Tag Archives: government

#434827 AI and Robotics Are Transforming ...

During the past 50 years, the frequency of recorded natural disasters has surged nearly five-fold.

In this blog, I’ll be exploring how converging exponential technologies (AI, robotics, drones, sensors, networks) are transforming the future of disaster relief—how we can prevent them in the first place and get help to victims during that first golden hour wherein immediate relief can save lives.

Here are the three areas of greatest impact:

AI, predictive mapping, and the power of the crowd
Next-gen robotics and swarm solutions
Aerial drones and immediate aid supply

Let’s dive in!

Artificial Intelligence and Predictive Mapping
When it comes to immediate and high-precision emergency response, data is gold.

Already, the meteoric rise of space-based networks, stratosphere-hovering balloons, and 5G telecommunications infrastructure is in the process of connecting every last individual on the planet.

Aside from democratizing the world’s information, however, this upsurge in connectivity will soon grant anyone the ability to broadcast detailed geo-tagged data, particularly those most vulnerable to natural disasters.

Armed with the power of data broadcasting and the force of the crowd, disaster victims now play a vital role in emergency response, turning a historically one-way blind rescue operation into a two-way dialogue between connected crowds and smart response systems.

With a skyrocketing abundance of data, however, comes a new paradigm: one in which we no longer face a scarcity of answers. Instead, it will be the quality of our questions that matters most.

This is where AI comes in: our mining mechanism.

In the case of emergency response, what if we could strategically map an almost endless amount of incoming data points? Or predict the dynamics of a flood and identify a tsunami’s most vulnerable targets before it even strikes? Or even amplify critical signals to trigger automatic aid by surveillance drones and immediately alert crowdsourced volunteers?

Already, a number of key players are leveraging AI, crowdsourced intelligence, and cutting-edge visualizations to optimize crisis response and multiply relief speeds.

Take One Concern, for instance. Born out of Stanford under the mentorship of leading AI expert Andrew Ng, One Concern leverages AI through analytical disaster assessment and calculated damage estimates.

Partnering with the cities of Los Angeles, San Francisco, and numerous cities in San Mateo County, the platform assigns verified, unique ‘digital fingerprints’ to every element in a city. Building robust models of each system, One Concern’s AI platform can then monitor site-specific impacts of not only climate change but each individual natural disaster, from sweeping thermal shifts to seismic movement.

This data, combined with that of city infrastructure and former disasters, are then used to predict future damage under a range of disaster scenarios, informing prevention methods and structures in need of reinforcement.

Within just four years, One Concern can now make precise predictions with an 85 percent accuracy rate in under 15 minutes.

And as IoT-connected devices and intelligent hardware continue to boom, a blooming trillion-sensor economy will only serve to amplify AI’s predictive capacity, offering us immediate, preventive strategies long before disaster strikes.

Beyond natural disasters, however, crowdsourced intelligence, predictive crisis mapping, and AI-powered responses are just as formidable a triage in humanitarian disasters.

One extraordinary story is that of Ushahidi. When violence broke out after the 2007 Kenyan elections, one local blogger proposed a simple yet powerful question to the web: “Any techies out there willing to do a mashup of where the violence and destruction is occurring and put it on a map?”

Within days, four ‘techies’ heeded the call, building a platform that crowdsourced first-hand reports via SMS, mined the web for answers, and—with over 40,000 verified reports—sent alerts back to locals on the ground and viewers across the world.

Today, Ushahidi has been used in over 150 countries, reaching a total of 20 million people across 100,000+ deployments. Now an open-source crisis-mapping software, its V3 (or “Ushahidi in the Cloud”) is accessible to anyone, mining millions of Tweets, hundreds of thousands of news articles, and geo-tagged, time-stamped data from countless sources.

Aggregating one of the longest-running crisis maps to date, Ushahidi’s Syria Tracker has proved invaluable in the crowdsourcing of witness reports. Providing real-time geographic visualizations of all verified data, Syria Tracker has enabled civilians to report everything from missing people and relief supply needs to civilian casualties and disease outbreaks— all while evading the government’s cell network, keeping identities private, and verifying reports prior to publication.

As mobile connectivity and abundant sensors converge with AI-mined crowd intelligence, real-time awareness will only multiply in speed and scale.

Imagining the Future….

Within the next 10 years, spatial web technology might even allow us to tap into mesh networks.

As I’ve explored in a previous blog on the implications of the spatial web, while traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.

In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.

Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.

Imagine a scenario in which armed attacks break out across disjointed urban districts, each cluster of eye witnesses and at-risk civilians broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram in real time, giving family members and first responders complete information.

Or take a coastal community in the throes of torrential rainfall and failing infrastructure. Now empowered by a collective live feed, verification of data reports takes a matter of seconds, and richly-layered data informs first responders and AI platforms with unbelievable accuracy and specificity of relief needs.

By linking all the right technological pieces, we might even see the rise of automated drone deliveries. Imagine: crowdsourced intelligence is first cross-referenced with sensor data and verified algorithmically. AI is then leveraged to determine the specific needs and degree of urgency at ultra-precise coordinates. Within minutes, once approved by personnel, swarm robots rush to collect the requisite supplies, equipping size-appropriate drones with the right aid for rapid-fire delivery.

This brings us to a second critical convergence: robots and drones.

While cutting-edge drone technology revolutionizes the way we deliver aid, new breakthroughs in AI-geared robotics are paving the way for superhuman emergency responses in some of today’s most dangerous environments.

Let’s explore a few of the most disruptive examples to reach the testing phase.

First up….

Autonomous Robots and Swarm Solutions
As hardware advancements converge with exploding AI capabilities, disaster relief robots are graduating from assistance roles to fully autonomous responders at a breakneck pace.

Born out of MIT’s Biomimetic Robotics Lab, the Cheetah III is but one of many robots that may form our first line of defense in everything from earthquake search-and-rescue missions to high-risk ops in dangerous radiation zones.

Now capable of running at 6.4 meters per second, Cheetah III can even leap up to a height of 60 centimeters, autonomously determining how to avoid obstacles and jump over hurdles as they arise.

Initially designed to perform spectral inspection tasks in hazardous settings (think: nuclear plants or chemical factories), the Cheetah’s various iterations have focused on increasing its payload capacity, range of motion, and even a gripping function with enhanced dexterity.

Cheetah III and future versions are aimed at saving lives in almost any environment.

And the Cheetah III is not alone. Just this February, Tokyo’s Electric Power Company (TEPCO) has put one of its own robots to the test. For the first time since Japan’s devastating 2011 tsunami, which led to three nuclear meltdowns in the nation’s Fukushima nuclear power plant, a robot has successfully examined the reactor’s fuel.

Broadcasting the process with its built-in camera, the robot was able to retrieve small chunks of radioactive fuel at five of the six test sites, offering tremendous promise for long-term plans to clean up the still-deadly interior.

Also out of Japan, Mitsubishi Heavy Industries (MHi) is even using robots to fight fires with full autonomy. In a remarkable new feat, MHi’s Water Cannon Bot can now put out blazes in difficult-to-access or highly dangerous fire sites.

Delivering foam or water at 4,000 liters per minute and 1 megapascal (MPa) of pressure, the Cannon Bot and its accompanying Hose Extension Bot even form part of a greater AI-geared system to conduct reconnaissance and surveillance on larger transport vehicles.

As wildfires grow ever more untameable, high-volume production of such bots could prove a true lifesaver. Paired with predictive AI forest fire mapping and autonomous hauling vehicles, not only will solutions like MHi’s Cannon Bot save numerous lives, but avoid population displacement and paralyzing damage to our natural environment before disaster has the chance to spread.

But even in cases where emergency shelter is needed, groundbreaking (literally) robotics solutions are fast to the rescue.

After multiple iterations by Fastbrick Robotics, the Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square-meter home in under three days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long-term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

But what if we need to build emergency shelters from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute for Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

But while cutting-edge robotics unlock extraordinary new frontiers for low-cost, large-scale emergency construction, novel hardware and computing breakthroughs are also enabling robotic scale at the other extreme of the spectrum.

Again, inspired by biological phenomena, robotics specialists across the US have begun to pilot tiny robotic prototypes for locating trapped individuals and assessing infrastructural damage.

Take RoboBees, tiny Harvard-developed bots that use electrostatic adhesion to ‘perch’ on walls and even ceilings, evaluating structural damage in the aftermath of an earthquake.

Or Carnegie Mellon’s prototyped Snakebot, capable of navigating through entry points that would otherwise be completely inaccessible to human responders. Driven by AI, the Snakebot can maneuver through even the most densely-packed rubble to locate survivors, using cameras and microphones for communication.

But when it comes to fast-paced reconnaissance in inaccessible regions, miniature robot swarms have good company.

Next-Generation Drones for Instantaneous Relief Supplies
Particularly in the case of wildfires and conflict zones, autonomous drone technology is fundamentally revolutionizing the way we identify survivors in need and automate relief supply.

Not only are drones enabling high-resolution imagery for real-time mapping and damage assessment, but preliminary research shows that UAVs far outpace ground-based rescue teams in locating isolated survivors.

As presented by a team of electrical engineers from the University of Science and Technology of China, drones could even build out a mobile wireless broadband network in record time using a “drone-assisted multi-hop device-to-device” program.

And as shown during Houston’s Hurricane Harvey, drones can provide scores of predictive intel on everything from future flooding to damage estimates.

Among multiple others, a team led by Texas A&M computer science professor and director of the university’s Center for Robot-Assisted Search and Rescue Dr. Robin Murphy flew a total of 119 drone missions over the city, from small-scale quadcopters to military-grade unmanned planes. Not only were these critical for monitoring levee infrastructure, but also for identifying those left behind by human rescue teams.

But beyond surveillance, UAVs have begun to provide lifesaving supplies across some of the most remote regions of the globe. One of the most inspiring examples to date is Zipline.

Created in 2014, Zipline has completed 12,352 life-saving drone deliveries to date. While drones are designed, tested, and assembled in California, Zipline primarily operates in Rwanda and Tanzania, hiring local operators and providing over 11 million people with instant access to medical supplies.

Providing everything from vaccines and HIV medications to blood and IV tubes, Zipline’s drones far outpace ground-based supply transport, in many instances providing life-critical blood cells, plasma, and platelets in under an hour.

But drone technology is even beginning to transcend the limited scale of medical supplies and food.

Now developing its drones under contracts with DARPA and the US Marine Corps, Logistic Gliders, Inc. has built autonomously-navigating drones capable of carrying 1,800 pounds of cargo over unprecedented long distances.

Built from plywood, Logistic’s gliders are projected to cost as little as a few hundred dollars each, making them perfect candidates for high-volume remote aid deliveries, whether navigated by a pilot or self-flown in accordance with real-time disaster zone mapping.

As hardware continues to advance, autonomous drone technology coupled with real-time mapping algorithms pose no end of abundant opportunities for aid supply, disaster monitoring, and richly layered intel previously unimaginable for humanitarian relief.

Concluding Thoughts
Perhaps one of the most consequential and impactful applications of converging technologies is their transformation of disaster relief methods.

While AI-driven intel platforms crowdsource firsthand experiential data from those on the ground, mobile connectivity and drone-supplied networks are granting newfound narrative power to those most in need.

And as a wave of new hardware advancements gives rise to robotic responders, swarm technology, and aerial drones, we are fast approaching an age of instantaneous and efficiently-distributed responses in the midst of conflict and natural catastrophes alike.

Empowered by these new tools, what might we create when everyone on the planet has the same access to relief supplies and immediate resources? In a new age of prevention and fast recovery, what futures can you envision?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Arcansel / Shutterstock.com Continue reading

Posted in Human Robots

#434753 Top Takeaways From The Economist ...

Over the past few years, the word ‘innovation’ has degenerated into something of a buzzword. In fact, according to Vijay Vaitheeswaran, US business editor at The Economist, it’s one of the most abused words in the English language.

The word is over-used precisely because we’re living in a great age of invention. But the pace at which those inventions are changing our lives is fast, new, and scary.

So what strategies do companies need to adopt to make sure technology leads to growth that’s not only profitable, but positive? How can business and government best collaborate? Can policymakers regulate the market without suppressing innovation? Which technologies will impact us most, and how soon?

At The Economist Innovation Summit in Chicago last week, entrepreneurs, thought leaders, policymakers, and academics shared their insights on the current state of exponential technologies, and the steps companies and individuals should be taking to ensure a tech-positive future. Here’s their expert take on the tech and trends shaping the future.

Blockchain
There’s been a lot of hype around blockchain; apparently it can be used for everything from distributing aid to refugees to voting. However, it’s too often conflated with cryptocurrencies like Bitcoin, and we haven’t heard of many use cases. Where does the technology currently stand?

Julie Sweet, chief executive of Accenture North America, emphasized that the technology is still in its infancy. “Everything we see today are pilots,” she said. The most promising of these pilots are taking place across three different areas: supply chain, identity, and financial services.

When you buy something from outside the US, Sweet explained, it goes through about 80 different parties. 70 percent of the relevant data is replicated and is prone to error, with paper-based documents often to blame. Blockchain is providing a secure way to eliminate paper in supply chains, upping accuracy and cutting costs in the process.

One of the most prominent use cases in the US is Walmart—the company has mandated that all suppliers in its leafy greens segment be on a blockchain, and its food safety has improved as a result.

Beth Devin, head of Citi Ventures’ innovation network, added “Blockchain is an infrastructure technology. It can be leveraged in a lot of ways. There’s so much opportunity to create new types of assets and securities that aren’t accessible to people today. But there’s a lot to figure out around governance.”

Open Source Technology
Are the days of proprietary technology numbered? More and more companies and individuals are making their source code publicly available, and its benefits are thus more widespread than ever before. But what are the limitations and challenges of open source tech, and where might it go in the near future?

Bob Lord, senior VP of cognitive applications at IBM, is a believer. “Open-sourcing technology helps innovation occur, and it’s a fundamental basis for creating great technology solutions for the world,” he said. However, the biggest challenge for open source right now is that companies are taking out more than they’re contributing back to the open-source world. Lord pointed out that IBM has a rule about how many lines of code employees take out relative to how many lines they put in.

Another challenge area is open governance; blockchain by its very nature should be transparent and decentralized, with multiple parties making decisions and being held accountable. “We have to embrace open governance at the same time that we’re contributing,” Lord said. He advocated for a hybrid-cloud environment where people can access public and private data and bring it together.

Augmented and Virtual Reality
Augmented and virtual reality aren’t just for fun and games anymore, and they’ll be even less so in the near future. According to Pearly Chen, vice president at HTC, they’ll also go from being two different things to being one and the same. “AR overlays digital information on top of the real world, and VR transports you to a different world,” she said. “In the near future we will not need to delineate between these two activities; AR and VR will come together naturally, and will change everything we do as we know it today.”

For that to happen, we’ll need a more ergonomically friendly device than we have today for interacting with this technology. “Whenever we use tech today, we’re multitasking,” said product designer and futurist Jody Medich. “When you’re using GPS, you’re trying to navigate in the real world and also manage this screen. Constant task-switching is killing our brain’s ability to think.” Augmented and virtual reality, she believes, will allow us to adapt technology to match our brain’s functionality.

This all sounds like a lot of fun for uses like gaming and entertainment, but what about practical applications? “Ultimately what we care about is how this technology will improve lives,” Chen said.

A few ways that could happen? Extended reality will be used to simulate hazardous real-life scenarios, reduce the time and resources needed to bring a product to market, train healthcare professionals (such as surgeons), or provide therapies for patients—not to mention education. “Think about the possibilities for children to learn about history, science, or math in ways they can’t today,” Chen said.

Quantum Computing
If there’s one technology that’s truly baffling, it’s quantum computing. Qubits, entanglement, quantum states—it’s hard to wrap our heads around these concepts, but they hold great promise. Where is the tech right now?

Mandy Birch, head of engineering strategy at Rigetti Computing, thinks quantum development is starting slowly but will accelerate quickly. “We’re at the innovation stage right now, trying to match this capability to useful applications,” she said. “Can we solve problems cheaper, better, and faster than classical computers can do?” She believes quantum’s first breakthrough will happen in two to five years, and that is highest potential is in applications like routing, supply chain, and risk optimization, followed by quantum chemistry (for materials science and medicine) and machine learning.

David Awschalom, director of the Chicago Quantum Exchange and senior scientist at Argonne National Laboratory, believes quantum communication and quantum sensing will become a reality in three to seven years. “We’ll use states of matter to encrypt information in ways that are completely secure,” he said. A quantum voting system, currently being prototyped, is one application.

Who should be driving quantum tech development? The panelists emphasized that no one entity will get very far alone. “Advancing quantum tech will require collaboration not only between business, academia, and government, but between nations,” said Linda Sapochak, division director of materials research at the National Science Foundation. She added that this doesn’t just go for the technology itself—setting up the infrastructure for quantum will be a big challenge as well.

Space
Space has always been the final frontier, and it still is—but it’s not quite as far-removed from our daily lives now as it was when Neil Armstrong walked on the moon in 1969.

The space industry has always been funded by governments and private defense contractors. But in 2009, SpaceX launched its first commercial satellite, and in subsequent years have drastically cut the cost of spaceflight. More importantly, they published their pricing, which brought transparency to a market that hadn’t seen it before.

Entrepreneurs around the world started putting together business plans, and there are now over 400 privately-funded space companies, many with consumer applications.

Chad Anderson, CEO of Space Angels and managing partner of Space Capital, pointed out that the technology floating around in space was, until recently, archaic. “A few NASA engineers saw they had more computing power in their phone than there was in satellites,” he said. “So they thought, ‘why don’t we just fly an iPhone?’” They did—and it worked.

Now companies have networks of satellites monitoring the whole planet, producing a huge amount of data that’s valuable for countless applications like agriculture, shipping, and observation. “A lot of people underestimate space,” Anderson said. “It’s already enabling our modern global marketplace.”

Next up in the space realm, he predicts, are mining and tourism.

Artificial Intelligence and the Future of Work
From the US to Europe to Asia, alarms are sounding about AI taking our jobs. What will be left for humans to do once machines can do everything—and do it better?

These fears may be unfounded, though, and are certainly exaggerated. It’s undeniable that AI and automation are changing the employment landscape (not to mention the way companies do business and the way we live our lives), but if we build these tools the right way, they’ll bring more good than harm, and more productivity than obsolescence.

Accenture’s Julie Sweet emphasized that AI alone is not what’s disrupting business and employment. Rather, it’s what she called the “triple A”: automation, analytics, and artificial intelligence. But even this fear-inducing trifecta of terms doesn’t spell doom, for workers or for companies. Accenture has automated 40,000 jobs—and hasn’t fired anyone in the process. Instead, they’ve trained and up-skilled people. The most important drivers to scale this, Sweet said, are a commitment by companies and government support (such as tax credits).

Imbuing AI with the best of human values will also be critical to its impact on our future. Tracy Frey, Google Cloud AI’s director of strategy, cited the company’s set of seven AI principles. “What’s important is the governance process that’s put in place to support those principles,” she said. “You can’t make macro decisions when you have technology that can be applied in many different ways.”

High Risks, High Stakes
This year, Vaitheeswaran said, 50 percent of the world’s population will have internet access (he added that he’s disappointed that percentage isn’t higher given the proliferation of smartphones). As technology becomes more widely available to people around the world and its influence grows even more, what are the biggest risks we should be monitoring and controlling?

Information integrity—being able to tell what’s real from what’s fake—is a crucial one. “We’re increasingly operating in siloed realities,” said Renee DiResta, director of research at New Knowledge and head of policy at Data for Democracy. “Inadvertent algorithmic amplification on social media elevates certain perspectives—what does that do to us as a society?”

Algorithms have also already been proven to perpetuate the bias of the people who create it—and those people are often wealthy, white, and male. Ensuring that technology doesn’t propagate unfair bias will be crucial to its ability to serve a diverse population, and to keep societies from becoming further polarized and inequitable. The polarization of experience that results from pronounced inequalities within countries, Vaitheeswaran pointed out, can end up undermining democracy.

We’ll also need to walk the line between privacy and utility very carefully. As Dan Wagner, founder of Civis Analytics put it, “We want to ensure privacy as much as possible, but open access to information helps us achieve important social good.” Medicine in the US has been hampered by privacy laws; if, for example, we had more data about biomarkers around cancer, we could provide more accurate predictions and ultimately better healthcare.

But going the Chinese way—a total lack of privacy—is likely not the answer, either. “We have to be very careful about the way we bake rights and freedom into our technology,” said Alex Gladstein, chief strategy officer at Human Rights Foundation.

Technology’s risks are clearly as fraught as its potential is promising. As Gary Shapiro, chief executive of the Consumer Technology Association, put it, “Everything we’ve talked about today is simply a tool, and can be used for good or bad.”

The decisions we’re making now, at every level—from the engineers writing algorithms, to the legislators writing laws, to the teenagers writing clever Instagram captions—will determine where on the spectrum we end up.

Image Credit: Rudy Balasko / Shutterstock.com Continue reading

Posted in Human Robots

#434701 3 Practical Solutions to Offset ...

In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.

The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.

As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?

Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.

First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.

Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.

Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.

At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.

Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.

Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.

Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.

Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.

Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.

Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.

Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).

The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?

Figure 2. Labor laws have historically adjusted as technology and society progressed

Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.

A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.

Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.

Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.

We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.

However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.

Note: The full paper this article is based on is available here.

Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading

Posted in Human Robots

#434673 The World’s Most Valuable AI ...

It recognizes our faces. It knows the videos we might like. And it can even, perhaps, recommend the best course of action to take to maximize our personal health.

Artificial intelligence and its subset of disciplines—such as machine learning, natural language processing, and computer vision—are seemingly becoming integrated into our daily lives whether we like it or not. What was once sci-fi is now ubiquitous research and development in company and university labs around the world.

Similarly, the startups working on many of these AI technologies have seen their proverbial stock rise. More than 30 of these companies are now valued at over a billion dollars, according to data research firm CB Insights, which itself employs algorithms to provide insights into the tech business world.

Private companies with a billion-dollar valuation were so uncommon not that long ago that they were dubbed unicorns. Now there are 325 of these once-rare creatures, with a combined valuation north of a trillion dollars, as CB Insights maintains a running count of this exclusive Unicorn Club.

The subset of AI startups accounts for about 10 percent of the total membership, growing rapidly in just 4 years from 0 to 32. Last year, an unprecedented 17 AI startups broke the billion-dollar barrier, with 2018 also a record year for venture capital into private US AI companies at $9.3 billion, CB Insights reported.

What exactly is all this money funding?

AI Keeps an Eye Out for You
Let’s start with the bad news first.

Facial recognition is probably one of the most ubiquitous applications of AI today. It’s actually a decades-old technology often credited to a man named Woodrow Bledsoe, who used an instrument called a RAND tablet that could semi-autonomously match faces from a database. That was in the 1960s.

Today, most of us are familiar with facial recognition as a way to unlock our smartphones. But the technology has gained notoriety as a surveillance tool of law enforcement, particularly in China.

It’s no secret that the facial recognition algorithms developed by several of the AI unicorns from China—SenseTime, CloudWalk, and Face++ (also known as Megvii)—are used to monitor the country’s 1.3 billion citizens. Police there are even equipped with AI-powered eyeglasses for such purposes.

A fourth billion-dollar Chinese startup, Yitu Technologies, also produces a platform for facial recognition in the security realm, and develops AI systems in healthcare on top of that. For example, its CARE.AITM Intelligent 4D Imaging System for Chest CT can reputedly identify in real time a variety of lesions for the possible early detection of cancer.

The AI Doctor Is In
As Peter Diamandis recently noted, AI is rapidly augmenting healthcare and longevity. He mentioned another AI unicorn from China in this regard—iCarbonX, which plans to use machines to develop personalized health plans for every individual.

A couple of AI unicorns on the hardware side of healthcare are OrCam Technologies and Butterfly. The former, an Israeli company, has developed a wearable device for the vision impaired called MyEye that attaches to one’s eyeglasses. The device can identify people and products, as well as read text, conveying the information through discrete audio.

Butterfly Network, out of Connecticut, has completely upended the healthcare market with a handheld ultrasound machine that works with a smartphone.

“Orcam and Butterfly are amazing examples of how machine learning can be integrated into solutions that provide a step-function improvement over state of the art in ultra-competitive markets,” noted Andrew Byrnes, investment director at Comet Labs, a venture capital firm focused on AI and robotics, in an email exchange with Singularity Hub.

AI in the Driver’s Seat
Comet Labs’ portfolio includes two AI unicorns, Megvii and Pony.ai.

The latter is one of three billion-dollar startups developing the AI technology behind self-driving cars, with the other two being Momenta.ai and Zoox.

Founded in 2016 near San Francisco (with another headquarters in China), Pony.ai debuted its latest self-driving system, called PonyAlpha, last year. The platform uses multiple sensors (LiDAR, cameras, and radar) to navigate its environment, but its “sensor fusion technology” makes things simple by choosing the most reliable sensor data for any given driving scenario.

Zoox is another San Francisco area startup founded a couple of years earlier. In late 2018, it got the green light from the state of California to be the first autonomous vehicle company to transport a passenger as part of a pilot program. Meanwhile, China-based Momenta.ai is testing level four autonomy for its self-driving system. Autonomous driving levels are ranked zero to five, with level five being equal to a human behind the wheel.

The hype around autonomous driving is currently in overdrive, and Byrnes thinks regulatory roadblocks will keep most self-driving cars in idle for the foreseeable future. The exception, he said, is China, which is adopting a “systems” approach to autonomy for passenger transport.

“If [autonomous mobility] solves bigger problems like traffic that can elicit government backing, then that has the potential to go big fast,” he said. “This is why we believe Pony.ai will be a winner in the space.”

AI in the Back Office
An AI-powered technology that perhaps only fans of the cult classic Office Space might appreciate has suddenly taken the business world by storm—robotic process automation (RPA).

RPA companies take the mundane back office work, such as filling out invoices or processing insurance claims, and turn it over to bots. The intelligent part comes into play because these bots can tackle unstructured data, such as text in an email or even video and pictures, in order to accomplish an increasing variety of tasks.

Both Automation Anywhere and UiPath are older companies, founded in 2003 and 2005, respectively. However, since just 2017, they have raised nearly a combined $1 billion in disclosed capital.

Cybersecurity Embraces AI
Cybersecurity is another industry where AI is driving investment into startups. Sporting imposing names like CrowdStrike, Darktrace, and Tanium, these cybersecurity companies employ different machine-learning techniques to protect computers and other IT assets beyond the latest software update or virus scan.

Darktrace, for instance, takes its inspiration from the human immune system. Its algorithms can purportedly “learn” the unique pattern of each device and user on a network, detecting emerging problems before things spin out of control.

All three companies are used by major corporations and governments around the world. CrowdStrike itself made headlines a few years ago when it linked the hacking of the Democratic National Committee email servers to the Russian government.

Looking Forward
I could go on, and introduce you to the world’s most valuable startup, a Chinese company called Bytedance that is valued at $75 billion for news curation and an app to create 15-second viral videos. But that’s probably not where VC firms like Comet Labs are generally putting their money.

Byrnes sees real value in startups that are taking “data-driven approaches to problems specific to unique industries.” Take the example of Chicago-based unicorn Uptake Technologies, which analyzes incoming data from machines, from wind turbines to tractors, to predict problems before they occur with the machinery. A not-yet unicorn called PingThings in the Comet Labs portfolio does similar predictive analytics for the energy utilities sector.

“One question we like asking is, ‘What does the state of the art look like in your industry in three to five years?’” Byrnes said. “We ask that a lot, then we go out and find the technology-focused teams building those things.”

Image Credit: Andrey Suslov / Shutterstock.com Continue reading

Posted in Human Robots

#434637 AI Is Rapidly Augmenting Healthcare and ...

When it comes to the future of healthcare, perhaps the only technology more powerful than CRISPR is artificial intelligence.

Over the past five years, healthcare AI startups around the globe raised over $4.3 billion across 576 deals, topping all other industries in AI deal activity.

During this same period, the FDA has given 70 AI healthcare tools and devices ‘fast-tracked approval’ because of their ability to save both lives and money.

The pace of AI-augmented healthcare innovation is only accelerating.

In Part 3 of this blog series on longevity and vitality, I cover the different ways in which AI is augmenting our healthcare system, enabling us to live longer and healthier lives.

In this blog, I’ll expand on:

Machine learning and drug design
Artificial intelligence and big data in medicine
Healthcare, AI & China

Let’s dive in.

Machine Learning in Drug Design
What if AI systems, specifically neural networks, could predict the design of novel molecules (i.e. medicines) capable of targeting and curing any disease?

Imagine leveraging cutting-edge artificial intelligence to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.

And what if these molecules, accurately engineered by AIs, always worked? Such a feat would revolutionize our $1.3 trillion global pharmaceutical industry, which currently holds a dismal record of 1 in 10 target drugs ever reaching human trials.

It’s no wonder that drug development is massively expensive and slow. It takes over 10 years to bring a new drug to market, with costs ranging from $2.5 billion to $12 billion.

This inefficient, slow-to-innovate, and risk-averse industry is a sitting duck for disruption in the years ahead.

One of the hottest startups in digital drug discovery today is Insilico Medicine. Leveraging AI in its end-to-end drug discovery pipeline, Insilico Medicine aims to extend healthy longevity through drug discovery and aging research.

Their comprehensive drug discovery engine uses millions of samples and multiple data types to discover signatures of disease, identify the most promising protein targets, and generate perfect molecules for these targets. These molecules either already exist or can be generated de novo with the desired set of parameters.

In late 2018, Insilico’s CEO Dr. Alex Zhavoronkov announced the groundbreaking result of generating novel molecules for a challenging protein target with an unprecedented hit rate in under 46 days. This included both synthesis of the molecules and experimental validation in a biological test system—an impressive feat made possible by converging exponential technologies.

Underpinning Insilico’s drug discovery pipeline is a novel machine learning technique called Generative Adversarial Networks (GANs), used in combination with deep reinforcement learning.

Generating novel molecular structures for diseases both with and without known targets, Insilico is now pursuing drug discovery in aging, cancer, fibrosis, Parkinson’s disease, Alzheimer’s disease, ALS, diabetes, and many others. Once rolled out, the implications will be profound.

Dr. Zhavoronkov’s ultimate goal is to develop a fully-automated Health-as-a-Service (HaaS) and Longevity-as-a-Service (LaaS) engine.

Once plugged into the services of companies from Alibaba to Alphabet, such an engine would enable personalized solutions for online users, helping them prevent diseases and maintain optimal health.

Insilico, alongside other companies tackling AI-powered drug discovery, truly represents the application of the 6 D’s. What was once a prohibitively expensive and human-intensive process is now rapidly becoming digitized, dematerialized, demonetized and, perhaps most importantly, democratized.

Companies like Insilico can now do with a fraction of the cost and personnel what the pharmaceutical industry can barely accomplish with thousands of employees and a hefty bill to foot.

As I discussed in my blog on ‘The Next Hundred-Billion-Dollar Opportunity,’ Google’s DeepMind has now turned its neural networks to healthcare, entering the digitized drug discovery arena.

In 2017, DeepMind achieved a phenomenal feat by matching the fidelity of medical experts in correctly diagnosing over 50 eye disorders.

And just a year later, DeepMind announced a new deep learning tool called AlphaFold. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.

Artificial Intelligence and Data Crunching
AI is especially powerful in analyzing massive quantities of data to uncover patterns and insights that can save lives. Take WAVE, for instance. Every year, over 400,000 patients die prematurely in US hospitals as a result of heart attack or respiratory failure.

Yet these patients don’t die without leaving plenty of clues. Given information overload, however, human physicians and nurses alone have no way of processing and analyzing all necessary data in time to save these patients’ lives.

Enter WAVE, an algorithm that can process enough data to offer a six-hour early warning of patient deterioration.

Just last year, the FDA approved WAVE as an AI-based predictive patient surveillance system to predict and thereby prevent sudden death.

Another highly valuable yet difficult-to-parse mountain of medical data comprises the 2.5 million medical papers published each year.

For some time, it has become physically impossible for a human physician to read—let alone remember—all of the relevant published data.

To counter this compounding conundrum, Johnson & Johnson is teaching IBM Watson to read and understand scientific papers that detail clinical trial outcomes.

Enriching Watson’s data sources, Apple is also partnering with IBM to provide access to health data from mobile apps.

One such Watson system contains 40 million documents, ingesting an average of 27,000 new documents per day, and providing insights for thousands of users.

After only one year, Watson’s successful diagnosis rate of lung cancer has reached 90 percent, compared to the 50 percent success rate of human doctors.

But what about the vast amount of unstructured medical patient data that populates today’s ancient medical system? This includes medical notes, prescriptions, audio interview transcripts, and pathology and radiology reports.

In late 2018, Amazon announced a new HIPAA-eligible machine learning service that digests and parses unstructured data into categories, such as patient diagnoses, treatments, dosages, symptoms and signs.

Taha Kass-Hout, Amazon’s senior leader in health care and artificial intelligence, told the Wall Street Journal that internal tests demonstrated that the software even performs as well as or better than other published efforts.

On the heels of this announcement, Amazon confirmed it was teaming up with the Fred Hutchinson Cancer Research Center to evaluate “millions of clinical notes to extract and index medical conditions.”

Having already driven extraordinary algorithmic success rates in other fields, data is the healthcare industry’s goldmine for future innovation.

Healthcare, AI & China
In 2017, the Chinese government published its ambitious national plan to become a global leader in AI research by 2030, with healthcare listed as one of four core research areas during the first wave of the plan.

Just a year earlier, China began centralizing healthcare data, tackling a major roadblock to developing longevity and healthcare technologies (particularly AI systems): scattered, dispersed, and unlabeled patient data.

Backed by the Chinese government, China’s largest tech companies—particularly Tencent—have now made strong entrances into healthcare.

Just recently, Tencent participated in a $154 million megaround for China-based healthcare AI unicorn iCarbonX.

Hoping to develop a complete digital representation of your biological self, iCarbonX has acquired numerous US personalized medicine startups.

Considering Tencent’s own Miying healthcare AI platform—aimed at assisting healthcare institutions in AI-driven cancer diagnostics—Tencent is quickly expanding into the drug discovery space, participating in two multimillion-dollar, US-based AI drug discovery deals just this year.

China’s biggest, second-order move into the healthtech space comes through Tencent’s WeChat. In the course of a mere few years, already 60 percent of the 38,000 medical institutions registered on WeChat allow patients to digitally book appointments through Tencent’s mobile platform. At the same time, 2,000 Chinese hospitals accept WeChat payments.

Tencent has additionally partnered with the U.K.’s Babylon Health, a virtual healthcare assistant startup whose app now allows Chinese WeChat users to message their symptoms and receive immediate medical feedback.

Similarly, Alibaba’s healthtech focus started in 2016 when it released its cloud-based AI medical platform, ET Medical Brain, to augment healthcare processes through everything from diagnostics to intelligent scheduling.

Conclusion
As Nvidia CEO Jensen Huang has stated, “Software ate the world, but AI is going to eat software.” Extrapolating this statement to a more immediate implication, AI will first eat healthcare, resulting in dramatic acceleration of longevity research and an amplification of the human healthspan.

Next week, I’ll continue to explore this concept of AI systems in healthcare.

Particularly, I’ll expand on how we’re acquiring and using the data for these doctor-augmenting AI systems: from ubiquitous biosensors, to the mobile healthcare revolution, and finally, to the transformative power of the health nucleus.

As AI and other exponential technologies increase our healthspan by 30 to 40 years, how will you leverage these same exponential technologies to take on your moonshots and live out your massively transformative purpose?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots