Tag Archives: Handle

#431189 Researchers Develop New Tech to Predict ...

It is one of the top 10 deadliest diseases in the United States, and it cannot be cured or prevented. But new studies are finding ways to diagnose Alzheimer’s disease in its earliest stages, while some of the latest research says technologies like artificial intelligence can detect dementia years before the first symptoms occur.
These advances, in turn, will help bolster clinical trials seeking a cure or therapies to slow or prevent the disease. Catching Alzheimer’s disease or other forms of dementia early in their progression can help ease symptoms in some cases.
“Often neurodegeneration is diagnosed late when massive brain damage has already occurred,” says professor Francis L Martin at the University of Central Lancashire in the UK, in an email to Singularity Hub. “As we know more about the molecular basis of the disease, there is the possibility of clinical interventions that might slow or halt the progress of the disease, i.e., before brain damage. Extending cognitive ability for even a number of years would have huge benefit.”
Blood Diamond
Martin is the principal investigator on a project that has developed a technique to analyze blood samples to diagnose Alzheimer’s disease and distinguish between other forms of dementia.
The researchers used sensor-based technology with a diamond core to analyze about 550 blood samples. They identified specific chemical bonds within the blood after passing light through the diamond core and recording its interaction with the sample. The results were then compared against blood samples from cases of Alzheimer’s disease and other neurodegenerative diseases, along with those from healthy individuals.
“From a small drop of blood, we derive a fingerprint spectrum. That fingerprint spectrum contains numerical data, which can be inputted into a computational algorithm we have developed,” Martin explains. “This algorithm is validated for prediction of unknown samples. From this we determine sensitivity and specificity. Although not perfect, my clinical colleagues reliably tell me our results are far better than anything else they have seen.”
Martin says the breakthrough is the result of more than 10 years developing sensor-based technologies for routine screening, monitoring, or diagnosing neurodegenerative diseases and cancers.
“My vision was to develop something low-cost that could be readily applied in a typical clinical setting to handle thousands of samples potentially per day or per week,” he says, adding that the technology also has applications in environmental science and food security.
The new test can also distinguish accurately between Alzheimer’s disease and other forms of neurodegeneration, such as Lewy body dementia, which is one of the most common causes of dementia after Alzheimer’s.
“To this point, other than at post-mortem, there has been no single approach towards classifying these pathologies,” Martin notes. “MRI scanning is often used but is labor-intensive, costly, difficult to apply to dementia patients, and not a routine point-of-care test.”
Crystal Ball
Canadian researchers at McGill University believe they can predict Alzheimer’s disease up to two years before its onset using big data and artificial intelligence. They developed an algorithm capable of recognizing the signatures of dementia using a single amyloid PET scan of the brain of patients at risk of developing the disease.
Alzheimer’s is caused by the accumulation of two proteins—amyloid beta and tau. The latest research suggests that amyloid beta leads to the buildup of tau, which is responsible for damaging nerve cells and connections between cells called synapses.
The work was recently published in the journal Neurobiology of Aging.
“Despite the availability of biomarkers capable of identifying the proteins causative of Alzheimer’s disease in living individuals, the current technologies cannot predict whether carriers of AD pathology in the brain will progress to dementia,” Sulantha Mathotaarachchi, lead author on the paper and an expert in artificial neural networks, tells Singularity Hub by email.
The algorithm, trained on a population with amnestic mild cognitive impairment observed over 24 months, proved accurate 84.5 percent of the time. Mathotaarachchi says the algorithm can be trained on different populations for different observational periods, meaning the system can grow more comprehensive with more data.
“The more biomarkers we incorporate, the more accurate the prediction could be,” Mathotaarachchi adds. “However, right now, acquiring [the] required amount of training data is the biggest challenge. … In Alzheimer’s disease, it is known that the amyloid protein deposition occurs decades before symptoms onset.”
Unfortunately, the same process occurs in normal aging as well. “The challenge is to identify the abnormal patterns of deposition that lead to the disease later on,” he says
One of the key goals of the project is to improve the research in Alzheimer’s disease by ensuring those patients with the highest probability to develop dementia are enrolled in clinical trials. That will increase the efficiency of clinical programs, according to Mathotaarachchi.
“One of the most important outcomes from our study was the pilot, online, real-time prediction tool,” he says. “This can be used as a framework for patient screening before recruiting for clinical trials. … If a disease-modifying therapy becomes available for patients, a predictive tool might have clinical applications as well, by providing to the physician information regarding clinical progression.”
Pixel by Pixel Prediction
Private industry is also working toward improving science’s predictive powers when it comes to detecting dementia early. One startup called Darmiyan out of San Francisco claims its proprietary software can pick up signals before the onset of Alzheimer’s disease by up to 15 years.
Darmiyan didn’t respond to a request for comment for this article. Venture Beat reported that the company’s MRI-analyzing software “detects cell abnormalities at a microscopic level to reveal what a standard MRI scan cannot” and that the “software measures and highlights subtle microscopic changes in the brain tissue represented in every pixel of the MRI image long before any symptoms arise.”
Darmiyan claims to have a 90 percent accuracy rate and says its software has been vetted by top academic institutions like New York University, Rockefeller University, and Stanford, according to Venture Beat. The startup is awaiting FDA approval to proceed further but is reportedly working with pharmaceutical companies like Amgen, Johnson & Johnson, and Pfizer on pilot programs.
“Our technology enables smarter drug selection in preclinical animal studies, better patient selection for clinical trials, and much better drug-effect monitoring,” Darmiyan cofounder and CEO Padideh Kamali-Zare told Venture Beat.
Conclusions
An estimated 5.5 million Americans have Alzheimer’s, and one in 10 people over age 65 have been diagnosed with the disease. By mid-century, the number of Alzheimer’s patients could rise to 16 million. Health care costs in 2017 alone are estimated to be $259 billion, and by 2050 the annual price tag could be more than $1 trillion.
In sum, it’s a disease that cripples people and the economy.
Researchers are always after more data as they look to improve outcomes, with the hope of one day developing a cure or preventing the onset of neurodegeneration altogether. If interested in seeing this medical research progress, you can help by signing up on the Brain Health Registry to improve the quality of clinical trials.
Image Credit: rudall30 / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431081 How the Intelligent Home of the Future ...

As Dorothy famously said in The Wizard of Oz, there’s no place like home. Home is where we go to rest and recharge. It’s familiar, comfortable, and our own. We take care of our homes by cleaning and maintaining them, and fixing things that break or go wrong.
What if our homes, on top of giving us shelter, could also take care of us in return?
According to Chris Arkenberg, this could be the case in the not-so-distant future. As part of Singularity University’s Experts On Air series, Arkenberg gave a talk called “How the Intelligent Home of The Future Will Care For You.”
Arkenberg is a research and strategy lead at Orange Silicon Valley, and was previously a research fellow at the Deloitte Center for the Edge and a visiting researcher at the Institute for the Future.
Arkenberg told the audience that there’s an evolution going on: homes are going from being smart to being connected, and will ultimately become intelligent.
Market Trends
Intelligent home technologies are just now budding, but broader trends point to huge potential for their growth. We as consumers already expect continuous connectivity wherever we go—what do you mean my phone won’t get reception in the middle of Yosemite? What do you mean the smart TV is down and I can’t stream Game of Thrones?
As connectivity has evolved from a privilege to a basic expectation, Arkenberg said, we’re also starting to have a better sense of what it means to give up our data in exchange for services and conveniences. It’s so easy to click a few buttons on Amazon and have stuff show up at your front door a few days later—never mind that data about your purchases gets recorded and aggregated.
“Right now we have single devices that are connected,” Arkenberg said. “Companies are still trying to show what the true value is and how durable it is beyond the hype.”

Connectivity is the basis of an intelligent home. To take a dumb object and make it smart, you get it online. Belkin’s Wemo, for example, lets users control lights and appliances wirelessly and remotely, and can be paired with Amazon Echo or Google Home for voice-activated control.
Speaking of voice-activated control, Arkenberg pointed out that physical interfaces are evolving, too, to the point that we’re actually getting rid of interfaces entirely, or transitioning to ‘soft’ interfaces like voice or gesture.
Drivers of change
Consumers are open to smart home tech and companies are working to provide it. But what are the drivers making this tech practical and affordable? Arkenberg said there are three big ones:
Computation: Computers have gotten exponentially more powerful over the past few decades. If it wasn’t for processors that could handle massive quantities of information, nothing resembling an Echo or Alexa would even be possible. Artificial intelligence and machine learning are powering these devices, and they hinge on computing power too.
Sensors: “There are more things connected now than there are people on the planet,” Arkenberg said. Market research firm Gartner estimates there are 8.4 billion connected things currently in use. Wherever digital can replace hardware, it’s doing so. Cheaper sensors mean we can connect more things, which can then connect to each other.
Data: “Data is the new oil,” Arkenberg said. “The top companies on the planet are all data-driven giants. If data is your business, though, then you need to keep finding new ways to get more and more data.” Home assistants are essentially data collection systems that sit in your living room and collect data about your life. That data in turn sets up the potential of machine learning.
Colonizing the Living Room
Alexa and Echo can turn lights on and off, and Nest can help you be energy-efficient. But beyond these, what does an intelligent home really look like?
Arkenberg’s vision of an intelligent home uses sensing, data, connectivity, and modeling to manage resource efficiency, security, productivity, and wellness.
Autonomous vehicles provide an interesting comparison: they’re surrounded by sensors that are constantly mapping the world to build dynamic models to understand the change around itself, and thereby predict things. Might we want this to become a model for our homes, too? By making them smart and connecting them, Arkenberg said, they’d become “more biological.”
There are already several products on the market that fit this description. RainMachine uses weather forecasts to adjust home landscape watering schedules. Neurio monitors energy usage, identifies areas where waste is happening, and makes recommendations for improvement.
These are small steps in connecting our homes with knowledge systems and giving them the ability to understand and act on that knowledge.
He sees the homes of the future being equipped with digital ears (in the form of home assistants, sensors, and monitoring devices) and digital eyes (in the form of facial recognition technology and machine vision to recognize who’s in the home). “These systems are increasingly able to interrogate emotions and understand how people are feeling,” he said. “When you push more of this active intelligence into things, the need for us to directly interface with them becomes less relevant.”
Could our homes use these same tools to benefit our health and wellness? FREDsense uses bacteria to create electrochemical sensors that can be applied to home water systems to detect contaminants. If that’s not personal enough for you, get a load of this: ClinicAI can be installed in your toilet bowl to monitor and evaluate your biowaste. What’s the point, you ask? Early detection of colon cancer and other diseases.
What if one day, your toilet’s biowaste analysis system could link up with your fridge, so that when you opened it it would tell you what to eat, and how much, and at what time of day?
Roadblocks to intelligence
“The connected and intelligent home is still a young category trying to establish value, but the technological requirements are now in place,” Arkenberg said. We’re already used to living in a world of ubiquitous computation and connectivity, and we have entrained expectations about things being connected. For the intelligent home to become a widespread reality, its value needs to be established and its challenges overcome.
One of the biggest challenges will be getting used to the idea of continuous surveillance. We’ll get convenience and functionality if we give up our data, but how far are we willing to go? Establishing security and trust is going to be a big challenge moving forward,” Arkenberg said.
There’s also cost and reliability, interoperability and fragmentation of devices, or conversely, what Arkenberg called ‘platform lock-on,’ where you’d end up relying on only one provider’s system and be unable to integrate devices from other brands.
Ultimately, Arkenberg sees homes being able to learn about us, manage our scheduling and transit, watch our moods and our preferences, and optimize our resource footprint while predicting and anticipating change.
“This is the really fascinating provocation of the intelligent home,” Arkenberg said. “And I think we’re going to start to see this play out over the next few years.”
Sounds like a home Dorothy wouldn’t recognize, in Kansas or anywhere else.
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430868 These 7 Forces Are Changing the World at ...

It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.

“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430830 Biocomputers Made From Cells Can Now ...

When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.

Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430579 What These Lifelike Androids Can Teach ...

For Dr. Hiroshi Ishiguro, one of the most interesting things about androids is the changing questions they pose us, their creators, as they evolve. Does it, for example, do something to the concept of being human if a human-made creation starts telling you about what kind of boys ‘she’ likes?
If you want to know the answer to the boys question, you need to ask ERICA, one of Dr. Ishiguro’s advanced androids. Beneath her plastic skull and silicone skin, wires connect to AI software systems that bring her to life. Her ability to respond goes far beyond standard inquiries. Spend a little time with her, and the feeling of a distinct personality starts to emerge. From time to time, she works as a receptionist at Dr. Ishiguro and his team’s Osaka University labs. One of her android sisters is an actor who has starred in plays and a film.

ERICA’s ‘brother’ is an android version of Dr. Ishiguro himself, which has represented its creator at various events while the biological Ishiguro can remain in his offices in Japan. Microphones and cameras capture Ishiguro’s voice and face movements, which are relayed to the android. Apart from mimicking its creator, the Geminoid™ android is also capable of lifelike blinking, fidgeting, and breathing movements.
Say hello to relaxation
As technological development continues to accelerate, so do the possibilities for androids. From a position as receptionist, ERICA may well branch out into many other professions in the coming years. Companion for the elderly, comic book storyteller (an ancient profession in Japan), pop star, conversational foreign language partner, and newscaster are some of the roles and responsibilities Dr. Ishiguro sees androids taking on in the near future.
“Androids are not uncanny anymore. Most people adapt to interacting with Erica very quickly. Actually, I think that in interacting with androids, which are still different from us, we get a better appreciation of interacting with other cultures. In both cases, we are talking with someone who is different from us and learn to overcome those differences,” he says.
A lot has been written about how robots will take our jobs. Dr. Ishiguro believes these fears are blown somewhat out of proportion.
“Robots and androids will take over many simple jobs. Initially there might be some job-related issues, but new schemes, like for example a robot tax similar to the one described by Bill Gates, should help,” he says.
“Androids will make it possible for humans to relax and keep evolving. If we compare the time we spend studying now compared to 100 years ago, it has grown a lot. I think it needs to keep growing if we are to keep expanding our scientific and technological knowledge. In the future, we might end up spending 20 percent of our lifetime on work and 80 percent of the time on education and growing our skills.”
Android asks who you are
For Dr. Ishiguro, another aspect of robotics in general, and androids in particular, is how they question what it means to be human.
“Identity is a very difficult concept for humans sometimes. For example, I think clothes are part of our identity, in a way that is similar to our faces and bodies. We don’t change those from one day to the next, and that is why I have ten matching black outfits,” he says.
This link between physical appearance and perceived identity is one of the aspects Dr. Ishiguro is exploring. Another closely linked concept is the connection between body and feeling of self. The Ishiguro avatar was once giving a presentation in Austria. Its creator recalls how he felt distinctly like he was in Austria, even capable of feeling sensation of touch on his own body when people laid their hands on the android. If he was distracted, he felt almost ‘sucked’ back into his body in Japan.
“I am constantly thinking about my life in this way, and I believe that androids are a unique mirror that helps us formulate questions about why we are here and why we have been so successful. I do not necessarily think I have found the answers to these questions, so if you have, please share,” he says with a laugh.
His work and these questions, while extremely interesting on their own, become extra poignant when considering the predicted melding of mind and machine in the near future.
The ability to be present in several locations through avatars—virtual or robotic—raises many questions of both philosophical and practical nature. Then add the hypotheticals, like why send a human out onto the hostile surface of Mars if you could send a remote-controlled android, capable of relaying everything it sees, hears and feels?
The two ways of robotics will meet
Dr. Ishiguro sees the world of AI-human interaction as currently roughly split into two. One is the chat-bot approach that companies like Amazon, Microsoft, Google, and recently Apple, employ using stationary objects like speakers. Androids like ERICA represent another approach.
“It is about more than the form factor. I think that the android approach is generally more story-based. We are integrating new conversation features based on assumptions about the situation and running different scenarios that expand the android’s vocabulary and interactions. Another aspect we are working on is giving androids desire and intention. Like with people, androids should have desires and intentions in order for you to want to interact with them over time,” Dr. Ishiguro explains.
This could be said to be part of a wider trend for Japan, where many companies are developing human-like robots that often have some Internet of Things capabilities, making them able to handle some of the same tasks as an Amazon Echo. The difference in approach could be summed up in the words ‘assistant’ (Apple, Amazon, etc.) and ‘companion’ (Japan).
Dr. Ishiguro sees this as partly linked to how Japanese as a language—and market—is somewhat limited. This has a direct impact on viability and practicality of ‘pure’ voice recognition systems. At the same time, Japanese people have had greater exposure to positive images of robots, and have a different cultural / religious view of objects having a ‘soul’. However, it may also mean Japanese companies and android scientists are both stealing a lap on their western counterparts.
“If you speak to an Amazon Echo, that is not a natural way to interact for humans. This is part of why we are making human-like robot systems. The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction. Technology has to adapt to us, because we cannot adapt fast enough to it, as it develops so quickly,” he says.
Banner image courtesy of Hiroshi Ishiguro Laboratories, ATR all rights reserved.
Dr. Ishiguro’s team has collaborated with partners and developed a number of android systems:
Geminoid™ HI-2 has been developed by Hiroshi Ishiguro Laboratories and Advanced Telecommunications Research Institute International (ATR).
Geminoid™ F has been developed by Osaka University and Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International (ATR).
ERICA has been developed by ERATO ISHIGURO Symbiotic Human-Robot Interaction Project Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment