Tag Archives: Hospital

#433828 Using Big Data to Give Patients Control ...

Big data, personalized medicine, artificial intelligence. String these three buzzphrases together, and what do you have?

A system that may revolutionize the future of healthcare, by bringing sophisticated health data directly to patients for them to ponder, digest, and act upon—and potentially stop diseases in their tracks.

At Singularity University’s Exponential Medicine conference in San Diego this week, Dr. Ran Balicer, director of the Clalit Research Institute in Israel, painted a futuristic picture of how big data can merge with personalized healthcare into an app-based system in which the patient is in control.

Dr. Ran Balicer at Exponential Medicine
Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: “Within six hours, you’re going to have a heart attack. So why don’t you come into the clinic and we can fix that.” Crisis averted.

Following the treatment, you’re at home monitoring your biomarkers, lab test results, and other health information through an app with a clean, beautiful user interface. Within the app, you can observe how various health-influencing life habits—smoking, drinking, insufficient sleep—influence your chance of future cardiovascular disease risks by toggling their levels up or down.

There’s more: you can also set a health goal within the app—for example, stop smoking—which automatically informs your physician. The app will then suggest pharmaceuticals to help you ditch the nicotine and automatically sends the prescription to your local drug store. You’ll also immediately find a list of nearby support groups that can help you reach your health goal.

With this hefty dose of AI, you’re in charge of your health—in fact, probably more so than under current healthcare systems.

Sound fantastical? In fact, this type of preemptive care is already being provided in some countries, including Israel, at a massive scale, said Balicer. By mining datasets with deep learning and other powerful AI tools, we can predict the future—and put it into the hands of patients.

The Israeli Advantage
In order to apply big data approaches to medicine, you first need a giant database.

Israel is ahead of the game in this regard. With decades of electronic health records aggregated within a central warehouse, Israel offers a wealth of health-related data on the scale of millions of people and billions of data points. The data is incredibly multiplex, covering lab tests, drugs, hospital admissions, medical procedures, and more.

One of Balicer’s early successes was an algorithm that predicts diabetes, which allowed the team to notify physicians to target their care. Clalit has also been busy digging into data that predicts winter pneumonia, osteoporosis, and a long list of other preventable diseases.

So far, Balicer’s predictive health system has only been tested on a pilot group of patients, but he is expecting to roll out the platform to all patients in the database in the next few months.

Truly Personalized Medicine
To Balicer, whatever a machine can do better, it should be welcomed to do. AI diagnosticians have already enjoyed plenty of successes—but their collaboration remains mostly with physicians, at a point in time when the patient is already ill.

A particularly powerful use of AI in medicine is to bring insights and trends directly to the patient, such that they can take control over their own health and medical care.

For example, take the problem of tailored drug dosing. Current drug doses are based on average results conducted during clinical trials—the dosing is not tailored for any specific patient’s genetic and health makeup. But what if a doctor had already seen millions of other patients similar to your case, and could generate dosing recommendations more relevant to you based on that particular group of patients?

Such personalized recommendations are beyond the ability of any single human doctor. But with the help of AI, which can quickly process massive datasets to find similarities, doctors may soon be able to prescribe individually-tailored medications.

Tailored treatment doesn’t stop there. Another issue with pharmaceuticals and treatment regimes is that they often come with side effects: potentially health-threatening reactions that may, or may not, happen to you based on your biometrics.

Back in 2017, the New England Journal of Medicine launched the SPRINT Data Analysis Challenge, which urged physicians and data analysts to identify novel clinical findings using shared clinical trial data.

Working with Dr. Noa Dagan at the Clalit Research Institute, Balicer and team developed an algorithm that recommends whether or not a patient receives a particularly intensive treatment regime for hypertension.

Rather than simply looking at one outcome—normalized blood pressure—the algorithm takes into account an individual’s specific characteristics, laying out the treatment’s predicted benefits and harms for a particular patient.

“We built thousands of models for each patient to comprehensively understand the impact of the treatment for the individual; for example, a reduced risk for stroke and cardiovascular-related deaths could be accompanied by an increase in serious renal failure,” said Balicer. “This approach allows a truly personalized balance—allowing patients and their physicians to ultimately decide if the risks of the treatment are worth the benefits.”

This is already personalized medicine at its finest. But Balicer didn’t stop there.

We are not the sum of our biologics and medical stats, he said. A truly personalized approach needs to take a patient’s needs and goals and the sacrifices and tradeoffs they’re willing to make into account, rather than having the physician make decisions for them.

Balicer’s preventative system adds this layer of complexity by giving weights to different outcomes based on patients’ input of their own health goals. Rather than blindly following big data, the system holistically integrates the patient’s opinion to make recommendations.

Balicer’s system is just one example of how AI can truly transform personalized health care. The next big challenge is to work with physicians to further optimize these systems, in a way that doctors can easily integrate them into their workflow and embrace the technology.

“Health systems will not be replaced by algorithms, rest assured,” concluded Balicer, “but health systems that don’t use algorithms will be replaced by those that do.”

Image Credit: Magic mine / Shutterstock.com Continue reading

Posted in Human Robots

#433521 Humanoid robot dental “practice ...

No more inept dental trainees practising on a very reluctant and – quite likely – horrified human “volunteer”. This Simroid dental training humanoid robot will take one for the team with a smile (or what’s left of it)! Related PostsSingapore … Continue reading

Posted in Human Robots

#433659 AI Could Provide Moment-by-Moment ...

In the intensive care unit, artificial intelligence can keep watch at a patient’s bedside Continue reading

Posted in Human Robots

#433622 AI Could Provide Moment-by-Moment ...

In the intensive care unit, artificial intelligence can keep watch at a patient’s bedside Continue reading

Posted in Human Robots

#432519 Robot Cities: Three Urban Prototypes for ...

Before I started working on real-world robots, I wrote about their fictional and historical ancestors. This isn’t so far removed from what I do now. In factories, labs, and of course science fiction, imaginary robots keep fueling our imagination about artificial humans and autonomous machines.

Real-world robots remain surprisingly dysfunctional, although they are steadily infiltrating urban areas across the globe. This fourth industrial revolution driven by robots is shaping urban spaces and urban life in response to opportunities and challenges in economic, social, political, and healthcare domains. Our cities are becoming too big for humans to manage.

Good city governance enables and maintains smooth flow of things, data, and people. These include public services, traffic, and delivery services. Long queues in hospitals and banks imply poor management. Traffic congestion demonstrates that roads and traffic systems are inadequate. Goods that we increasingly order online don’t arrive fast enough. And the WiFi often fails our 24/7 digital needs. In sum, urban life, characterized by environmental pollution, speedy life, traffic congestion, connectivity and increased consumption, needs robotic solutions—or so we are led to believe.

Is this what the future holds? Image Credit: Photobank gallery / Shutterstock.com
In the past five years, national governments have started to see automation as the key to (better) urban futures. Many cities are becoming test beds for national and local governments for experimenting with robots in social spaces, where robots have both practical purpose (to facilitate everyday life) and a very symbolic role (to demonstrate good city governance). Whether through autonomous cars, automated pharmacists, service robots in local stores, or autonomous drones delivering Amazon parcels, cities are being automated at a steady pace.

Many large cities (Seoul, Tokyo, Shenzhen, Singapore, Dubai, London, San Francisco) serve as test beds for autonomous vehicle trials in a competitive race to develop “self-driving” cars. Automated ports and warehouses are also increasingly automated and robotized. Testing of delivery robots and drones is gathering pace beyond the warehouse gates. Automated control systems are monitoring, regulating and optimizing traffic flows. Automated vertical farms are innovating production of food in “non-agricultural” urban areas around the world. New mobile health technologies carry promise of healthcare “beyond the hospital.” Social robots in many guises—from police officers to restaurant waiters—are appearing in urban public and commercial spaces.

Vertical indoor farm. Image Credit: Aisyaqilumaranas / Shutterstock.com
As these examples show, urban automation is taking place in fits and starts, ignoring some areas and racing ahead in others. But as yet, no one seems to be taking account of all of these various and interconnected developments. So, how are we to forecast our cities of the future? Only a broad view allows us to do this. To give a sense, here are three examples: Tokyo, Dubai, and Singapore.

Tokyo
Currently preparing to host the Olympics 2020, Japan’s government also plans to use the event to showcase many new robotic technologies. Tokyo is therefore becoming an urban living lab. The institution in charge is the Robot Revolution Realization Council, established in 2014 by the government of Japan.

Tokyo: city of the future. Image Credit: ESB Professional / Shutterstock.com
The main objectives of Japan’s robotization are economic reinvigoration, cultural branding, and international demonstration. In line with this, the Olympics will be used to introduce and influence global technology trajectories. In the government’s vision for the Olympics, robot taxis transport tourists across the city, smart wheelchairs greet Paralympians at the airport, ubiquitous service robots greet customers in 20-plus languages, and interactively augmented foreigners speak with the local population in Japanese.

Tokyo shows us what the process of state-controlled creation of a robotic city looks like.

Singapore
Singapore, on the other hand, is a “smart city.” Its government is experimenting with robots with a different objective: as physical extensions of existing systems to improve management and control of the city.

In Singapore, the techno-futuristic national narrative sees robots and automated systems as a “natural” extension of the existing smart urban ecosystem. This vision is unfolding through autonomous delivery robots (the Singapore Post’s delivery drone trials in partnership with AirBus helicopters) and driverless bus shuttles from Easymile, EZ10.

Meanwhile, Singapore hotels are employing state-subsidized service robots to clean rooms and deliver linen and supplies, and robots for early childhood education have been piloted to understand how robots can be used in pre-schools in the future. Health and social care is one of the fastest growing industries for robots and automation in Singapore and globally.

Dubai
Dubai is another emerging prototype of a state-controlled smart city. But rather than seeing robotization simply as a way to improve the running of systems, Dubai is intensively robotizing public services with the aim of creating the “happiest city on Earth.” Urban robot experimentation in Dubai reveals that authoritarian state regimes are finding innovative ways to use robots in public services, transportation, policing, and surveillance.

National governments are in competition to position themselves on the global politico-economic landscape through robotics, and they are also striving to position themselves as regional leaders. This was the thinking behind the city’s September 2017 test flight of a flying taxi developed by the German drone firm Volocopter—staged to “lead the Arab world in innovation.” Dubai’s objective is to automate 25% of its transport system by 2030.

It is currently also experimenting with Barcelona-based PAL Robotics’ humanoid police officer and Singapore-based vehicle OUTSAW. If the experiments are successful, the government has announced it will robotize 25% of the police force by 2030.

While imaginary robots are fueling our imagination more than ever—from Ghost in the Shell to Blade Runner 2049—real-world robots make us rethink our urban lives.

These three urban robotic living labs—Tokyo, Singapore, Dubai—help us gauge what kind of future is being created, and by whom. From hyper-robotized Tokyo to smartest Singapore and happy, crime-free Dubai, these three comparisons show that, no matter what the context, robots are perceived as a means to achieve global futures based on a specific national imagination. Just like the films, they demonstrate the role of the state in envisioning and creating that future.

This article was originally published on The Conversation. Read the original article.

Image Credit: 3000ad / Shutterstock.com Continue reading

Posted in Human Robots