Tag Archives: hands

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots

#433400 A Model for the Future of Education, and ...

As kids worldwide head back to school, I’d like to share my thoughts on the future of education.

Bottom line, how we educate our kids needs to radically change given the massive potential of exponential tech (e.g. artificial intelligence and virtual reality).

Without question, the number one driver for education is inspiration. As such, if you have a kid age 8–18, you’ll want to get your hands on an incredibly inspirational novel written by my dear friend Ray Kurzweil called Danielle: Chronicles of a Superheroine.

Danielle offers boys and girls a role model of a young woman who uses smart technologies and super-intelligence to partner with her friends to solve some of the world’s greatest challenges. It’s perfect to inspire anyone to pursue their moonshot.

Without further ado, let’s dive into the future of educating kids, and a summary of my white paper thoughts….

Just last year, edtech (education technology) investments surpassed a record high of 9.5 billion USD—up 30 percent from the year before.

Already valued at over half a billion USD, the AI in education market is set to surpass 6 billion USD by 2024.

And we’re now seeing countless new players enter the classroom, from a Soul Machines AI teacher specializing in energy use and sustainability to smart “lab schools” with personalized curricula.

As my two boys enter 1st grade, I continue asking myself, given the fact that most elementary schools haven’t changed in many decades (perhaps a century), what do I want my kids to learn? How do I think about elementary school during an exponential era?

This post covers five subjects related to elementary school education:

Five Issues with Today’s Elementary Schools
Five Guiding Principles for Future Education
An Elementary School Curriculum for the Future
Exponential Technologies in our Classroom
Mindsets for the 21st Century

Excuse the length of this post, but if you have kids, the details might be meaningful. If you don’t, then next week’s post will return to normal length and another fun subject.

Also, if you’d like to see my detailed education “white paper,” you can view or download it here.

Let’s dive in…

Five Issues With Today’s Elementary Schools
There are probably lots of issues with today’s traditional elementary schools, but I’ll just choose a few that bother me most.

Grading: In the traditional education system, you start at an “A,” and every time you get something wrong, your score gets lower and lower. At best it’s demotivating, and at worst it has nothing to do with the world you occupy as an adult. In the gaming world (e.g. Angry Birds), it’s just the opposite. You start with zero and every time you come up with something right, your score gets higher and higher.
Sage on the Stage: Most classrooms have a teacher up in front of class lecturing to a classroom of students, half of whom are bored and half of whom are lost. The one-teacher-fits-all model comes from an era of scarcity where great teachers and schools were rare.
Relevance: When I think back to elementary and secondary school, I realize how much of what I learned was never actually useful later in life, and how many of my critical lessons for success I had to pick up on my own (I don’t know about you, but I haven’t ever actually had to factor a polynomial in my adult life).
Imagination, Coloring inside the Lines: Probably of greatest concern to me is the factory-worker, industrial-era origin of today’s schools. Programs are so structured with rote memorization that it squashes the originality from most children. I’m reminded that “the day before something is truly a breakthrough, it’s a crazy idea.” Where do we pursue crazy ideas in our schools? Where do we foster imagination?
Boring: If learning in school is a chore, boring, or emotionless, then the most important driver of human learning, passion, is disengaged. Having our children memorize facts and figures, sit passively in class, and take mundane standardized tests completely defeats the purpose.

An average of 7,200 students drop out of high school each day, totaling 1.3 million each year. This means only 69 percent of students who start high school finish four years later. And over 50 percent of these high school dropouts name boredom as the number one reason they left.

Five Guiding Principles for Future Education
I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires.

From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want.

In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?

For me it’s about passion, curiosity, imagination, critical thinking, and grit.

Passion: You’d be amazed at how many people don’t have a mission in life… A calling… something to jolt them out of bed every morning. The most valuable resource for humanity is the persistent and passionate human mind, so creating a future of passionate kids is so very important. For my 7-year-old boys, I want to support them in finding their passion or purpose… something that is uniquely theirs. In the same way that the Apollo program and Star Trek drove my early love for all things space, and that passion drove me to learn and do.
Curiosity: Curiosity is something innate in kids, yet something lost by most adults during the course of their life. Why? In a world of Google, robots, and AI, raising a kid that is constantly asking questions and running “what if” experiments can be extremely valuable. In an age of machine learning, massive data, and a trillion sensors, it will be the quality of your questions that will be most important.
Imagination: Entrepreneurs and visionaries imagine the world (and the future) they want to live in, and then they create it. Kids happen to be some of the most imaginative humans around… it’s critical that they know how important and liberating imagination can be.
Critical Thinking: In a world flooded with often-conflicting ideas, baseless claims, misleading headlines, negative news, and misinformation, learning the skill of critical thinking helps find the signal in the noise. This principle is perhaps the most difficult to teach kids.
Grit/Persistence: Grit is defined as “passion and perseverance in pursuit of long-term goals,” and it has recently been widely acknowledged as one of the most important predictors of and contributors to success.

Teaching your kids not to give up, to keep trying, and to keep trying new ideas for something that they are truly passionate about achieving is extremely critical. Much of my personal success has come from such stubbornness. I joke that both XPRIZE and the Zero Gravity Corporation were “overnight successes after 10 years of hard work.”

So given those five basic principles, what would an elementary school curriculum look like? Let’s take a look…

An Elementary School Curriculum for the Future
Over the last 30 years, I’ve had the pleasure of starting two universities, International Space University (1987) and Singularity University (2007). My favorite part of co-founding both institutions was designing and implementing the curriculum. Along those lines, the following is my first shot at the type of curriculum I’d love my own boys to be learning.

I’d love your thoughts, I’ll be looking for them here: https://www.surveymonkey.com/r/DDRWZ8R

For the purpose of illustration, I’ll speak about ‘courses’ or ‘modules,’ but in reality these are just elements that would ultimately be woven together throughout the course of K-6 education.

Module 1: Storytelling/Communications

When I think about the skill that has served me best in life, it’s been my ability to present my ideas in the most compelling fashion possible, to get others onboard, and support birth and growth in an innovative direction. In my adult life, as an entrepreneur and a CEO, it’s been my ability to communicate clearly and tell compelling stories that has allowed me to create the future. I don’t think this lesson can start too early in life. So imagine a module, year after year, where our kids learn the art and practice of formulating and pitching their ideas. The best of oration and storytelling. Perhaps children in this class would watch TED presentations, or maybe they’d put together their own TEDx for kids. Ultimately, it’s about practice and getting comfortable with putting yourself and your ideas out there and overcoming any fears of public speaking.

Module 2: Passions

A modern school should help our children find and explore their passion(s). Passion is the greatest gift of self-discovery. It is a source of interest and excitement, and is unique to each child.

The key to finding passion is exposure. Allowing kids to experience as many adventures, careers, and passionate adults as possible. Historically, this was limited by the reality of geography and cost, implemented by having local moms and dads presenting in class about their careers. “Hi, I’m Alan, Billy’s dad, and I’m an accountant. Accountants are people who…”

But in a world of YouTube and virtual reality, the ability for our children to explore 500 different possible careers or passions during their K-6 education becomes not only possible but compelling. I imagine a module where children share their newest passion each month, sharing videos (or VR experiences) and explaining what they love and what they’ve learned.

Module 3: Curiosity & Experimentation

Einstein famously said, “I have no special talent. I am only passionately curious.” Curiosity is innate in children, and many times lost later in life. Arguably, it can be said that curiosity is responsible for all major scientific and technological advances; it’s the desire of an individual to know the truth.

Coupled with curiosity is the process of experimentation and discovery. The process of asking questions, creating and testing a hypothesis, and repeated experimentation until the truth is found. As I’ve studied the most successful entrepreneurs and entrepreneurial companies, from Google and Amazon to Uber, their success is significantly due to their relentless use of experimentation to define their products and services.

Here I imagine a module which instills in children the importance of curiosity and gives them permission to say, “I don’t know, let’s find out.”

Further, a monthly module that teaches children how to design and execute valid and meaningful experiments. Imagine children who learn the skill of asking a question, proposing a hypothesis, designing an experiment, gathering the data, and then reaching a conclusion.

Module 4: Persistence/Grit

Doing anything big, bold, and significant in life is hard work. You can’t just give up when the going gets rough. The mindset of persistence, of grit, is a learned behavior I believe can be taught at an early age, especially when it’s tied to pursuing a child’s passion.

I imagine a curriculum that, each week, studies the career of a great entrepreneur and highlights their story of persistence. It would highlight the individuals and companies that stuck with it, iterated, and ultimately succeeded.

Further, I imagine a module that combines persistence and experimentation in gameplay, such as that found in Dean Kamen’s FIRST LEGO league, where 4th graders (and up) research a real-world problem such as food safety, recycling, energy, and so on, and are challenged to develop a solution. They also must design, build, and program a robot using LEGO MINDSTORMS®, then compete on a tabletop playing field.

Module 5: Technology Exposure

In a world of rapidly accelerating technology, understanding how technologies work, what they do, and their potential for benefiting society is, in my humble opinion, critical to a child’s future. Technology and coding (more on this below) are the new “lingua franca” of tomorrow.

In this module, I imagine teaching (age appropriate) kids through play and demonstration. Giving them an overview of exponential technologies such as computation, sensors, networks, artificial intelligence, digital manufacturing, genetic engineering, augmented/virtual reality, and robotics, to name a few. This module is not about making a child an expert in any technology, it’s more about giving them the language of these new tools, and conceptually an overview of how they might use such a technology in the future. The goal here is to get them excited, give them demonstrations that make the concepts stick, and then to let their imaginations run.

Module 6: Empathy

Empathy, defined as “the ability to understand and share the feelings of another,” has been recognized as one of the most critical skills for our children today. And while there has been much written, and great practices for instilling this at home and in school, today’s new tools accelerate this.

Virtual reality isn’t just about video games anymore. Artists, activists, and journalists now see the technology’s potential to be an empathy engine, one that can shine spotlights on everything from the Ebola epidemic to what it’s like to live in Gaza. And Jeremy Bailenson has been at the vanguard of investigating VR’s power for good.

For more than a decade, Bailenson’s lab at Stanford has been studying how VR can make us better people. Through the power of VR, volunteers at the lab have felt what it is like to be Superman (to see if it makes them more helpful), a cow (to reduce meat consumption), and even a coral (to learn about ocean acidification).

Silly as they might seem, these sorts of VR scenarios could be more effective than the traditional public service ad at making people behave. Afterwards, they waste less paper. They save more money for retirement. They’re nicer to the people around them. And this could have consequences in terms of how we teach and train everyone from cliquey teenagers to high court judges.

Module 7: Ethics/Moral Dilemmas

Related to empathy, and equally important, is the goal of infusing kids with a moral compass. Over a year ago, I toured a special school created by Elon Musk (the Ad Astra school) for his five boys (age 9 to 14). One element that is persistent in that small school of under 40 kids is the conversation about ethics and morals, a conversation manifested by debating real-world scenarios that our kids may one day face.

Here’s an example of the sort of gameplay/roleplay that I heard about at Ad Astra, that might be implemented in a module on morals and ethics. Imagine a small town on a lake, in which the majority of the town is employed by a single factory. But that factory has been polluting the lake and killing all the life. What do you do? It’s posed that shutting down the factory would mean that everyone loses their jobs. On the other hand, keeping the factory open means the lake is destroyed and the lake dies. This kind of regular and routine conversation/gameplay allows the children to see the world in a critically important fashion.

Module 8: The 3R Basics (Reading, wRiting & aRithmetic)

There’s no question that young children entering kindergarten need the basics of reading, writing, and math. The only question is what’s the best way for them to get it? We all grew up in the classic mode of a teacher at the chalkboard, books, and homework at night. But I would argue that such teaching approaches are long outdated, now replaced with apps, gameplay, and the concept of the flip classroom.

Pioneered by high school teachers Jonathan Bergman and Aaron Sams in 2007, the flipped classroom reverses the sequence of events from that of the traditional classroom.

Students view lecture materials, usually in the form of video lectures, as homework prior to coming to class. In-class time is reserved for activities such as interactive discussions or collaborative work, all performed under the guidance of the teacher.

The benefits are clear:

Students can consume lectures at their own pace, viewing the video again and again until they get the concept, or fast-forwarding if the information is obvious.
The teacher is present while students apply new knowledge. Doing the homework into class time gives teachers insight into which concepts, if any, that their students are struggling with and helps them adjust the class accordingly.
The flipped classroom produces tangible results: 71 percent of teachers who flipped their classes noticed improved grades, and 80 percent reported improved student attitudes as a result.

Module 9: Creative Expression & Improvisation

Every single one of us is creative. It’s human nature to be creative… the thing is that we each might have different ways of expressing our creativity.

We must encourage kids to discover and to develop their creative outlets early. In this module, imagine showing kids the many different ways creativity is expressed, from art to engineering to music to math, and then guiding them as they choose the area (or areas) they are most interested in. Critically, teachers (or parents) can then develop unique lessons for each child based on their interests, thanks to open education resources like YouTube and the Khan Academy. If my child is interested in painting and robots, a teacher or AI could scour the web and put together a custom lesson set from videos/articles where the best painters and roboticists in the world share their skills.

Adapting to change is critical for success, especially in our constantly changing world today. Improvisation is a skill that can be learned, and we need to be teaching it early.

In most collegiate “improv” classes, the core of great improvisation is the “Yes, and…” mindset. When acting out a scene, one actor might introduce a new character or idea, completely changing the context of the scene. It’s critical that the other actors in the scene say “Yes, and…” accept the new reality, then add something new of their own.

Imagine playing similar role-play games in elementary schools, where a teacher gives the students a scene/context and constantly changes variables, forcing them to adapt and play.

Module 10: Coding

Computer science opens more doors for students than any other discipline in today’s world. Learning even the basics will help students in virtually any career, from architecture to zoology.

Coding is an important tool for computer science, in the way that arithmetic is a tool for doing mathematics and words are a tool for English. Coding creates software, but computer science is a broad field encompassing deep concepts that go well beyond coding.

Every 21st century student should also have a chance to learn about algorithms, how to make an app, or how the internet works. Computational thinking allows preschoolers to grasp concepts like algorithms, recursion and heuristics. Even if they don’t understand the terms, they’ll learn the basic concepts.

There are more than 500,000 open jobs in computing right now, representing the number one source of new wages in the US, and these jobs are projected to grow at twice the rate of all other jobs.

Coding is fun! Beyond the practical reasons for learning how to code, there’s the fact that creating a game or animation can be really fun for kids.

Module 11: Entrepreneurship & Sales

At its core, entrepreneurship is about identifying a problem (an opportunity), developing a vision on how to solve it, and working with a team to turn that vision into reality. I mentioned Elon’s school, Ad Astra: here, again, entrepreneurship is a core discipline where students create and actually sell products and services to each other and the school community.

You could recreate this basic exercise with a group of kids in lots of fun ways to teach them the basic lessons of entrepreneurship.

Related to entrepreneurship is sales. In my opinion, we need to be teaching sales to every child at an early age. Being able to “sell” an idea (again related to storytelling) has been a critical skill in my career, and it is a competency that many people simply never learned.

The lemonade stand has been a classic, though somewhat meager, lesson in sales from past generations, where a child sits on a street corner and tries to sell homemade lemonade for $0.50 to people passing by. I’d suggest we step the game up and take a more active approach in gamifying sales, and maybe having the classroom create a Kickstarter, Indiegogo or GoFundMe campaign. The experience of creating a product or service and successfully selling it will create an indelible memory and give students the tools to change the world.

Module 12: Language

A little over a year ago, I spent a week in China meeting with parents whose focus on kids’ education is extraordinary. One of the areas I found fascinating is how some of the most advanced parents are teaching their kids new languages: through games. On the tablet, the kids are allowed to play games, but only in French. A child’s desire to win fully engages them and drives their learning rapidly.

Beyond games, there’s virtual reality. We know that full immersion is what it takes to become fluent (at least later in life). A semester abroad in France or Italy, and you’ve got a great handle on the language and the culture. But what about for an eight-year-old?

Imagine a module where for an hour each day, the children spend their time walking around Italy in a VR world, hanging out with AI-driven game characters who teach them, engage them, and share the culture and the language in the most personalized and compelling fashion possible.

Exponential Technologies for Our Classrooms
If you’ve attended Abundance 360 or Singularity University, or followed my blogs, you’ll probably agree with me that the way our children will learn is going to fundamentally transform over the next decade.

Here’s an overview of the top five technologies that will reshape the future of education:

Tech 1: Virtual Reality (VR) can make learning truly immersive. Research has shown that we remember 20 percent of what we hear, 30 percent of what we see, and up to 90 percent of what we do or simulate. Virtual reality yields the latter scenario impeccably. VR enables students to simulate flying through the bloodstream while learning about different cells they encounter, or travel to Mars to inspect the surface for life.

To make this a reality, Google Cardboard just launched its Pioneer Expeditions product. Under this program, thousands of schools around the world have gotten a kit containing everything a teacher needs to take his or her class on a virtual trip. While data on VR use in K-12 schools and colleges have yet to be gathered, the steady growth of the market is reflected in the surge of companies (including zSpace, Alchemy VR and Immersive VR Education) solely dedicated to providing schools with packaged education curriculum and content.

Add to VR a related technology called augmented reality (AR), and experiential education really comes alive. Imagine wearing an AR headset that is able to superimpose educational lessons on top of real-world experiences. Interested in botany? As you walk through a garden, the AR headset superimposes the name and details of every plant you see.

Tech 2: 3D Printing is allowing students to bring their ideas to life. Never mind the computer on every desktop (or a tablet for every student), that’s a given. In the near future, teachers and students will want or have a 3D printer on the desk to help them learn core science, technology, engineering and mathematics (STEM) principles. Bre Pettis, of MakerBot Industries, in a grand but practical vision, sees a 3D printer on every school desk in America. “Imagine if you had a 3D printer instead of a LEGO set when you were a kid; what would life be like now?” asks Mr. Pettis. You could print your own mini-figures, your own blocks, and you could iterate on new designs as quickly as your imagination would allow. MakerBots are now in over 5,000 K-12 schools across the US.

Taking this one step further, you could imagine having a 3D file for most entries in Wikipedia, allowing you to print out and study an object you can only read about or visualize in VR.

Tech 3: Sensors & Networks. An explosion of sensors and networks are going to connect everyone at gigabit speeds, making access to rich video available at all times. At the same time, sensors continue to miniaturize and reduce in power, becoming embedded in everything. One benefit will be the connection of sensor data with machine learning and AI (below), such that knowledge of a child’s attention drifting, or confusion, can be easily measured and communicated. The result would be a representation of the information through an alternate modality or at a different speed.

Tech 4: Machine Learning is making learning adaptive and personalized. No two students are identical—they have different modes of learning (by reading, seeing, hearing, doing), come from different educational backgrounds, and have different intellectual capabilities and attention spans. Advances in machine learning and the surging adaptive learning movement are seeking to solve this problem. Companies like Knewton and Dreambox have over 15 million students on their respective adaptive learning platforms. Soon, every education application will be adaptive, learning how to personalize the lesson for a specific student. There will be adaptive quizzing apps, flashcard apps, textbook apps, simulation apps and many more.

Tech 5: Artificial Intelligence or “An AI Teaching Companion.” Neil Stephenson’s book The Diamond Age presents a fascinating piece of educational technology called “A Young Lady’s Illustrated Primer.”

As described by Beat Schwendimann, “The primer is an interactive book that can answer a learner’s questions (spoken in natural language), teach through allegories that incorporate elements of the learner’s environment, and presents contextual just-in-time information.

“The primer includes sensors that monitor the learner’s actions and provide feedback. The learner is in a cognitive apprenticeship with the book: The primer models a certain skill (through allegorical fairy tale characters), which the learner then imitates in real life.

“The primer follows a learning progression with increasingly more complex tasks. The educational goals of the primer are humanist: To support the learner to become a strong and independently thinking person.”

The primer, an individualized AI teaching companion is the result of technological convergence and is beautifully described by YouTuber CGP Grey in his video: Digital Aristotle: Thoughts on the Future of Education.

Your AI companion will have unlimited access to information on the cloud and will deliver it at the optimal speed to each student in an engaging, fun way. This AI will demonetize and democratize education, be available to everyone for free (just like Google), and offering the best education to the wealthiest and poorest children on the planet equally.

This AI companion is not a tutor who spouts facts, figures and answers, but a player on the side of the student, there to help him or her learn, and in so doing, learn how to learn better. The AI is always alert, watching for signs of frustration and boredom that may precede quitting, for signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and mastery, which might indicate a successful learning experience.

Ultimately, we’re heading towards a vastly more educated world. We are truly living during the most exciting time to be alive.

Mindsets for the 21st Century
Finally, it’s important for me to discuss mindsets. How we think about the future colors how we learn and what we do. I’ve written extensively about the importance of an abundance and exponential mindset for entrepreneurs and CEOs. I also think that attention to mindset in our elementary schools, when a child is shaping the mental “operating system” for the rest of their life, is even more important.

As such, I would recommend that a school adopt a set of principles that teach and promote a number of mindsets in the fabric of their programs.

Many “mindsets” are important to promote. Here are a couple to consider:

Nurturing Optimism & An Abundance Mindset:
We live in a competitive world, and kids experience a significant amount of pressure to perform. When they fall short, they feel deflated. We all fail at times; that’s part of life. If we want to raise “can-do” kids who can work through failure and come out stronger for it, it’s wise to nurture optimism. Optimistic kids are more willing to take healthy risks, are better problem-solvers, and experience positive relationships. You can nurture optimism in your school by starting each day by focusing on gratitude (what each child is grateful for), or a “positive focus” in which each student takes 30 seconds to talk about what they are most excited about, or what recent event was positively impactful to them. (NOTE: I start every meeting inside my Strike Force team with a positive focus.)

Finally, helping students understand (through data and graphs) that the world is in fact getting better (see my first book: Abundance: The Future is Better Than You Think) will help them counter the continuous flow of negative news flowing through our news media.

When kids feel confident in their abilities and excited about the world, they are willing to work harder and be more creative.

Tolerance for Failure:
Tolerating failure is a difficult lesson to learn and a difficult lesson to teach. But it is critically important to succeeding in life.

Astro Teller, who runs Google’s innovation branch “X,” talks a lot about encouraging failure. At X, they regularly try to “kill” their ideas. If they are successful in killing an idea, and thus “failing,” they save lots of time, money and resources. The ideas they can’t kill survive and develop into billion-dollar businesses. The key is that each time an idea is killed, Astro rewards the team, literally, with cash bonuses. Their failure is celebrated and they become a hero.

This should be reproduced in the classroom: kids should try to be critical of their best ideas (learn critical thinking), then they should be celebrated for ‘successfully failing,’ perhaps with cake, balloons, confetti, and lots of Silly String.

Join Me & Get Involved!
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: sakkarin sapu / Shutterstock.com Continue reading

Posted in Human Robots

#433301 ‘Happiness Tech’ Is On the Rise. Is ...

We often get so fixated on technological progress that we forget it’s merely one component of the entirety of human progress. Technological advancement does not necessarily correlate with increases in human mental well-being.

While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. Amid what appears to be an increasing abundance of resources and ongoing human progress, we are experiencing a mental health epidemic, with high anxiety and depression rates. This is especially true in the developed world, where we have access to luxuries our ancestors couldn’t even dream of—all the world’s information contained in a device we hold in the palm of our hands, for example.

But as you may have realized through your own experience, technology can make us feel worse instead of better. Social media can become a tool for comparison and a source of debilitating status anxiety. Increased access to goods and services, along with the rise of consumerism, can lead people to choose “stuff” over true sources of meaning and get trapped in a hedonistic treadmill of materialism. Tools like artificial intelligence and big data could lead to violation of our privacy and autonomy. The digital world can take us away from the beauty of the present moment.

Understanding Happiness
How we use technology can significantly impact our happiness. In this context, “happiness” refers to a general sense of well-being, gratitude, and inner peace. Even with such a simple definition, it is a state of mind many people will admit they lack.

Eastern philosophies have told us for thousands of years that the problem of human suffering begins with our thoughts and perceptions of the circumstances we are in, as opposed to beginning with the circumstances themselves. As Derren Brown brilliantly points out in Happy: Why More or Less Everything Is Absolutely Fine, “The problem with the modern conception of happiness is that it is seen as some kind of commodity. There is this fantasy that simply by believing in yourself and setting goals you can have anything. But that simply isn’t how life works. The ancients had a much better view of it. They offered an approach of not trying to control things you can’t control, and of lessening your desires and your expectations so you achieve a harmony between what you desire and what you have.”

A core part of feeling more happy is about re-wiring our minds to adjust our expectations, exercise gratitude, escape negative narratives, and live in the present moment.

But can technology help us do that?

Applications for Mental Well-Being
Many doers are asking themselves how they can leverage digital tools to contribute to human happiness.

Meditation and mindfulness are examples of practices we can use to escape the often overwhelming burden of our thoughts and ground our minds into the present. They have become increasingly democratized with the rise of meditation mobile apps, such as Headspace, Gaia, and Calm, that allow millions of people globally to use their phones to learn from experts at a very low cost.

These companies have also partnered with hospitals, airlines, athletic teams, and others that could benefit from increased access to mindfulness and meditation. The popularity of these apps continues to rise as more people recognize their necessity. The combination of mass technology and ancient wisdom is one that can lead to a transformation of the collective consciousness.

Sometimes merely reflecting on the sources of joy in our lives and practicing gratitude can contribute to better well-being. Apps such as Happier encourage users to reflect upon and share pleasant everyday moments in their daily lives. Such exercises are based on the understanding that being happy is a “skill” one can build though practice and through scientifically-proven activities, such as writing down a nice thought and sharing your positivity with the world. Many other tools such as Track Your Happiness and Happstr allow users to track their happiness, which often serves as a valuable source of data to researchers.

There is also a growing body of knowledge that tells us we can achieve happiness by helping others. This “helper’s high” is a result of our brains producing endorphins after having a positive impact on the lives of others. In many shapes and forms, technology has made it easier now more than ever to help other people no matter where they are located. From charitable donations to the rise of social impact organizations, there is an abundance of projects that leverage technology to positively impact individual lives. Platforms like GoVolunteer connect nonprofits with individuals from a variety of skill sets who are looking to gift their abilities to those in need. Kiva allows for fundraising loans that can change lives. These are just a handful of examples of a much wider positive paradigm shift.

The Future of Technology for Well-Being
There is no denying that increasingly powerful and immersive technology can be used to better or worsen the human condition. Today’s leaders will not only have to focus on their ability to use technology to solve a problem or generate greater revenue; they will have to ask themselves if their tech solutions are beneficial or detrimental to human well-being. They will also have to remember that more powerful technology does not always translate to happier users. It is also crucial that future generations be equipped with the values required to use increasingly powerful tools responsibly and ethically.

In the Education 2030 report, the Millennium Project envisions a world wherein portable intelligent devices combined with integrated systems for lifelong learning contribute to better well-being. In this vision, “continuous evaluation of individual learning processes designed to prevent people from growing unstable and/or becoming mentally ill, along with programs aimed at eliminating prejudice and hate, could bring about a more beautiful, loving world.”

There is exciting potential for technology to be leveraged to contribute to human happiness at a massive scale. Yet, technology shouldn’t consume every aspect of our lives, since a life worth living is often about balance. Sometimes, even if just for a few moments, what would make us feel happier is we disconnected from technology to begin with.

Image Credit: 13_Phunkod / Shutterstock.com Continue reading

Posted in Human Robots

#432891 This Week’s Awesome Stories From ...

TRANSPORTATION
Elon Musk Presents His Tunnel Vision to the People of LA
Jack Stewart and Aarian Marshall | Wired
“Now, Musk wants to build this new, 2.1-mile tunnel, near LA’s Sepulveda pass. It’s all part of his broader vision of a sprawling network that could take riders from Sherman Oaks in the north to Long Beach Airport in the south, Santa Monica in the west to Dodger Stadium in the east—without all that troublesome traffic.”

ROBOTICS
Feel What This Robot Feels Through Tactile Expressions
Evan Ackerman | IEEE Spectrum
“Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, ‘Don’t touch me!’”

VIRTUAL REALITY
In Virtual Reality, How Much Body Do You Need?
Steph Yin | The New York Times
“In a paper published Tuesday in Scientific Reports, they showed that animating virtual hands and feet alone is enough to make people feel their sense of body drift toward an invisible avatar. Their work fits into a corpus of research on illusory body ownership, which has challenged understandings of perception and contributed to therapies like treating pain for amputees who experience phantom limb.”

MEDICINE
How Graphene and Gold Could Help Us Test Drugs and Monitor Cancer
Angela Chen | The Verge
“In today’s study, scientists learned to precisely control the amount of electricity graphene generates by changing how much light they shine on the material. When they grew heart cells on the graphene, they could manipulate the cells too, says study co-author Alex Savtchenko, a physicist at the University of California, San Diego. They could make it beat 1.5 times faster, three times faster, 10 times faster, or whatever they needed.”

DISASTER RELIEF
Robotic Noses Could Be the Future of Disaster Rescue—If They Can Outsniff Search Dogs
Eleanor Cummins | Popular Science
“While canine units are a tried and fairly true method for identifying people trapped in the wreckage of a disaster, analytical chemists have for years been working in the lab to create a robotic alternative. A synthetic sniffer, they argue, could potentially prove to be just as or even more reliable than a dog, more resilient in the face of external pressures like heat and humidity, and infinitely more portable.”

Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#432646 How Fukushima Changed Japanese Robotics ...

In March 2011, Japan was hit by a catastrophic earthquake that triggered a terrible tsunami. Thousands were killed and billions of dollars of damage was done in one of the worst disasters of modern times. For a few perilous weeks, though, the eyes of the world were focused on the Fukushima Daiichi nuclear power plant. Its safety systems were unable to cope with the tsunami damage, and there were widespread fears of another catastrophic meltdown that could spread radiation over several countries, like the Chernobyl disaster in the 1980s. A heroic effort that included dumping seawater into the reactor core prevented an even bigger catastrophe. As it is, a hundred thousand people are still evacuated from the area, and it will likely take many years and hundreds of billions of dollars before the region is safe.

Because radiation is so dangerous to humans, the natural solution to the Fukushima disaster was to send in robots to monitor levels of radiation and attempt to begin the clean-up process. The techno-optimists in Japan had discovered a challenge, deep in the heart of that reactor core, that even their optimism could not solve. The radiation fried the circuits of the robots that were sent in, even those specifically designed and built to deal with the Fukushima catastrophe. The power plant slowly became a vast robot graveyard. While some robots initially saw success in measuring radiation levels around the plant—and, recently, a robot was able to identify the melted uranium fuel at the heart of the disaster—hopes of them playing a substantial role in the clean-up are starting to diminish.



In Tokyo’s neon Shibuya district, it can sometimes seem like it’s brighter at night than it is during the daytime. In karaoke booths on the twelfth floor—because everything is on the twelfth floor—overlooking the brightly-lit streets, businessmen unwind by blasting out pop hits. It can feel like the most artificial place on Earth; your senses are dazzled by the futuristic techno-optimism. Stock footage of the area has become symbolic of futurism and modernity.

Japan has had a reputation for being a nation of futurists for a long time. We’ve already described how tech giant Softbank, headed by visionary founder Masayoshi Son, is investing billions in a technological future, including plans for the world’s largest solar farm.

When Google sold pioneering robotics company Boston Dynamics in 2017, Softbank added it to their portfolio, alongside the famous Nao and Pepper robots. Some may think that Son is taking a gamble in pursuing a robotics project even Google couldn’t succeed in, but this is a man who lost nearly everything in the dot-com crash of 2000. The fact that even this reversal didn’t dent his optimism and faith in technology is telling. But how long can it last?

The failure of Japan’s robots to deal with the immense challenge of Fukushima has sparked something of a crisis of conscience within the industry. Disaster response is an obvious stepping-stone technology for robots. Initially, producing a humanoid robot will be very costly, and the robot will be less capable than a human; building a robot to wait tables might not be particularly economical yet. Building a robot to do jobs that are too dangerous for humans is far more viable. Yet, at Fukushima, in one of the most advanced nations in the world, many of the robots weren’t up to the task.

Nowhere was this crisis more felt than Honda; the company had developed ASIMO, which stunned the world in 2000 and continues to fascinate as an iconic humanoid robot. Despite all this technological advancement, however, Honda knew that ASIMO was still too unreliable for the real world.

It was Fukushima that triggered a sea-change in Honda’s approach to robotics. Two years after the disaster, there were rumblings that Honda was developing a disaster robot, and in October 2017, the prototype was revealed to the public for the first time. It’s not yet ready for deployment in disaster zones, however. Interestingly, the creators chose not to give it dexterous hands but instead to assume that remotely-operated tools fitted to the robot would be a better solution for the range of circumstances it might encounter.

This shift in focus for humanoid robots away from entertainment and amusement like ASIMO, and towards being practically useful, has been mirrored across the world.

In 2015, also inspired by the Fukushima disaster and the lack of disaster-ready robots, the DARPA Robotics Challenge tested humanoid robots with a range of tasks that might be needed in emergency response, such as driving cars, opening doors, and climbing stairs. The Terminator-like ATLAS robot from Boston Dynamics, alongside Korean robot HUBO, took many of the plaudits, and CHIMP also put in an impressive display by being able to right itself after falling.

Yet the DARPA Robotics Challenge showed us just how far the robots are from truly being as useful as we’d like, or maybe even as we would imagine. Many robots took hours to complete the tasks, which were highly idealized to suit them. Climbing stairs proved a particular challenge. Those who watched were more likely to see a robot that had fallen over, struggling to get up, rather than heroic superbots striding in to save the day. The “striding” proved a particular problem, with the fastest robot HUBO managing this by resorting to wheels in its knees when the legs weren’t necessary.

Fukushima may have brought a sea-change over futuristic Japan, but before robots will really begin to enter our everyday lives, they will need to prove their worth. In the interim, aerial drone robots designed to examine infrastructure damage after disasters may well see earlier deployment and more success.

It’s a considerable challenge.

Building a humanoid robot is expensive; if these multi-million-dollar machines can’t help in a crisis, people may begin to question the worth of investing in them in the first place (unless your aim is just to make viral videos). This could lead to a further crisis of confidence among the Japanese, who are starting to rely on humanoid robotics as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

But if they continue to fail when put to the test, that will raise serious concerns. In Tokyo’s Akihabara district, you can see all kinds of flash robotic toys for sale in the neon-lit superstores, and dancing, acting robots like Robothespian can entertain crowds all over the world. But if we want these machines to be anything more than toys—partners, helpers, even saviors—more work needs to be done.

At the same time, those who participated in the DARPA Robotics Challenge in 2015 won’t be too concerned if people were underwhelmed by the performance of their disaster relief robots. Back in 2004, nearly every participant in the DARPA Grand Challenge crashed, caught fire, or failed on the starting line. To an outside observer, the whole thing would have seemed like an unmitigated disaster, and a pointless investment. What was the task in 2004? Developing a self-driving car. A lot can change in a decade.

Image Credit: MARCUSZ2527 / Shutterstock.com Continue reading

Posted in Human Robots