Tag Archives: inventions

#434753 Top Takeaways From The Economist ...

Over the past few years, the word ‘innovation’ has degenerated into something of a buzzword. In fact, according to Vijay Vaitheeswaran, US business editor at The Economist, it’s one of the most abused words in the English language.

The word is over-used precisely because we’re living in a great age of invention. But the pace at which those inventions are changing our lives is fast, new, and scary.

So what strategies do companies need to adopt to make sure technology leads to growth that’s not only profitable, but positive? How can business and government best collaborate? Can policymakers regulate the market without suppressing innovation? Which technologies will impact us most, and how soon?

At The Economist Innovation Summit in Chicago last week, entrepreneurs, thought leaders, policymakers, and academics shared their insights on the current state of exponential technologies, and the steps companies and individuals should be taking to ensure a tech-positive future. Here’s their expert take on the tech and trends shaping the future.

Blockchain
There’s been a lot of hype around blockchain; apparently it can be used for everything from distributing aid to refugees to voting. However, it’s too often conflated with cryptocurrencies like Bitcoin, and we haven’t heard of many use cases. Where does the technology currently stand?

Julie Sweet, chief executive of Accenture North America, emphasized that the technology is still in its infancy. “Everything we see today are pilots,” she said. The most promising of these pilots are taking place across three different areas: supply chain, identity, and financial services.

When you buy something from outside the US, Sweet explained, it goes through about 80 different parties. 70 percent of the relevant data is replicated and is prone to error, with paper-based documents often to blame. Blockchain is providing a secure way to eliminate paper in supply chains, upping accuracy and cutting costs in the process.

One of the most prominent use cases in the US is Walmart—the company has mandated that all suppliers in its leafy greens segment be on a blockchain, and its food safety has improved as a result.

Beth Devin, head of Citi Ventures’ innovation network, added “Blockchain is an infrastructure technology. It can be leveraged in a lot of ways. There’s so much opportunity to create new types of assets and securities that aren’t accessible to people today. But there’s a lot to figure out around governance.”

Open Source Technology
Are the days of proprietary technology numbered? More and more companies and individuals are making their source code publicly available, and its benefits are thus more widespread than ever before. But what are the limitations and challenges of open source tech, and where might it go in the near future?

Bob Lord, senior VP of cognitive applications at IBM, is a believer. “Open-sourcing technology helps innovation occur, and it’s a fundamental basis for creating great technology solutions for the world,” he said. However, the biggest challenge for open source right now is that companies are taking out more than they’re contributing back to the open-source world. Lord pointed out that IBM has a rule about how many lines of code employees take out relative to how many lines they put in.

Another challenge area is open governance; blockchain by its very nature should be transparent and decentralized, with multiple parties making decisions and being held accountable. “We have to embrace open governance at the same time that we’re contributing,” Lord said. He advocated for a hybrid-cloud environment where people can access public and private data and bring it together.

Augmented and Virtual Reality
Augmented and virtual reality aren’t just for fun and games anymore, and they’ll be even less so in the near future. According to Pearly Chen, vice president at HTC, they’ll also go from being two different things to being one and the same. “AR overlays digital information on top of the real world, and VR transports you to a different world,” she said. “In the near future we will not need to delineate between these two activities; AR and VR will come together naturally, and will change everything we do as we know it today.”

For that to happen, we’ll need a more ergonomically friendly device than we have today for interacting with this technology. “Whenever we use tech today, we’re multitasking,” said product designer and futurist Jody Medich. “When you’re using GPS, you’re trying to navigate in the real world and also manage this screen. Constant task-switching is killing our brain’s ability to think.” Augmented and virtual reality, she believes, will allow us to adapt technology to match our brain’s functionality.

This all sounds like a lot of fun for uses like gaming and entertainment, but what about practical applications? “Ultimately what we care about is how this technology will improve lives,” Chen said.

A few ways that could happen? Extended reality will be used to simulate hazardous real-life scenarios, reduce the time and resources needed to bring a product to market, train healthcare professionals (such as surgeons), or provide therapies for patients—not to mention education. “Think about the possibilities for children to learn about history, science, or math in ways they can’t today,” Chen said.

Quantum Computing
If there’s one technology that’s truly baffling, it’s quantum computing. Qubits, entanglement, quantum states—it’s hard to wrap our heads around these concepts, but they hold great promise. Where is the tech right now?

Mandy Birch, head of engineering strategy at Rigetti Computing, thinks quantum development is starting slowly but will accelerate quickly. “We’re at the innovation stage right now, trying to match this capability to useful applications,” she said. “Can we solve problems cheaper, better, and faster than classical computers can do?” She believes quantum’s first breakthrough will happen in two to five years, and that is highest potential is in applications like routing, supply chain, and risk optimization, followed by quantum chemistry (for materials science and medicine) and machine learning.

David Awschalom, director of the Chicago Quantum Exchange and senior scientist at Argonne National Laboratory, believes quantum communication and quantum sensing will become a reality in three to seven years. “We’ll use states of matter to encrypt information in ways that are completely secure,” he said. A quantum voting system, currently being prototyped, is one application.

Who should be driving quantum tech development? The panelists emphasized that no one entity will get very far alone. “Advancing quantum tech will require collaboration not only between business, academia, and government, but between nations,” said Linda Sapochak, division director of materials research at the National Science Foundation. She added that this doesn’t just go for the technology itself—setting up the infrastructure for quantum will be a big challenge as well.

Space
Space has always been the final frontier, and it still is—but it’s not quite as far-removed from our daily lives now as it was when Neil Armstrong walked on the moon in 1969.

The space industry has always been funded by governments and private defense contractors. But in 2009, SpaceX launched its first commercial satellite, and in subsequent years have drastically cut the cost of spaceflight. More importantly, they published their pricing, which brought transparency to a market that hadn’t seen it before.

Entrepreneurs around the world started putting together business plans, and there are now over 400 privately-funded space companies, many with consumer applications.

Chad Anderson, CEO of Space Angels and managing partner of Space Capital, pointed out that the technology floating around in space was, until recently, archaic. “A few NASA engineers saw they had more computing power in their phone than there was in satellites,” he said. “So they thought, ‘why don’t we just fly an iPhone?’” They did—and it worked.

Now companies have networks of satellites monitoring the whole planet, producing a huge amount of data that’s valuable for countless applications like agriculture, shipping, and observation. “A lot of people underestimate space,” Anderson said. “It’s already enabling our modern global marketplace.”

Next up in the space realm, he predicts, are mining and tourism.

Artificial Intelligence and the Future of Work
From the US to Europe to Asia, alarms are sounding about AI taking our jobs. What will be left for humans to do once machines can do everything—and do it better?

These fears may be unfounded, though, and are certainly exaggerated. It’s undeniable that AI and automation are changing the employment landscape (not to mention the way companies do business and the way we live our lives), but if we build these tools the right way, they’ll bring more good than harm, and more productivity than obsolescence.

Accenture’s Julie Sweet emphasized that AI alone is not what’s disrupting business and employment. Rather, it’s what she called the “triple A”: automation, analytics, and artificial intelligence. But even this fear-inducing trifecta of terms doesn’t spell doom, for workers or for companies. Accenture has automated 40,000 jobs—and hasn’t fired anyone in the process. Instead, they’ve trained and up-skilled people. The most important drivers to scale this, Sweet said, are a commitment by companies and government support (such as tax credits).

Imbuing AI with the best of human values will also be critical to its impact on our future. Tracy Frey, Google Cloud AI’s director of strategy, cited the company’s set of seven AI principles. “What’s important is the governance process that’s put in place to support those principles,” she said. “You can’t make macro decisions when you have technology that can be applied in many different ways.”

High Risks, High Stakes
This year, Vaitheeswaran said, 50 percent of the world’s population will have internet access (he added that he’s disappointed that percentage isn’t higher given the proliferation of smartphones). As technology becomes more widely available to people around the world and its influence grows even more, what are the biggest risks we should be monitoring and controlling?

Information integrity—being able to tell what’s real from what’s fake—is a crucial one. “We’re increasingly operating in siloed realities,” said Renee DiResta, director of research at New Knowledge and head of policy at Data for Democracy. “Inadvertent algorithmic amplification on social media elevates certain perspectives—what does that do to us as a society?”

Algorithms have also already been proven to perpetuate the bias of the people who create it—and those people are often wealthy, white, and male. Ensuring that technology doesn’t propagate unfair bias will be crucial to its ability to serve a diverse population, and to keep societies from becoming further polarized and inequitable. The polarization of experience that results from pronounced inequalities within countries, Vaitheeswaran pointed out, can end up undermining democracy.

We’ll also need to walk the line between privacy and utility very carefully. As Dan Wagner, founder of Civis Analytics put it, “We want to ensure privacy as much as possible, but open access to information helps us achieve important social good.” Medicine in the US has been hampered by privacy laws; if, for example, we had more data about biomarkers around cancer, we could provide more accurate predictions and ultimately better healthcare.

But going the Chinese way—a total lack of privacy—is likely not the answer, either. “We have to be very careful about the way we bake rights and freedom into our technology,” said Alex Gladstein, chief strategy officer at Human Rights Foundation.

Technology’s risks are clearly as fraught as its potential is promising. As Gary Shapiro, chief executive of the Consumer Technology Association, put it, “Everything we’ve talked about today is simply a tool, and can be used for good or bad.”

The decisions we’re making now, at every level—from the engineers writing algorithms, to the legislators writing laws, to the teenagers writing clever Instagram captions—will determine where on the spectrum we end up.

Image Credit: Rudy Balasko / Shutterstock.com Continue reading

Posted in Human Robots

#431427 Why the Best Healthcare Hacks Are the ...

Technology has the potential to solve some of our most intractable healthcare problems. In fact, it’s already doing so, with inventions getting us closer to a medical Tricorder, and progress toward 3D printed organs, and AIs that can do point-of-care diagnosis.
No doubt these applications of cutting-edge tech will continue to push the needle on progress in medicine, diagnosis, and treatment. But what if some of the healthcare hacks we need most aren’t high-tech at all?
According to Dr. Darshak Sanghavi, this is exactly the case. In a talk at Singularity University’s Exponential Medicine last week, Sanghavi told the audience, “We often think in extremely complex ways, but I think a lot of the improvements in health at scale can be done in an analog way.”
Sanghavi is the chief medical officer and senior vice president of translation at OptumLabs, and was previously director of preventive and population health at the Center for Medicare and Medicaid Innovation, where he oversaw the development of large pilot programs aimed at improving healthcare costs and quality.
“How can we improve health at scale, not for only a small number of people, but for entire populations?” Sanghavi asked. With programs that benefit a small group of people, he explained, what tends to happen is that the average health of a population improves, but the disparities across the group worsen.
“My mantra became, ‘The denominator is everybody,’” he said. He shared details of some low-tech but crucial fixes he believes could vastly benefit the US healthcare system.
1. Regulatory Hacking
Healthcare regulations are ultimately what drive many aspects of patient care, for better or worse. Worse because the mind-boggling complexity of regulations (exhibit A: the Affordable Care Act is reportedly about 20,000 pages long) can make it hard for people to get the care they need at a cost they can afford, but better because, as Sanghavi explained, tweaking these regulations in the right way can result in across-the-board improvements in a given population’s health.
An adjustment to Medicare hospitalization rules makes for a relevant example. The code was updated to state that if people who left the hospital were re-admitted within 30 days, that hospital had to pay a penalty. The result was hospitals taking more care to ensure patients were released not only in good health, but also with a solid understanding of what they had to do to take care of themselves going forward. “Here, arguably the writing of a few lines of regulatory code resulted in a remarkable decrease in 30-day re-admissions, and the savings of several billion dollars,” Sanghavi said.
2. Long-Term Focus
It’s easy to focus on healthcare hacks that have immediate, visible results—but what about fixes whose benefits take years to manifest? How can we motivate hospitals, regulators, and doctors to take action when they know they won’t see changes anytime soon?
“I call this the reality TV problem,” Sanghavi said. “Reality shows don’t really care about who’s the most talented recording artist—they care about getting the most viewers. That is exactly how we think about health care.”
Sanghavi’s team wanted to address this problem for heart attacks. They found they could reliably determine someone’s 10-year risk of having a heart attack based on a simple risk profile. Rather than monitoring patients’ cholesterol, blood pressure, weight, and other individual factors, the team took the average 10-year risk across entire provider panels, then made providers responsible for controlling those populations.
“Every percentage point you lower that risk, by hook or by crook, you get some people to stop smoking, you get some people on cholesterol medication. It’s patient-centered decision-making, and the provider then makes money. This is the world’s first predictive analytic model, at scale, that’s actually being paid for at scale,” he said.
3. Aligned Incentives
If hospitals are held accountable for the health of the communities they’re based in, those hospitals need to have the right incentives to follow through. “Hospitals have to spend money on community benefit, but linking that benefit to a meaningful population health metric can catalyze significant improvements,” Sanghavi said.
Darshak Sanghavi speaking at Singularity University’s 2017 Exponential Medicine Summit in San Diego, CA.
He used smoking cessation as an example. His team designed a program where hospitals were given a score (determined by the Centers for Disease Control and Prevention) based on the smoking rate in the counties where they’re located, then given monetary incentives to improve their score. Improving their score, in turn, resulted in better health for their communities, which meant fewer patients to treat for smoking-related health problems.
4. Social Determinants of Health
Social determinants of health include factors like housing, income, family, and food security. The answer to getting people to pay attention to these factors at scale, and creating aligned incentives, Sanghavi said, is “Very simple. We just have to measure it to start with, and measure it universally.”
His team was behind a $157 million pilot program called Accountable Health Communities that went live this year. The program requires all Medicare and Medicaid beneficiaries get screened for various social determinants of health. With all that data being collected, analysts can pinpoint local trends, then target funds to address the underlying problem, whether it’s job training, drug use, or nutritional education. “You’re then free to invest the dollars where they’re needed…this is how we can improve health at scale, with very simple changes in the incentive structures that are created,” he said.
5. ‘Securitizing’ Public Health
Sanghavi’s final point tied back to his discussion of aligning incentives. As misguided as it may seem, the reality is that financial incentives can make a huge difference in healthcare outcomes, from both a patient and a provider perspective.
Sanghavi’s team did an experiment in which they created outcome benchmarks for three major health problems that exist across geographically diverse areas: smoking, adolescent pregnancy, and binge drinking. The team proposed measuring the baseline of these issues then creating what they called a social impact bond. If communities were able to lower their frequency of these conditions by a given percent within a stated period of time, they’d get paid for it.
“What that did was essentially say, ‘you have a buyer for this outcome if you can achieve it,’” Sanghavi said. “And you can try to get there in any way you like.” The program is currently in CMS clearance.
AI and Robots Not Required
Using robots to perform surgery and artificial intelligence to diagnose disease will undoubtedly benefit doctors and patients around the US and the world. But Sanghavi’s talk made it clear that our healthcare system needs much more than this, and that improving population health on a large scale is really a low-tech project—one involving more regulatory and financial innovation than technological innovation.
“The things that get measured are the things that get changed,” he said. “If we choose the right outcomes to predict long-term benefit, and we pay for those outcomes, that’s the way to make progress.”
Image Credit: Wonderful Nature / Shutterstock.com Continue reading

Posted in Human Robots

#431399 How Is Technology Evolving Over Time?

What was humanity’s first invention? Some say it was the wheel, while others say it was fire. But perhaps it was our invention of communication. Without this, no tool can be conceptualized, built, replicated, and improved upon by others over time.
Over the years, how we communicate has evolved immensely. Today, many of our inventions are focused on creating faster ways of communicating with each other, and in the process, we’re creating more data than humans can comprehend. Now, a new tool, artificial intelligence, is emerging at the nexus of all this.
How will AI aid and even accelerate technological progress?
Watch this episode of Tech-x-planations and learn more about the evolution of technology and the incredible potential of AI.

Image Credit: leungchopan / Shuttterstock.com Continue reading

Posted in Human Robots

#430668 Why Every Leader Needs to Be Obsessed ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots

#430658 Why Every Leader Needs a Healthy ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots