips against the numbered buttons on the safe.

A virtual (but tactile) science experiment
There was a slight delay between my taking an action and feeling the corresponding tactile sensation, but on the whole, the haptic glove definitely made the experience more realistic—and more fun. Slightly less fun but definitely more significant, Spagnoletti told me Weart is working with a medical group to bring tactile sensations to VR training for surgeons.

Sarcos Robotics’ Exoskeleton
That tire may as well be a feather
Sarcos Robotics unveiled its Guardian XO full-body exoskeleton, which it says can safely lift up to 200 pounds across an extended work session. What’s cool about this particular exoskeleton is that it’s not just a prototype; the company announced a partnership with Delta airlines, which will be trialing the technology for aircraft maintenance, engine repair, and luggage handling. In a demo, I watched a petite female volunteer strap into the exoskeleton and easily lift a 50-pound weight with one hand, and a Sarcos employee lift and attach a heavy component of a propeller; she explained that the strength-augmenting function of the exoskeleton can easily be switched on or off—and the wearer’s hands released—to facilitate multi-step tasks.

Hyundai’s Flying Taxi
Where to?
Hyundai and Uber partnered to unveil an air taxi concept. With a 49-foot wingspan, 4 lift rotors, and 4 tilt rotors, the aircraft would be manned by a pilot and could carry 4 passengers at speeds up to 180 miles per hour. The companies say you’ll be able to ride across your city in one of these by 2030—we’ll see if the regulatory environment, public opinion, and other factors outside of technological capability let that happen.

Mercedes’ Avatar Concept Car
Welcome to the future
As evident from its name, Mercedes’ sweet new Vision AVTR concept car was inspired by the movie Avatar; director James Cameron helped design it. The all-electric car has no steering wheel, transparent doors, seats made of vegan leather, and 33 reptilian-scale-like flaps on the back; its design is meant to connect the driver with both the car and the surrounding environment in a natural, seamless way.

Next-generation scrolling
Offered the chance to ‘drive’ the car, I jumped on it. Placing my hand on the center console started the engine, and within seconds it had synced to my heartbeat, which reverberated through the car. The whole dashboard, from driver door to passenger door, is one big LED display. It showed a virtual landscape I could select by holding up my hand: as I moved my hand from left to right, different images were projected onto my open palm. Closing my hand on an image selected it, and suddenly it looked like I was in the middle of a lush green mountain range. Applying slight forward pressure on the center console made the car advance in the virtual landscape; it was essentially like playing a really cool video game.

Mercedes is aiming to have a carbon-neutral production fleet by 2039, and to reduce the amount of energy it uses during production by 40 percent by 2030. It’s unclear when—or whether—the man-machine-nature connecting features of the Vision AVTR will start showing up in production, but I for one will be on the lookout.

Waverly Labs’ In-Ear Translator
Waverly Labs unveiled its Ambassador translator earlier this year and has it on display at the show. It’s worn on the ear and uses a far-field microphone array with speech recognition to translate real-time conversations in 20 different languages. Besides in-ear audio, translations can also appear as text on an app or be broadcast live in a conference environment.

It’s kind of like a giant talking earring
I stopped by the booth and tested out the translator with Waverly senior software engineer Georgiy Konovalov. We each hooked on an earpiece, and first, he spoke to me in Russian. After a delay of a couple seconds, I heard his words in—slightly robotic, but fully comprehensible—English. Then we switched: I spoke to him in Spanish, my words popped up on his phone screen in Cyrillic, and he translated them back to English for me out loud.

On the whole, the demo was pretty cool. If you’ve ever been lost in a foreign country whose language you don’t speak, imagine how handy a gadget like this would come in. Let’s just hope that once they’re more widespread, these products don’t end up discouraging people from learning languages.

Not to be outdone, Google also announced updates to its Translate product, which is being deployed at information desks in JFK airport’s international terminal, in sports stadiums in Qatar, and by some large hotel chains.

Stratuscent’s Digital Nose
AI is making steady progress towards achieving human-like vision and hearing—but there’s been less work done on mimicking our sense of smell (maybe because it’s less useful in everyday applications). Stratuscent’s digital nose, which it says is based on NASA patents, uses chemical receptors and AI to identify both simple chemicals and complex scents. The company is aiming to create the world’s first comprehensive database of everyday scents, which it says it will use to make “intelligent decisions” for customers. What kind of decisions remains to be seen—and smelled.

Banner Image Credit: The Mercedes Vision AVTR concept car. Photo by Vanessa Bates Ramirez Continue reading

Posted in Human Robots

#436470 Retail Robots Are on the Rise—at Every ...

The robots are coming! The robots are coming! On our sidewalks, in our skies, in our every store… Over the next decade, robots will enter the mainstream of retail.

As countless robots work behind the scenes to stock shelves, serve customers, and deliver products to our doorstep, the speed of retail will accelerate.

These changes are already underway. In this blog, we’ll elaborate on how robots are entering the retail ecosystem.

Let’s dive in.

Robot Delivery
On August 3rd, 2016, Domino’s Pizza introduced the Domino’s Robotic Unit, or “DRU” for short. The first home delivery pizza robot, the DRU looks like a cross between R2-D2 and an oversized microwave.

LIDAR and GPS sensors help it navigate, while temperature sensors keep hot food hot and cold food cold. Already, it’s been rolled out in ten countries, including New Zealand, France, and Germany, but its August 2016 debut was critical—as it was the first time we’d seen robotic home delivery.

And it won’t be the last.

A dozen or so different delivery bots are fast entering the market. Starship Technologies, for instance, a startup created by Skype founders Janus Friis and Ahti Heinla, has a general-purpose home delivery robot. Right now, the system is an array of cameras and GPS sensors, but upcoming models will include microphones, speakers, and even the ability—via AI-driven natural language processing—to communicate with customers. Since 2016, Starship has already carried out 50,000 deliveries in over 100 cities across 20 countries.

Along similar lines, Nuro—co-founded by Jiajun Zhu, one of the engineers who helped develop Google’s self-driving car—has a miniature self-driving car of its own. Half the size of a sedan, the Nuro looks like a toaster on wheels, except with a mission. This toaster has been designed to carry cargo—about 12 bags of groceries (version 2.0 will carry 20)—which it’s been doing for select Kroger stores since 2018. Domino’s also partnered with Nuro in 2019.

As these delivery bots take to our streets, others are streaking across the sky.

Back in 2016, Amazon came first, announcing Prime Air—the e-commerce giant’s promise of drone delivery in 30 minutes or less. Almost immediately, companies ranging from 7-Eleven and Walmart to Google and Alibaba jumped on the bandwagon.

While critics remain doubtful, the head of the FAA’s drone integration department recently said that drone deliveries may be “a lot closer than […] the skeptics think. [Companies are] getting ready for full-blown operations. We’re processing their applications. I would like to move as quickly as I can.”

In-Store Robots
While delivery bots start to spare us trips to the store, those who prefer shopping the old-fashioned way—i.e., in person—also have plenty of human-robot interaction in store. In fact, these robotics solutions have been around for a while.

In 2010, SoftBank introduced Pepper, a humanoid robot capable of understanding human emotion. Pepper is cute: 4 feet tall, with a white plastic body, two black eyes, a dark slash of a mouth, and a base shaped like a mermaid’s tail. Across her chest is a touch screen to aid in communication. And there’s been a lot of communication. Pepper’s cuteness is intentional, as it matches its mission: help humans enjoy life as much as possible.

Over 12,000 Peppers have been sold. She serves ice cream in Japan, greets diners at a Pizza Hut in Singapore, and dances with customers at a Palo Alto electronics store. More importantly, Pepper’s got company.

Walmart uses shelf-stocking robots for inventory control. Best Buy uses a robo-cashier, allowing select locations to operate 24-7. And Lowe’s Home Improvement employs the LoweBot—a giant iPad on wheels—to help customers find the items they need while tracking inventory along the way.

Warehouse Bots
Yet the biggest benefit robots provide might be in-warehouse logistics.

In 2012, when Amazon dished out $775 million for Kiva Systems, few could predict that just 6 years later, 45,000 Kiva robots would be deployed at all of their fulfillment centers, helping process a whopping 306 items per second during the Christmas season.

And many other retailers are following suit.

Order jeans from the Gap, and soon they’ll be sorted, packed, and shipped with the help of a Kindred robot. Remember the old arcade game where you picked up teddy bears with a giant claw? That’s Kindred, only her claw picks up T-shirts, pants, and the like, placing them in designated drop-off zones that resemble tiny mailboxes (for further sorting or shipping).

The big deal here is democratization. Kindred’s robot is cheap and easy to deploy, allowing smaller companies to compete with giants like Amazon.

Final Thoughts
For retailers interested in staying in business, there doesn’t appear to be much choice in the way of robotics.

By 2024, the US minimum wage is projected to be $15 an hour (the House of Representatives has already passed the bill, but the wage hike is meant to unfold gradually between now and 2025), and many consider that number far too low.

Yet, as human labor costs continue to climb, robots won’t just be coming, they’ll be here, there, and everywhere. It’s going to become increasingly difficult for store owners to justify human workers who call in sick, show up late, and can easily get injured. Robots work 24-7. They never take a day off, never need a bathroom break, health insurance, or parental leave.

Going forward, this spells a growing challenge of technological unemployment (a blog topic I will cover in the coming month). But in retail, robotics usher in tremendous benefits for companies and customers alike.

And while professional re-tooling initiatives and the transition of human capital from retail logistics to a booming experience economy take hold, robotic retail interaction and last-mile delivery will fundamentally transform our relationship with commerce.

This blog comes from The Future is Faster Than You Think—my upcoming book, to be released Jan 28th, 2020. To get an early copy and access up to $800 worth of pre-launch giveaways, sign up here!

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

Image Credit: Image by imjanuary from Pixabay Continue reading

Posted in Human Robots

#436437 Why AI Will Be the Best Tool for ...

Dmitry Kaminskiy speaks as though he were trying to unload everything he knows about the science and economics of longevity—from senolytics research that seeks to stop aging cells from spewing inflammatory proteins and other molecules to the trillion-dollar life extension industry that he and his colleagues are trying to foster—in one sitting.

At the heart of the discussion with Singularity Hub is the idea that artificial intelligence will be the engine that drives breakthroughs in how we approach healthcare and healthy aging—a concept with little traction even just five years ago.

“At that time, it was considered too futuristic that artificial intelligence and data science … might be more accurate compared to any hypothesis of human doctors,” said Kaminskiy, co-founder and managing partner at Deep Knowledge Ventures, an investment firm that is betting big on AI and longevity.

How times have changed. Artificial intelligence in healthcare is attracting more investments and deals than just about any sector of the economy, according to data research firm CB Insights. In the most recent third quarter, AI healthcare startups raised nearly $1.6 billion, buoyed by a $550 million mega-round from London-based Babylon Health, which uses AI to collect data from patients, analyze the information, find comparable matches, then make recommendations.

Even without the big bump from Babylon Health, AI healthcare startups raised more than $1 billion last quarter, including two companies focused on longevity therapeutics: Juvenescence and Insilico Medicine.

The latter has risen to prominence for its novel use of reinforcement learning and general adversarial networks (GANs) to accelerate the drug discovery process. Insilico Medicine recently published a seminal paper that demonstrated how such an AI system could generate a drug candidate in just 46 days. Co-founder and CEO Alex Zhavoronkov said he believes there is no greater goal in healthcare today—or, really, any venture—than extending the healthy years of the human lifespan.

“I don’t think that there is anything more important than that,” he told Singularity Hub, explaining that an unhealthy society is detrimental to a healthy economy. “I think that it’s very, very important to extend healthy, productive lifespan just to fix the economy.”

An Aging Crisis
The surge of interest in longevity is coming at a time when life expectancy in the US is actually dropping, despite the fact that we spend more money on healthcare than any other nation.

A new paper in the Journal of the American Medical Association found that after six decades of gains, life expectancy for Americans has decreased since 2014, particularly among young and middle-aged adults. While some of the causes are societal, such as drug overdoses and suicide, others are health-related.

While average life expectancy in the US is 78, Kaminskiy noted that healthy life expectancy is about ten years less.

To Zhavoronkov’s point about the economy (a topic of great interest to Kaminskiy as well), the US spent $1.1 trillion on chronic diseases in 2016, according to a report from the Milken Institute, with diabetes, cardiovascular conditions, and Alzheimer’s among the most costly expenses to the healthcare system. When the indirect costs of lost economic productivity are included, the total price tag of chronic diseases in the US is $3.7 trillion, nearly 20 percent of GDP.

“So this is the major negative feedback on the national economy and creating a lot of negative social [and] financial issues,” Kaminskiy said.

Investing in Longevity
That has convinced Kaminskiy that an economy focused on extending healthy human lifespans—including the financial instruments and institutions required to support a long-lived population—is the best way forward.

He has co-authored a book on the topic with Margaretta Colangelo, another managing partner at Deep Knowledge Ventures, which has launched a specialized investment fund, Longevity.Capital, focused on the longevity industry. Kaminskiy estimates that there are now about 20 such investment funds dedicated to funding life extension companies.

In November at the inaugural AI for Longevity Summit in London, he and his collaborators also introduced the Longevity AI Consortium, an academic-industry initiative at King’s College London. Eventually, the research center will include an AI Longevity Accelerator program to serve as a bridge between startups and UK investors.

Deep Knowledge Ventures has committed about £7 million ($9 million) over the next three years to the accelerator program, as well as establishing similar consortiums in other regions of the world, according to Franco Cortese, a partner at Longevity.Capital and director of the Aging Analytics Agency, which has produced a series of reports on longevity.

A Cure for What Ages You
One of the most recent is an overview of Biomarkers for Longevity. A biomarker, in the case of longevity, is a measurable component of health that can indicate a disease state or a more general decline in health associated with aging. Examples range from something as simple as BMI as an indicator of obesity, which is associated with a number of chronic diseases, to sophisticated measurements of telomeres, the protective ends of chromosomes that shorten as we age.

While some researchers are working on moonshot therapies to reverse or slow aging—with a few even arguing we could expand human life on the order of centuries—Kaminskiy said he believes understanding biomarkers of aging could make more radical interventions unnecessary.

In this vision of healthcare, people would be able to monitor their health 24-7, with sensors attuned to various biomarkers that could indicate the onset of everything from the flu to diabetes. AI would be instrumental in not just ingesting the billions of data points required to develop such a system, but also what therapies, treatments, or micro-doses of a drug or supplement would be required to maintain homeostasis.

“Consider it like Tesla with many, many detectors, analyzing the behavior of the car in real time, and a cloud computing system monitoring those signals in real time with high frequency,” Kaminskiy explained. “So the same shall be applied for humans.”

And only sophisticated algorithms, Kaminskiy argued, can make longevity healthcare work on a mass scale but at the individual level. Precision medicine becomes preventive medicine. Healthcare truly becomes a system to support health rather than a way to fight disease.

Image Credit: Photo by h heyerlein on Unsplash Continue reading

Posted in Human Robots

#436403 Why Your 5G Phone Connection Could Mean ...

Will getting full bars on your 5G connection mean getting caught out by sudden weather changes?

The question may strike you as hypothetical, nonsensical even, but it is at the core of ongoing disputes between meteorologists and telecommunications companies. Everyone else, including you and I, are caught in the middle, wanting both 5G’s faster connection speeds and precise information about our increasingly unpredictable weather. So why can’t we have both?

Perhaps we can, but because of the way 5G networks function, it may take some special technology—specifically, artificial intelligence.

The Bandwidth Worries
Around the world, the first 5G networks are already being rolled out. The networks use a variety of frequencies to transmit data to and from devices at speeds up to 100 times faster than existing 4G networks.

One of the bandwidths used is between 24.25 and 24.45 gigahertz (GHz). In a recent FCC auction, telecommunications companies paid a combined $2 billion for the 5G usage rights for this spectrum in the US.

However, meteorologists are concerned that transmissions near the lower end of that range can interfere with their ability to accurately measure water vapor in the atmosphere. Wired reported that acting chief of the National Oceanic and Atmospheric Administration (NOAA), Neil Jacobs, told the US House Subcommittee on the Environment that 5G interference could substantially cut the amount of weather data satellites can gather. As a result, forecast accuracy could drop by as much as 30 percent.

Among the consequences could be less time to prepare for hurricanes, and it may become harder to predict storms’ paths. Due to the interconnectedness of weather patterns, measurement issues in one location can affect other areas too. Lack of accurate atmospheric data from the US could, for example, lead to less accurate forecasts for weather patterns over Europe.

The Numbers Game
Water vapor emits a faint signal at 23.8 GHz. Weather satellites measure the signals, and the data is used to gauge atmospheric humidity levels. Meteorologists have expressed concern that 5G signals in the same range can disturb those readings. The issue is that it would be nigh on impossible to tell whether a signal is water vapor or an errant 5G signal.

Furthermore, 5G disturbances in other frequency bands could make forecasting even more difficult. Rain and snow emit frequencies around 36-37 GHz. 50.2-50.4 GHz is used to measure atmospheric temperatures, and 86-92 GHz clouds and ice. All of the above are under consideration for international 5G signals. Some have warned that the wider consequences could set weather forecasts back to the 1980s.

Telecommunications companies and interest organizations have argued back, saying that weather sensors aren’t as susceptible to interference as meteorologists fear. Furthermore, 5G devices and signals will produce much less interference with weather forecasts than organizations like NOAA predict. Since very little scientific research has been carried out to examine the claims of either party, we seem stuck in a ‘wait and see’ situation.

To offset some of the possible effects, the two groups have tried to reach a consensus on a noise buffer between the 5G transmissions and water-vapor signals. It could be likened to limiting the noise from busy roads or loud sound systems to avoid bothering neighboring buildings.

The World Meteorological Organization was looking to establish a -55 decibel watts buffer. In Europe, regulators are locked in on a -42 decibel watts buffer for 5G base stations. For comparison, the US Federal Communications Commission has advocated for a -20 decibel watts buffer, which would, in reality, allow more than 150 times more noise than the European proposal.

How AI Could Help
Much of the conversation about 5G’s possible influence on future weather predictions is centered around mobile phones. However, the phones are far from the only systems that will be receiving and transmitting signals on 5G. Self-driving cars and the Internet of Things are two other technologies that could soon be heavily reliant on faster wireless signals.

Densely populated areas are likely going to be the biggest emitters of 5G signals, leading to a suggestion to only gather water-vapor data over oceans.

Another option is to develop artificial intelligence (AI) approaches to clean or process weather data. AI is playing an increasing role in weather forecasting. For example, in 2016 IBM bought The Weather Company for $2 billion. The goal was to combine the two companies’ models and data in IBM’s Watson to create more accurate forecasts. AI would also be able to predict increases or drops in business revenues due to weather changes. Monsanto has also been investing in AI for forecasting, in this case to provide agriculturally-related weather predictions.

Smartphones may also provide a piece of the weather forecasting puzzle. Studies have shown how data from thousands of smartphones can help to increase the accuracy of storm predictions, as well as the force of storms.

“Weather stations cost a lot of money,” Cliff Mass, an atmospheric scientist at the University of Washington in Seattle, told Inside Science, adding, “If there are already 20 million smartphones, you might as well take advantage of the observation system that’s already in place.”

Smartphones may not be the solution when it comes to finding new ways of gathering the atmospheric data on water vapor that 5G could disrupt. But it does go to show that some technologies open new doors, while at the same time, others shut them.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots