Tag Archives: generation

#439708 Soft components for the next generation ...

Soft robots driven by pressurized fluids could explore new frontiers and interact with delicate objects in ways that traditional rigid robots can't. But building entirely soft robots remains a challenge because many of the components required to power these devices are, themselves, rigid. Continue reading

Posted in Human Robots

#439077 How Scientists Grew Human Muscles in Pig ...

The little pigs bouncing around the lab looked exceedingly normal. Yet their adorable exterior hid a remarkable secret: each piglet carried two different sets of genes. For now, both sets came from their own species. But one day, one of those sets may be human.

The piglets are chimeras—creatures with intermingled sets of genes, as if multiple entities were seamlessly mashed together. Named after the Greek lion-goat-serpent monsters, chimeras may hold the key to an endless supply of human organs and tissues for transplant. The crux is growing these human parts in another animal—one close enough in size and function to our own.

Last week, a team from the University of Minnesota unveiled two mind-bending chimeras. One was joyous little piglets, each propelled by muscles grown from a different pig. Another was pig embryos, transplanted into surrogate pigs, that developed human muscles for more than 20 days.

The study, led by Drs. Mary and Daniel Garry at the University of Minnesota, had a therapeutic point: engineering a brilliant way to replace muscle loss, especially for the muscles around our skeletons that allow us to move and navigate the world. Trauma and injury, such as from firearm wounds or car crashes, can damage muscle tissue beyond the point of repair. Unfortunately, muscles are also stubborn in that donor tissue from cadavers doesn’t usually “take” at the injury site. For now, there are no effective treatments for severe muscle death, called volumetric muscle loss.

The new human-pig hybrids are designed to tackle this problem. Muscle wasting aside, the study also points to a clever “hack” that increases the amount of human tissue inside a growing pig embryo.

If further improved, the technology could “provide an unlimited supply of organs for transplantation,” said Dr. Mary Garry to Inverse. What’s more, because the human tissue can be sourced from patients themselves, the risk of rejection by the immune system is relatively low—even when grown inside a pig.

“The shortage of organs for heart transplantation, vascular grafting, and skeletal muscle is staggering,” said Garry. Human-animal chimeras could have a “seismic impact” that transforms organ transplantation and helps solve the organ shortage crisis.

That is, if society accepts the idea of a semi-humanoid pig.

Wait…But How?
The new study took a page from previous chimera recipes.

The main ingredients and steps go like this: first, you need an embryo that lacks the ability to develop a tissue or organ. This leaves an “empty slot” of sorts that you can fill with another set of genes—pig, human, or even monkey.

Second, you need to fine-tune the recipe so that the embryos “take” the new genes, incorporating them into their bodies as if they were their own. Third, the new genes activate to instruct the growing embryo to make the necessary tissue or organs without harming the overall animal. Finally, the foreign genes need to stay put, without cells migrating to another body part—say, the brain.

Not exactly straightforward, eh? The piglets are technological wonders that mix cutting-edge gene editing with cloning technologies.

The team went for two chimeras: one with two sets of pig genes, the other with a pig and human mix. Both started with a pig embryo that can’t make its own skeletal muscles (those are the muscles surrounding your bones). Using CRISPR, the gene-editing Swiss Army Knife, they snipped out three genes that are absolutely necessary for those muscles to develop. Like hitting a bullseye with three arrows simultaneously, it’s already a technological feat.

Here’s the really clever part: the muscles around your bones have a slightly different genetic makeup than the ones that line your blood vessels or the ones that pump your heart. While the resulting pig embryos had severe muscle deformities as they developed, their hearts beat as normal. This means the gene editing cut only impacted skeletal muscles.

Then came step two: replacing the missing genes. Using a microneedle, the team injected a fertilized and slightly developed pig egg—called a blastomere—into the embryo. If left on its natural course, a blastomere eventually develops into another embryo. This step “smashes” the two sets of genes together, with the newcomer filling the muscle void. The hybrid embryo was then placed into a surrogate, and roughly four months later, chimeric piglets were born.

Equipped with foreign DNA, the little guys nevertheless seemed totally normal, nosing around the lab and running everywhere without obvious clumsy stumbles. Under the microscope, their “xenomorph” muscles were indistinguishable from run-of-the-mill average muscle tissue—no signs of damage or inflammation, and as stretchy and tough as muscles usually are. What’s more, the foreign DNA seemed to have only developed into muscles, even though they were prevalent across the body. Extensive fishing experiments found no trace of the injected set of genes inside blood vessels or the brain.

A Better Human-Pig Hybrid
Confident in their recipe, the team next repeated the experiment with human cells, with a twist. Instead of using controversial human embryonic stem cells, which are obtained from aborted fetuses, they relied on induced pluripotent stem cells (iPSCs). These are skin cells that have been reverted back into a stem cell state.

Unlike previous attempts at making human chimeras, the team then scoured the genetic landscape of how pig and human embryos develop to find any genetic “brakes” that could derail the process. One gene, TP53, stood out, which was then promptly eliminated with CRISPR.

This approach provides a way for future studies to similarly increase the efficiency of interspecies chimeras, the team said.

The human-pig embryos were then carefully grown inside surrogate pigs for less than a month, and extensively analyzed. By day 20, the hybrids had already grown detectable human skeletal muscle. Similar to the pig-pig chimeras, the team didn’t detect any signs that the human genes had sprouted cells that would eventually become neurons or other non-muscle cells.

For now, human-animal chimeras are not allowed to grow to term, in part to stem the theoretical possibility of engineering humanoid hybrid animals (shudder). However, a sentient human-pig chimera is something that the team specifically addressed. Through multiple experiments, they found no trace of human genes in the embryos’ brain stem cells 20 and 27 days into development. Similarly, human donor genes were absent in cells that would become the hybrid embryos’ reproductive cells.

Despite bioethical quandaries and legal restrictions, human-animal chimeras have taken off, both as a source of insight into human brain development and a well of personalized organs and tissues for transplant. In 2019, Japan lifted its ban on developing human brain cells inside animal embryos, as well as the term limit—to global controversy. There’s also the question of animal welfare, given that hybrid clones will essentially become involuntary organ donors.

As the debates rage on, scientists are nevertheless pushing the limits of human-animal chimeras, while treading as carefully as possible.

“Our data…support the feasibility of the generation of these interspecies chimeras, which will serve as a model for translational research or, one day, as a source for xenotransplantation,” the team said.

Image Credit: Christopher Carson on Unsplash Continue reading

Posted in Human Robots

#439012 Video Friday: Man-Machine Synergy ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Man-Machine Synergy Effectors, Inc. is a Japanese company working on an absolutely massive “human machine synergistic effect device,” which is a huge robot controlled by a nearby human using a haptic rig.

From the look of things, the next generation will be able to move around. Whoa.

[ MMSE ]

This method of loading and unloading AMRs without having them ever stop moving is so obvious that there must be some equally obvious reason why I've never seen it done in practice.

The LoadRunner is able to transport and sort parcels weighing up to 30 kilograms. This makes it the perfect luggage carrier for airports. These AI-driven go-carts can also work in concert as larger collectives to carry large, heavy and bulky objects. Every LoadRunner can also haul up to four passive trailers. Powered by four electric motors, the LoadRunner sharply brakes at just the right moment right in front of its destination and the payload slides from the robot onto the delivery platform.

[ Fraunhofer ] via [ Gizmodo ]

Ayato Kanada at Kyushu University wrote in to share this clever “dislocatable joint,” a way of combining continuum and rigid robots.

[ Paper ]

Thanks Ayato!

The DodgeDrone challenge revisits the popular dodgeball game in the context of autonomous drones. Specifically, participants will have to code navigation policies to fly drones between waypoints while avoiding dynamic obstacles. Drones are fast but fragile systems: as soon as something hits them, they will crash! Since objects will move towards the drone with different speeds and acceleration, smart algorithms are required to avoid them!

This could totally happen in real life, and we need to be prepared for it!

[ DodgeDrone Challenge ]

In addition to winning the Best Student Design Competition CREATIVITY Award at HRI 2021, this paper would also have won the Best Paper Title award, if that award existed.

[ Paper ]

Robots are traditionally bound by a fixed morphology during their operational lifetime, which is limited to adapting only their control strategies. Here we present the first quadrupedal robot that can morphologically adapt to different environmental conditions in outdoor, unstructured environments.

We show that the robot exploits its training to effectively transition between different morphological configurations, exhibiting substantial performance improvements over a non-adaptive approach. The demonstrated benefits of real-world morphological adaptation demonstrate the potential for a new embodied way of incorporating adaptation into future robotic designs.

[ Nature ]

A drone video shot in a Minneapolis bowling alley was hailed as an instant classic. One Hollywood veteran said it “adds to the language and vocabulary of cinema.” One IEEE Spectrum editor said “hey that's pretty cool.”

[ Bryant Lake Bowl ]

It doesn't take a robot to convince me to buy candy, but I think if I buy candy from Relay it's a business expense, right?

[ RIS ]

DARPA is making progress on its AI dogfighting program, with physical flight tests expected this year.

[ DARPA ACE ]

Unitree Robotics has realized that the Empire needs to be overthrown!

[ Unitree ]

Windhover Labs, an emerging leader in open and reliable flight software and hardware, announces the upcoming availability of its first hardware product, a low cost modular flight computer for commercial drones and small satellites.

[ Windhover ]

As robots and autonomous systems are poised to become part of our everyday lives, the University of Michigan and Ford are opening a one-of-a-kind facility where they’ll develop robots and roboticists that help make lives better, keep people safer and build a more equitable society.

[ U Michigan ]

The adaptive robot Rizon combined with a new hybrid electrostatic and gecko-inspired gripping pad developed by Stanford BDML can manipulate bulky, non-smooth items in the most effort-saving way, which broadens the applications in retail and household environments.

[ Flexiv ]

Thanks Yunfan!

I don't know why anyone would want things to get MORE icy, but if you do for some reason, you can make it happen with a Husky.

Is winter over yet?

[ Clearpath ]

Skip ahead to about 1:20 to see a pair of Gita robots following a Spot following a human like a chain of lil’ robot duckings.

[ PFF ]

Here are a couple of retro robotics videos, one showing teleoperated humanoids from 2000, and the other showing a robotic guide dog from 1976 (!)

[ Tachi Lab ]

Thanks Fan!

If you missed Chad Jenkins' talk “That Ain’t Right: AI Mistakes and Black Lives” last time, here's another opportunity to watch from Robotics Today, and it includes a top notch panel discussion at the end.

[ Robotics Today ]

Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over numerous R&D programs that I have led at NREC in the past 25 years.

[ CMU ] Continue reading

Posted in Human Robots

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots

#438982 Quantum Computing and Reinforcement ...

Deep reinforcement learning is having a superstar moment.

Powering smarter robots. Simulating human neural networks. Trouncing physicians at medical diagnoses and crushing humanity’s best gamers at Go and Atari. While far from achieving the flexible, quick thinking that comes naturally to humans, this powerful machine learning idea seems unstoppable as a harbinger of better thinking machines.

Except there’s a massive roadblock: they take forever to run. Because the concept behind these algorithms is based on trial and error, a reinforcement learning AI “agent” only learns after being rewarded for its correct decisions. For complex problems, the time it takes an AI agent to try and fail to learn a solution can quickly become untenable.

But what if you could try multiple solutions at once?

This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.

The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.

Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.

The Bottleneck
Learning from trial and error comes intuitively to our brains.

Say you’re trying to navigate a new convoluted campground without a map. The goal is to get from the communal bathroom back to your campsite. Dead ends and confusing loops abound. We tackle the problem by deciding to turn either left or right at every branch in the road. One will get us closer to the goal; the other leads to a half hour of walking in circles. Eventually, our brain chemistry rewards correct decisions, so we gradually learn the correct route. (If you’re wondering…yeah, true story.)

Reinforcement learning AI agents operate in a similar trial-and-error way. As a problem becomes more complex, the number—and time—of each trial also skyrockets.

“Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation,” explained study author Dr. Hans Briegel at the Universität Innsbruck in Austria, who previously led efforts to speed up AI decision-making using quantum mechanics. If there’s pressure that allows “only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all,” he wrote.

Many attempts have tried speeding up reinforcement learning. Giving the AI agent a short-term “memory.” Tapping into neuromorphic computing, which better resembles the brain. In 2014, Briegel and colleagues showed that a “quantum brain” of sorts can help propel an AI agent’s decision-making process after learning. But speeding up the learning process itself has eluded our best attempts.

The Hybrid AI
The new study went straight for that previously untenable jugular.

The team’s key insight was to tap into the best of both worlds—quantum and classical computing. Rather than building an entire reinforcement learning system using quantum mechanics, they turned to a hybrid approach that could prove to be more practical. Here, the AI agent uses quantum weirdness as it’s trying out new approaches—the “trial” in trial and error. The system then passes the baton to a classical computer to give the AI its reward—or not—based on its performance.

At the heart of the quantum “trial” process is a quirk called superposition. Stay with me. Our computers are powered by electrons, which can represent only two states—0 or 1. Quantum mechanics is far weirder, in that photons (particles of light) can simultaneously be both 0 and 1, with a slightly different probability of “leaning towards” one or the other.

This noncommittal oddity is part of what makes quantum computing so powerful. Take our reinforcement learning example of navigating a new campsite. In our classic world, we—and our AI—need to decide between turning left or right at an intersection. In a quantum setup, however, the AI can (in a sense) turn left and right at the same time. So when searching for the correct path back to home base, the quantum system has a leg up in that it can simultaneously explore multiple routes, making it far faster than conventional, consecutive trail and error.

“As a consequence, an agent that can explore its environment in superposition will learn significantly faster than its classical counterpart,” said Briegel.

It’s not all theory. To test out their idea, the team turned to a programmable chip called a nanophotonic processor. Think of it as a CPU-like computer chip, but it processes particles of light—photons—rather than electricity. These light-powered chips have been a long time in the making. Back in 2017, for example, a team from MIT built a fully optical neural network into an optical chip to bolster deep learning.

The chips aren’t all that exotic. Nanophotonic processors act kind of like our eyeglasses, which can carry out complex calculations that transform light that passes through them. In the glasses case, they let people see better. For a light-based computer chip, it allows computation. Rather than using electrical cables, the chips use “wave guides” to shuttle photons and perform calculations based on their interactions.

The “error” or “reward” part of the new hardware comes from a classical computer. The nanophotonic processor is coupled to a traditional computer, where the latter provides the quantum circuit with feedback—that is, whether to reward a solution or not. This setup, the team explains, allows them to more objectively judge any speed-ups in learning in real time.

In this way, a hybrid reinforcement learning agent alternates between quantum and classical computing, trying out ideas in wibbly-wobbly “multiverse” land while obtaining feedback in grounded, classic physics “normality.”

A Quantum Boost
In simulations using 10,000 AI agents and actual experimental data from 165 trials, the hybrid approach, when challenged with a more complex problem, showed a clear leg up.

The key word is “complex.” The team found that if an AI agent has a high chance of figuring out the solution anyway—as for a simple problem—then classical computing works pretty well. The quantum advantage blossoms when the task becomes more complex or difficult, allowing quantum mechanics to fully flex its superposition muscles. For these problems, the hybrid AI was 63 percent faster at learning a solution compared to traditional reinforcement learning, decreasing its learning effort from 270 guesses to 100.

Now that scientists have shown a quantum boost for reinforcement learning speeds, the race for next-generation computing is even more lit. Photonics hardware required for long-range light-based communications is rapidly shrinking, while improving signal quality. The partial-quantum setup could “aid specifically in problems where frequent search is needed, for example, network routing problems” that’s prevalent for a smooth-running internet, the authors wrote. With a quantum boost, reinforcement learning may be able to tackle far more complex problems—those in the real world—than currently possible.

“We are just at the beginning of understanding the possibilities of quantum artificial intelligence,” said lead author Walther.

Image Credit: Oleg Gamulinskiy from Pixabay Continue reading

Posted in Human Robots