Tag Archives: free

#435579 RoMeLa’s Newest Robot Is a ...

A few years ago, we wrote about NABiRoS, a bipedal robot from Dennis Hong’s Robotics & Mechanisms Laboratory (RoMeLa) at UCLA. Unlike pretty much any other biped we’d ever seen, NABiRoS had a unique kinematic configuration that had it using its two legs to walk sideways, which offered some surprising advantages.

As it turns out, bipeds aren’t the only robots that can potentially benefit from a bit of a kinematic rethink. RoMeLa has redesigned quadrupedal robots too—rather than model them after a quadrupedal animal like a dog or a horse, RoMeLa’s ALPHRED robots use four legs arranged symmetrically around the body of the robot, allowing it to walk, run, hop, and jump, as well as manipulate and carry objects, karate chop through boards, and even roller skate on its butt. This robot can do it all.

Impressive, right? This is ALPHRED 2, and its predecessor, the original ALPHRED, was introduced at IROS 2018. Both ALPHREDs are axisymmetric about the vertical axis, meaning that they don’t have a front or a back and are perfectly happy to walk in any direction you like. Traditional quadrupeds like Spot or Laikago can also move sideways and backwards, but their leg arrangement makes them more efficient at moving in one particular direction, and also results in some curious compromises like a preference for going down stairs backwards. ANYmal is a bit more flexible in that it can reverse its knees, but it’s still got that traditional quadrupedal two-by-two configuration.

ALPHRED 2’s four symmetrical limbs can be used for a whole bunch of stuff. It can do quadrupedal walking and running, and it’s able to reach stable speeds of up to 1.5 m/s. If you want bipedal walking, it can do that NABiRoS-style, although it’s still a bit fragile at the moment. Using two legs for walking leaves two legs free, and those legs can turn into arms. A tripedal compromise configuration, with three legs and one arm, is more stable and allows the robot to do things like push buttons, open doors, and destroy property. And thanks to passive wheels under its body, ALPHRED 2 can use its limbs to quickly and efficiently skate around:

The impressive performance of the robot comes courtesy of a custom actuator that RoMeLa designed specifically for dynamic legged locomotion. They call it BEAR, or Back-Drivable Electromechanical Actuator for Robots. These are optionally liquid-cooled motors capable of proprioceptive sensing, consisting of a DC motor, a single stage 10:1 planetary gearbox, and channels through the back of the housing that coolant can be pumped through. The actuators have a peak torque of 32 Nm, and a continuous torque of about 8 Nm with passive air cooling. With liquid cooling, the continuous torque jumps to about 21 Nm. And in the videos above, ALPHRED 2 isn’t even running the liquid cooling system, suggesting that it’s capable of much higher sustained performance.

Photo: RoMeLa

Using two legs for walking leaves two legs free, and those legs can turn into arms.

RoMeLa has produced a bunch of very creative robots, and we appreciate that they also seem to produce a bunch of very creative demos showing why their unusual approaches are in fact (at least in some specific cases) somewhat practical. With the recent interest in highly dynamic robots that can be reliably useful in environments infested with humans, we can’t wait to see what kinds of exciting tricks the next (presumably liquid-cooled) version will be able to do.

[ RoMeLa ] Continue reading

Posted in Human Robots

#435528 The Time for AI Is Now. Here’s Why

You hear a lot these days about the sheer transformative power of AI.

There’s pure intelligence: DeepMind’s algorithms readily beat humans at Go and StarCraft, and DeepStack triumphs over humans at no-limit hold’em poker. Often, these silicon brains generate gameplay strategies that don’t resemble anything from a human mind.

There’s astonishing speed: algorithms routinely surpass radiologists in diagnosing breast cancer, eye disease, and other ailments visible from medical imaging, essentially collapsing decades of expert training down to a few months.

Although AI’s silent touch is mainly felt today in the technological, financial, and health sectors, its impact across industries is rapidly spreading. At the Singularity University Global Summit in San Francisco this week Neil Jacobstein, Chair of AI and Robotics, painted a picture of a better AI-powered future for humanity that is already here.

Thanks to cloud-based cognitive platforms, sophisticated AI tools like deep learning are no longer relegated to academic labs. For startups looking to tackle humanity’s grand challenges, the tools to efficiently integrate AI into their missions are readily available. The progress of AI is massively accelerating—to the point you need help from AI to track its progress, joked Jacobstein.

Now is the time to consider how AI can impact your industry, and in the process, begin to envision a beneficial relationship with our machine coworkers. As Jacobstein stressed in his talk, the future of a brain-machine mindmeld is a collaborative intelligence that augments our own. “AI is reinventing the way we invent,” he said.

AI’s Rapid Revolution
Machine learning and other AI-based methods may seem academic and abstruse. But Jacobstein pointed out that there are already plenty of real-world AI application frameworks.

Their secret? Rather than coding from scratch, smaller companies—with big visions—are tapping into cloud-based solutions such as Google’s TensorFlow, Microsoft’s Azure, or Amazon’s AWS to kick off their AI journey. These platforms act as all-in-one solutions that not only clean and organize data, but also contain built-in security and drag-and-drop coding that allow anyone to experiment with complicated machine learning algorithms.

Google Cloud’s Anthos, for example, lets anyone migrate data from other servers—IBM Watson or AWS, for example—so users can leverage different computing platforms and algorithms to transform data into insights and solutions.

Rather than coding from scratch, it’s already possible to hop onto a platform and play around with it, said Jacobstein. That’s key: this democratization of AI is how anyone can begin exploring solutions to problems we didn’t even know we had, or those long thought improbable.

The acceleration is only continuing. Much of AI’s mind-bending pace is thanks to a massive infusion of funding. Microsoft recently injected $1 billion into OpenAI, the Elon Musk venture that engineers socially responsible artificial general intelligence (AGI).

The other revolution is in hardware, and Google, IBM, and NVIDIA—among others—are racing to manufacture computing chips tailored to machine learning.

Democratizing AI is like the birth of the printing press. Mechanical printing allowed anyone to become an author; today, an iPhone lets anyone film a movie masterpiece.

However, this diffusion of AI into the fabric of our lives means tech explorers need to bring skepticism to their AI solutions, giving them a dose of empathy, nuance, and humanity.

A Path Towards Ethical AI
The democratization of AI is a double-edged sword: as more people wield the technology’s power in real-world applications, problems embedded in deep learning threaten to disrupt those very judgment calls.

Much of the press on the dangers of AI focuses on superintelligence—AI that’s more adept at learning than humans—taking over the world, said Jacobstein. But the near-term threat, and far more insidious, is in humans misusing the technology.

Deepfakes, for example, allow AI rookies to paste one person’s head on a different body or put words into a person’s mouth. As the panel said, it pays to think of AI as a cybersecurity problem, one with currently shaky accountability and complexity, and one that fails at diversity and bias.

Take bias. Thanks to progress in natural language processing, Google Translate works nearly perfectly today, so much so that many consider the translation problem solved. Not true, the panel said. One famous example is how the algorithm translates gender-neutral terms like “doctor” into “he” and “nurse” into “she.”

These biases reflect our own, and it’s not just a data problem. To truly engineer objective AI systems, ones stripped of our society’s biases, we need to ask who is developing these systems, and consult those who will be impacted by the products. In addition to gender, racial bias is also rampant. For example, one recent report found that a supposedly objective crime-predicting system was trained on falsified data, resulting in outputs that further perpetuate corrupt police practices. Another study from Google just this month found that their hate speech detector more often labeled innocuous tweets from African-Americans as “obscene” compared to tweets from people of other ethnicities.

We often think of building AI as purely an engineering job, the panelists agreed. But similar to gene drives, germ-line genome editing, and other transformative—but dangerous—tools, AI needs to grow under the consultation of policymakers and other stakeholders. It pays to start young: educating newer generations on AI biases will mold malleable minds early, alerting them to the problem of bias and potentially mitigating risks.

As panelist Tess Posner from AI4ALL said, AI is rocket fuel for ambition. If young minds set out using the tools of AI to tackle their chosen problems, while fully aware of its inherent weaknesses, we can begin to build an AI-embedded future that is widely accessible and inclusive.

The bottom line: people who will be impacted by AI need to be in the room at the conception of an AI solution. People will be displaced by the new technology, and ethical AI has to consider how to mitigate human suffering during the transition. Just because AI looks like “magic fairy dust doesn’t mean that you’re home free,” the panelists said. You, the sentient human, bear the burden of being responsible for how you decide to approach the technology.

The time for AI is now. Let’s make it ethical.

Image Credit: GrAI / Shutterstock.com Continue reading

Posted in Human Robots

#435174 Revolt on the Horizon? How Young People ...

As digital technologies facilitate the growth of both new and incumbent organizations, we have started to see the darker sides of the digital economy unravel. In recent years, many unethical business practices have been exposed, including the capture and use of consumers’ data, anticompetitive activities, and covert social experiments.

But what do young people who grew up with the internet think about this development? Our research with 400 digital natives—19- to 24-year-olds—shows that this generation, dubbed “GenTech,” may be the one to turn the digital revolution on its head. Our findings point to a frustration and disillusionment with the way organizations have accumulated real-time information about consumers without their knowledge and often without their explicit consent.

Many from GenTech now understand that their online lives are of commercial value to an array of organizations that use this insight for the targeting and personalization of products, services, and experiences.

This era of accumulation and commercialization of user data through real-time monitoring has been coined “surveillance capitalism” and signifies a new economic system.

Artificial Intelligence
A central pillar of the modern digital economy is our interaction with artificial intelligence (AI) and machine learning algorithms. We found that 47 percent of GenTech do not want AI technology to monitor their lifestyle, purchases, and financial situation in order to recommend them particular things to buy.

In fact, only 29 percent see this as a positive intervention. Instead, they wish to maintain a sense of autonomy in their decision making and have the opportunity to freely explore new products, services, and experiences.

As individuals living in the digital age, we constantly negotiate with technology to let go of or retain control. This pendulum-like effect reflects the ongoing battle between humans and technology.

My Life, My Data?
Our research also reveals that 54 percent of GenTech are very concerned about the access organizations have to their data, while only 19 percent were not worried. Despite the EU General Data Protection Regulation being introduced in May 2018, this is still a major concern, grounded in a belief that too much of their data is in the possession of a small group of global companies, including Google, Amazon, and Facebook. Some 70 percent felt this way.

In recent weeks, both Facebook and Google have vowed to make privacy a top priority in the way they interact with users. Both companies have faced public outcry for their lack of openness and transparency when it comes to how they collect and store user data. It wasn’t long ago that a hidden microphone was found in one of Google’s home alarm products.

Google now plans to offer auto-deletion of users’ location history data, browsing, and app activity as well as extend its “incognito mode” to Google Maps and search. This will enable users to turn off tracking.

At Facebook, CEO Mark Zuckerberg is keen to reposition the platform as a “privacy focused communications platform” built on principles such as private interactions, encryption, safety, interoperability (communications across Facebook-owned apps and platforms), and secure data storage. This will be a tough turnaround for the company that is fundamentally dependent on turning user data into opportunities for highly individualized advertising.

Privacy and transparency are critically important themes for organizations today, both for those that have “grown up” online as well as the incumbents. While GenTech want organizations to be more transparent and responsible, 64 percent also believe that they cannot do much to keep their data private. Being tracked and monitored online by organizations is seen as part and parcel of being a digital consumer.

Despite these views, there is a growing revolt simmering under the surface. GenTech want to take ownership of their own data. They see this as a valuable commodity, which they should be given the opportunity to trade with organizations. Some 50 percent would willingly share their data with companies if they got something in return, for example a financial incentive.

Rewiring the Power Shift
GenTech are looking to enter into a transactional relationship with organizations. This reflects a significant change in attitudes from perceiving the free access to digital platforms as the “product” in itself (in exchange for user data), to now wishing to use that data to trade for explicit benefits.

This has created an opportunity for companies that seek to empower consumers and give them back control of their data. Several companies now offer consumers the opportunity to sell the data they are comfortable sharing or take part in research that they get paid for. More and more companies are joining this space, including People.io, Killi, and Ocean Protocol.

Sir Tim Berners Lee, the creator of the world wide web, has also been working on a way to shift the power from organizations and institutions back to citizens and consumers. The platform, Solid, offers users the opportunity to be in charge of where they store their data and who can access it. It is a form of re-decentralization.

The Solid POD (Personal Online Data storage) is a secure place on a hosted server or the individual’s own server. Users can grant apps access to their POD as a person’s data is stored centrally and not by an app developer or on an organization’s server. We see this as potentially being a way to let people take back control from technology and other companies.

GenTech have woken up to a reality where a life lived “plugged in” has significant consequences for their individual privacy and are starting to push back, questioning those organizations that have shown limited concern and continue to exercise exploitative practices.

It’s no wonder that we see these signs of revolt. GenTech is the generation with the most to lose. They face a life ahead intertwined with digital technology as part of their personal and private lives. With continued pressure on organizations to become more transparent, the time is now for young people to make their move.

Dr Mike Cooray, Professor of Practice, Hult International Business School and Dr Rikke Duus, Research Associate and Senior Teaching Fellow, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ser Borakovskyy / Shutterstock.com Continue reading

Posted in Human Robots

#435172 DARPA’s New Project Is Investing ...

When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

Here’s what you need to know.

Radical Upgrades
The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

“A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

“Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

The Tools
Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

Other projects in N3 are just are ambitious.

The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

Four-Year Miracle
Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

“DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

The question is, now that we know what’s in store, how should the rest of us prepare?

Image Credit: With permission from DARPA N3 project. Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots