Tag Archives: generation

#435260 How Tech Can Help Curb Emissions by ...

Trees are a low-tech, high-efficiency way to offset much of humankind’s negative impact on the climate. What’s even better, we have plenty of room for a lot more of them.

A new study conducted by researchers at Switzerland’s ETH-Zürich, published in Science, details how Earth could support almost an additional billion hectares of trees without the new forests pushing into existing urban or agricultural areas. Once the trees grow to maturity, they could store more than 200 billion metric tons of carbon.

Great news indeed, but it still leaves us with some huge unanswered questions. Where and how are we going to plant all the new trees? What kind of trees should we plant? How can we ensure that the new forests become a boon for people in those areas?

Answers to all of the above likely involve technology.

Math + Trees = Challenges
The ETH-Zürich research team combined Google Earth mapping software with a database of nearly 80,000 existing forests to create a predictive model for optimal planting locations. In total, 0.9 billion hectares of new, continuous forest could be planted. Once mature, the 500 billion new trees in these forests would be capable of storing about two-thirds of the carbon we have emitted since the industrial revolution.

Other researchers have noted that the study may overestimate how efficient trees are at storing carbon, as well as underestimate how much carbon humans have emitted over time. However, all seem to agree that new forests would offset much of our cumulative carbon emissions—still an impressive feat as the target of keeping global warming this century at under 1.5 degrees Celsius becomes harder and harder to reach.

Recently, there was a story about a Brazilian couple who replanted trees in the valley where they live. The couple planted about 2.7 million trees in two decades. Back-of-the-napkin math shows that they on average planted 370 trees a day, meaning planting 500 billion trees would take about 3.7 million years. While an over-simplification, the point is that planting trees by hand is not realistic. Even with a million people going at a rate of 370 trees a day, it would take 83 years. Current technologies are also not likely to be able to meet the challenge, especially in remote locations.

Tree-Bombing Drones
Technology can speed up the planting process, including a new generation of drones that take tree planting to the skies. Drone planting generally involves dropping biodegradable seed pods at a designated area. The pods dissolve over time, and the tree seeds grow in the earth below. DroneSeed is one example; its 55-pound drones can plant up to 800 seeds an hour. Another startup, Biocarbon Engineering, has used various techniques, including drones, to plant 38 different species of trees across three continents.

Drone planting has distinct advantages when it comes to planting in hard-to-access areas—one example is mangrove forests, which are disappearing rapidly, increasing the risk of floods and storm surges.

Challenges include increasing the range and speed of drone planting, and perhaps most importantly, the success rate, as automatic planting from a height is still likely to be less accurate when it comes to what depth the tree saplings are planted. However, drones are already showing impressive numbers for sapling survival rates.

AI, Sensors, and Eye-In-the-Sky
Planting the trees is the first step in a long road toward an actual forest. Companies are leveraging artificial intelligence and satellite imagery in a multitude of ways to increase protection and understanding of forested areas.

20tree.ai, a Portugal-based startup, uses AI to analyze satellite imagery and monitor the state of entire forests at a fraction of the cost of manual monitoring. The approach can lead to faster identification of threats like pest infestation and a better understanding of the state of forests.

AI can also play a pivotal role in protecting existing forest areas by predicting where deforestation is likely to occur.

Closer to the ground—and sometimes in it—new networks of sensors can provide detailed information about the state and needs of trees. One such project is Trace, where individual trees are equipped with a TreeTalker, an internet of things-based device that can provide real-time monitoring of the tree’s functions and well-being. The information can be used to, among other things, optimize the use of available resources, such as providing the exact amount of water a tree needs.

Budding Technologies Are Controversial
Trees are in many ways fauna’s marathon runners—slow-growing and sturdy, but still susceptible to sickness and pests. Many deforested areas are likely not as rich in nutrients as they once were, which could slow down reforestation. Much of the positive impact that said trees could have on carbon levels in the atmosphere is likely decades away.

Bioengineering, for example through CRISPR, could provide solutions, making trees more resistant and faster-growing. Such technologies are being explored in relation to Ghana’s at-risk cocoa trees. Other exponential technologies could also hold much future potential—for instance micro-robots to assist the dwindling number of bees with pollination.

These technologies remain mired in controversy, and perhaps rightfully so. Bioengineering’s massive potential is for many offset by the inherent risks of engineered plants out-competing existing fauna or growing beyond our control. Micro-robots for pollination may solve a problem, but don’t do much to address the root cause: that we seem to be disrupting and destroying integral parts of natural cycles.

Tech Not The Whole Answer
So, is it realistic to plant 500 billion new trees? The short answer would be that yes, it’s possible—with the help of technology.

However, there are many unanswered challenges. For example, many of areas identified by the ETH-Zürich research team are not readily available for reforestation. Some are currently reserved for grazing, others owned by private entities, and others again are located in remote areas or areas prone to political instability, beyond the reach of most replanting efforts.

If we do wish to plant 500 billion trees to offset some of the negative impacts we have had on the planet, we might well want to combine the best of exponential technology with reforestation as well as a move to other forms of agriculture.

Such an approach might also help address a major issue: that few of the proposed new forests will likely succeed without ensuring that people living in and around the areas where reforestation takes place become involved, and can reap rewards from turning arable land into forests.

Image Credit: Lillac/Shutterstock.com Continue reading

Posted in Human Robots

#435224 Can AI Save the Internet from Fake News?

There’s an old proverb that says “seeing is believing.” But in the age of artificial intelligence, it’s becoming increasingly difficult to take anything at face value—literally.

The rise of so-called “deepfakes,” in which different types of AI-based techniques are used to manipulate video content, has reached the point where Congress held its first hearing last month on the potential abuses of the technology. The congressional investigation coincided with the release of a doctored video of Facebook CEO Mark Zuckerberg delivering what appeared to be a sinister speech.

View this post on Instagram

‘Imagine this…’ (2019) Mark Zuckerberg reveals the truth about Facebook and who really owns the future… see more @sheffdocfest VDR technology by @cannyai #spectreknows #privacy #democracy #surveillancecapitalism #dataism #deepfake #deepfakes #contemporaryartwork #digitalart #generativeart #newmediaart #codeart #markzuckerberg #artivism #contemporaryart

A post shared by Bill Posters (@bill_posters_uk) on Jun 7, 2019 at 7:15am PDT

Scientists are scrambling for solutions on how to combat deepfakes, while at the same time others are continuing to refine the techniques for less nefarious purposes, such as automating video content for the film industry.

At one end of the spectrum, for example, researchers at New York University’s Tandon School of Engineering have proposed implanting a type of digital watermark using a neural network that can spot manipulated photos and videos.

The idea is to embed the system directly into a digital camera. Many smartphone cameras and other digital devices already use AI to boost image quality and make other corrections. The authors of the study out of NYU say their prototype platform increased the chances of detecting manipulation from about 45 percent to more than 90 percent without sacrificing image quality.

On the other hand, researchers at Carnegie Mellon University recently hit on a technique for automatically and rapidly converting large amounts of video content from one source into the style of another. In one example, the scientists transferred the facial expressions of comedian John Oliver onto the bespectacled face of late night show host Stephen Colbert.

The CMU team says the method could be a boon to the movie industry, such as by converting black and white films to color, though it also conceded that the technology could be used to develop deepfakes.

Words Matter with Fake News
While the current spotlight is on how to combat video and image manipulation, a prolonged trench warfare on fake news is being fought by academia, nonprofits, and the tech industry.

This isn’t the fake news that some have come to use as a knee-jerk reaction to fact-based information that might be less than flattering to the subject of the report. Rather, fake news is deliberately-created misinformation that is spread via the internet.

In a recent Pew Research Center poll, Americans said fake news is a bigger problem than violent crime, racism, and terrorism. Fortunately, many of the linguistic tools that have been applied to determine when people are being deliberately deceitful can be baked into algorithms for spotting fake news.

That’s the approach taken by a team at the University of Michigan (U-M) to develop an algorithm that was better than humans at identifying fake news—76 percent versus 70 percent—by focusing on linguistic cues like grammatical structure, word choice, and punctuation.

For example, fake news tends to be filled with hyperbole and exaggeration, using terms like “overwhelming” or “extraordinary.”

“I think that’s a way to make up for the fact that the news is not quite true, so trying to compensate with the language that’s being used,” Rada Mihalcea, a computer science and engineering professor at U-M, told Singularity Hub.

The paper “Automatic Detection of Fake News” was based on the team’s previous studies on how people lie in general, without necessarily having the intention of spreading fake news, she said.

“Deception is a complicated and complex phenomenon that requires brain power,” Mihalcea noted. “That often results in simpler language, where you have shorter sentences or shorter documents.”

AI Versus AI
While most fake news is still churned out by humans with identifiable patterns of lying, according to Mihalcea, other researchers are already anticipating how to detect misinformation manufactured by machines.

A group led by Yejin Choi, with the Allen Institute of Artificial Intelligence and the University of Washington in Seattle, is one such team. The researchers recently introduced the world to Grover, an AI platform that is particularly good at catching autonomously-generated fake news because it’s equally good at creating it.

“This is due to a finding that is perhaps counterintuitive: strong generators for neural fake news are themselves strong detectors of it,” wrote Rowan Zellers, a PhD student and team member, in a Medium blog post. “A generator of fake news will be most familiar with its own peculiarities, such as using overly common or predictable words, as well as the peculiarities of similar generators.”

The team found that the best current discriminators can classify neural fake news from real, human-created text with 73 percent accuracy. Grover clocks in with 92 percent accuracy based on a training set of 5,000 neural network-generated fake news samples. Zellers wrote that Grover got better at scale, identifying 97.5 percent of made-up machine mumbo jumbo when trained on 80,000 articles.

It performed almost as well against fake news created by a powerful new text-generation system called GPT-2 built by OpenAI, a nonprofit research lab founded by Elon Musk, classifying 96.1 percent of the machine-written articles.

OpenAI had so feared that the platform could be abused that it has only released limited versions of the software. The public can play with a scaled-down version posted by a machine learning engineer named Adam King, where the user types in a short prompt and GPT-2 bangs out a short story or poem based on the snippet of text.

No Silver AI Bullet
While real progress is being made against fake news, the challenges of using AI to detect and correct misinformation are abundant, according to Hugo Williams, outreach manager for Logically, a UK-based startup that is developing different detectors using elements of deep learning and natural language processing, among others. He explained that the Logically models analyze information based on a three-pronged approach.

Publisher metadata: Is the article from a known, reliable, and trustworthy publisher with a history of credible journalism?
Network behavior: Is the article proliferating through social platforms and networks in ways typically associated with misinformation?
Content: The AI scans articles for hundreds of known indicators typically found in misinformation.

“There is no single algorithm which is capable of doing this,” Williams wrote in an email to Singularity Hub. “Even when you have a collection of different algorithms which—when combined—can give you relatively decent indications of what is unreliable or outright false, there will always need to be a human layer in the pipeline.”

The company released a consumer app in India back in February just before that country’s election cycle that was a “great testing ground” to refine its technology for the next app release, which is scheduled in the UK later this year. Users can submit articles for further scrutiny by a real person.

“We see our technology not as replacing traditional verification work, but as a method of simplifying and streamlining a very manual process,” Williams said. “In doing so, we’re able to publish more fact checks at a far quicker pace than other organizations.”

“With heightened analysis and the addition of more contextual information around the stories that our users are reading, we are not telling our users what they should or should not believe, but encouraging critical thinking based upon reliable, credible, and verified content,” he added.

AI may never be able to detect fake news entirely on its own, but it can help us be smarter about what we read on the internet.

Image Credit: Dennis Lytyagin / Shutterstock.com Continue reading

Posted in Human Robots

#435174 Revolt on the Horizon? How Young People ...

As digital technologies facilitate the growth of both new and incumbent organizations, we have started to see the darker sides of the digital economy unravel. In recent years, many unethical business practices have been exposed, including the capture and use of consumers’ data, anticompetitive activities, and covert social experiments.

But what do young people who grew up with the internet think about this development? Our research with 400 digital natives—19- to 24-year-olds—shows that this generation, dubbed “GenTech,” may be the one to turn the digital revolution on its head. Our findings point to a frustration and disillusionment with the way organizations have accumulated real-time information about consumers without their knowledge and often without their explicit consent.

Many from GenTech now understand that their online lives are of commercial value to an array of organizations that use this insight for the targeting and personalization of products, services, and experiences.

This era of accumulation and commercialization of user data through real-time monitoring has been coined “surveillance capitalism” and signifies a new economic system.

Artificial Intelligence
A central pillar of the modern digital economy is our interaction with artificial intelligence (AI) and machine learning algorithms. We found that 47 percent of GenTech do not want AI technology to monitor their lifestyle, purchases, and financial situation in order to recommend them particular things to buy.

In fact, only 29 percent see this as a positive intervention. Instead, they wish to maintain a sense of autonomy in their decision making and have the opportunity to freely explore new products, services, and experiences.

As individuals living in the digital age, we constantly negotiate with technology to let go of or retain control. This pendulum-like effect reflects the ongoing battle between humans and technology.

My Life, My Data?
Our research also reveals that 54 percent of GenTech are very concerned about the access organizations have to their data, while only 19 percent were not worried. Despite the EU General Data Protection Regulation being introduced in May 2018, this is still a major concern, grounded in a belief that too much of their data is in the possession of a small group of global companies, including Google, Amazon, and Facebook. Some 70 percent felt this way.

In recent weeks, both Facebook and Google have vowed to make privacy a top priority in the way they interact with users. Both companies have faced public outcry for their lack of openness and transparency when it comes to how they collect and store user data. It wasn’t long ago that a hidden microphone was found in one of Google’s home alarm products.

Google now plans to offer auto-deletion of users’ location history data, browsing, and app activity as well as extend its “incognito mode” to Google Maps and search. This will enable users to turn off tracking.

At Facebook, CEO Mark Zuckerberg is keen to reposition the platform as a “privacy focused communications platform” built on principles such as private interactions, encryption, safety, interoperability (communications across Facebook-owned apps and platforms), and secure data storage. This will be a tough turnaround for the company that is fundamentally dependent on turning user data into opportunities for highly individualized advertising.

Privacy and transparency are critically important themes for organizations today, both for those that have “grown up” online as well as the incumbents. While GenTech want organizations to be more transparent and responsible, 64 percent also believe that they cannot do much to keep their data private. Being tracked and monitored online by organizations is seen as part and parcel of being a digital consumer.

Despite these views, there is a growing revolt simmering under the surface. GenTech want to take ownership of their own data. They see this as a valuable commodity, which they should be given the opportunity to trade with organizations. Some 50 percent would willingly share their data with companies if they got something in return, for example a financial incentive.

Rewiring the Power Shift
GenTech are looking to enter into a transactional relationship with organizations. This reflects a significant change in attitudes from perceiving the free access to digital platforms as the “product” in itself (in exchange for user data), to now wishing to use that data to trade for explicit benefits.

This has created an opportunity for companies that seek to empower consumers and give them back control of their data. Several companies now offer consumers the opportunity to sell the data they are comfortable sharing or take part in research that they get paid for. More and more companies are joining this space, including People.io, Killi, and Ocean Protocol.

Sir Tim Berners Lee, the creator of the world wide web, has also been working on a way to shift the power from organizations and institutions back to citizens and consumers. The platform, Solid, offers users the opportunity to be in charge of where they store their data and who can access it. It is a form of re-decentralization.

The Solid POD (Personal Online Data storage) is a secure place on a hosted server or the individual’s own server. Users can grant apps access to their POD as a person’s data is stored centrally and not by an app developer or on an organization’s server. We see this as potentially being a way to let people take back control from technology and other companies.

GenTech have woken up to a reality where a life lived “plugged in” has significant consequences for their individual privacy and are starting to push back, questioning those organizations that have shown limited concern and continue to exercise exploitative practices.

It’s no wonder that we see these signs of revolt. GenTech is the generation with the most to lose. They face a life ahead intertwined with digital technology as part of their personal and private lives. With continued pressure on organizations to become more transparent, the time is now for young people to make their move.

Dr Mike Cooray, Professor of Practice, Hult International Business School and Dr Rikke Duus, Research Associate and Senior Teaching Fellow, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ser Borakovskyy / Shutterstock.com Continue reading

Posted in Human Robots

#435172 DARPA’s New Project Is Investing ...

When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

Here’s what you need to know.

Radical Upgrades
The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

“A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

“Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

The Tools
Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

Other projects in N3 are just are ambitious.

The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

Four-Year Miracle
Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

“DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

The question is, now that we know what’s in store, how should the rest of us prepare?

Image Credit: With permission from DARPA N3 project. Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots