Tag Archives: fi

#433655 First-Ever Grad Program in Space Mining ...

Maybe they could call it the School of Space Rock: A new program being offered at the Colorado School of Mines (CSM) will educate post-graduate students on the nuts and bolts of extracting and using valuable materials such as rare metals and frozen water from space rocks like asteroids or the moon.

Officially called Space Resources, the graduate-level program is reputedly the first of its kind in the world to offer a course in the emerging field of space mining. Heading the program is Angel Abbud-Madrid, director of the Center for Space Resources at Mines, a well-known engineering school located in Golden, Colorado, where Molson Coors taps Rocky Mountain spring water for its earthly brews.

The first semester for the new discipline began last month. While Abbud-Madrid didn’t immediately respond to an interview request, Singularity Hub did talk to Chris Lewicki, president and CEO of Planetary Resources, a space mining company whose founders include Peter Diamandis, Singularity University co-founder.

A former NASA engineer who worked on multiple Mars missions, Lewicki says the Space Resources program at CSM, with its multidisciplinary focus on science, economics, and policy, will help students be light years ahead of their peers in the nascent field of space mining.

“I think it’s very significant that they’ve started this program,” he said. “Having students with that kind of background exposure just allows them to be productive on day one instead of having to kind of fill in a lot of things for them.”

Who would be attracted to apply for such a program? There are many professionals who could be served by a post-baccalaureate certificate, master’s degree, or even Ph.D. in Space Resources, according to Lewicki. Certainly aerospace engineers and planetary scientists would be among the faces in the classroom.

“I think it’s [also] people who have an interest in what I would call maybe space robotics,” he said. Lewicki is referring not only to the classic example of robotic arms like the Canadarm2, which lends a hand to astronauts aboard the International Space Station, but other types of autonomous platforms.

One example might be Planetary Resources’ own Arkyd-6, a small, autonomous satellite called a CubeSat launched earlier this year to test different technologies that might be used for deep-space exploration of resources. The proof-of-concept was as much a test for the technology—such as the first space-based use of a mid-wave infrared imager to detect water resources—as it was for being able to work in space on a shoestring budget.

“We really proved that doing one of these billion-dollar science missions to deep space can be done for a lot less if you have a very focused goal, and if you kind of cut a lot of corners and then put some commercial approaches into those things,” Lewicki said.

A Trillion-Dollar Industry
Why space mining? There are at least a trillion reasons.

Astrophysicist Neil deGrasse Tyson famously said that the first trillionaire will be the “person who exploits the natural resources on asteroids.” That’s because asteroids—rocky remnants from the formation of our solar system more than four billion years ago—harbor precious metals, ranging from platinum and gold to iron and nickel.

For instance, one future target of exploration by NASA—an asteroid dubbed 16 Psyche, orbiting the sun in the asteroid belt between Mars and Jupiter—is worth an estimated $10,000 quadrillion. It’s a number so mind-bogglingly big that it would crash the global economy, if someone ever figured out how to tow it back to Earth without literally crashing it into the planet.

Living Off the Land
Space mining isn’t just about getting rich. Many argue that humanity’s ability to extract resources in space, especially water that can be refined into rocket fuel, will be a key technology to extend our reach beyond near-Earth space.

The presence of frozen water around the frigid polar regions of the moon, for example, represents an invaluable source to power future deep-space missions. Splitting H20 into its component elements of hydrogen and oxygen would provide a nearly inexhaustible source of rocket fuel. Today, it costs $10,000 to put a pound of payload in Earth orbit, according to NASA.

Until more advanced rocket technology is developed, the moon looks to be the best bet for serving as the launching pad to Mars and beyond.

Moon Versus Asteroid
However, Lewicki notes that despite the moon’s proximity and our more intimate familiarity with its pockmarked surface, that doesn’t mean a lunar mission to extract resources is any easier than a multi-year journey to a fast-moving asteroid.

For one thing, fighting gravity to and from the moon is no easy feat, as the moon has a significantly stronger gravitational field than an asteroid. Another challenge is that the frozen water is located in permanently shadowed lunar craters, meaning space miners can’t rely on solar-powered equipment, but on some sort of external energy source.

And then there’s the fact that moon craters might just be the coldest places in the solar system. NASA’s Lunar Reconnaissance Orbiter found temperatures plummeted as low as 26 Kelvin, or more than minus 400 degrees Fahrenheit. In comparison, the coldest temperatures on Earth have been recorded near the South Pole in Antarctica—about minus 148 degrees F.

“We don’t operate machines in that kind of thermal environment,” Lewicki said of the extreme temperatures detected in the permanent dark regions of the moon. “Antarctica would be a balmy desert island compared to a lunar polar crater.”

Of course, no one knows quite what awaits us in the asteroid belt. Answers may soon be forthcoming. Last week, the Japan Aerospace Exploration Agency landed two small, hopping rovers on an asteroid called Ryugu. Meanwhile, NASA hopes to retrieve a sample from the near-Earth asteroid Bennu when its OSIRIS-REx mission makes contact at the end of this year.

No Bucks, No Buck Rogers
Visionaries like Elon Musk and Jeff Bezos talk about colonies on Mars, with millions of people living and working in space. The reality is that there’s probably a reason Buck Rogers was set in the 25th century: It’s going to take a lot of money and a lot of time to realize those sci-fi visions.

Or, as Lewicki put it: “No bucks, no Buck Rogers.”

The cost of operating in outer space can be prohibitive. Planetary Resources itself is grappling with raising additional funding, with reports this year about layoffs and even a possible auction of company assets.

Still, Lewicki is confident that despite economic and technical challenges, humanity will someday exceed even the boldest dreamers—skyscrapers on the moon, interplanetary trips to Mars—as judged against today’s engineering marvels.

“What we’re doing is going to be very hard, very painful, and almost certainly worth it,” he said. “Who would have thought that there would be a job for a space miner that you could go to school for, even just five or ten years ago. Things move quickly.”

Image Credit: M-SUR / Shutterstock.com Continue reading

Posted in Human Robots

#433280 This Week’s Awesome Stories From ...

TECHNOLOGY
Google Turns 20: How an Internet Search Engine Reshaped the World
Editorial Staff | The Verge
“No technology company is arguably more responsible for shaping the modern internet, and modern life, than Google. The company that started as a novel search engine now manages eight products with more than 1 billion users each.”

FUTURE
Why Technology Favors Tyranny
Yuval Noah Harari | The Atlantic
“It is undoubtable…that the technological revolutions now gathering momentum will in the next few decades confront humankind with the hardest trials it has yet encountered.”

ARTIFICIAL INTELLIGENCE
AI Can Recognize Images, But Can It Understand This Headline?
Gregory Barber | Wired
“In 2012, artificial intelligence researchers revealed a big improvement in computers’ ability to recognize images by feeding a neural network millions of labeled images from a database called ImageNet. …In other arenas of AI research, like understanding language, similar models have proved elusive. But recent research from fast.ai, OpenAI, and the Allen Institute for AI suggests a potential breakthrough, with more robust language models that can help researchers tackle a range of unsolved problems.”

COMPUTING
Quantum Computing Is Almost Ready for Business, Startup Says
Sean Captain | Fast Company
“Rigetti is now inviting customers to apply for free access to these systems, toward the goal of developing a real-world application that achieves quantum advantage. As an extra incentive, the first to make it wins a $1 million prize.”

SCIENCE FICTION
How Realistic Are Sci-Fi Spaceships? An Expert Ranks Your Favorites
Chris Taylor | Mashable
“For all the villainous Borg’s supposed efficiency, their vast six-sided planet-threatening vessel is a massive waste of space. The Death Star may cost an estimated $852 quadrillion in steel alone, but that figure would be far higher if it employed any other shape. That’s no moon—it’s a highly efficient use of surface area.”

Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#432331 $10 million XPRIZE Aims for Robot ...

Ever wished you could be in two places at the same time? The XPRIZE Foundation wants to make that a reality with a $10 million competition to build robot avatars that can be controlled from at least 100 kilometers away.

The competition was announced by XPRIZE founder Peter Diamandis at the SXSW conference in Austin last week, with an ambitious timeline of awarding the grand prize by October 2021. Teams have until October 31st to sign up, and they need to submit detailed plans to a panel of judges by the end of next January.

The prize, sponsored by Japanese airline ANA, has given contestants little guidance on how they expect them to solve the challenge other than saying their solutions need to let users see, hear, feel, and interact with the robot’s environment as well as the people in it.

XPRIZE has also not revealed details of what kind of tasks the robots will be expected to complete, though they’ve said tasks will range from “simple” to “complex,” and it should be possible for an untrained operator to use them.

That’s a hugely ambitious goal that’s likely to require teams to combine multiple emerging technologies, from humanoid robotics to virtual reality high-bandwidth communications and high-resolution haptics.

If any of the teams succeed, the technology could have myriad applications, from letting emergency responders enter areas too hazardous for humans to helping people care for relatives who live far away or even just allowing tourists to visit other parts of the world without the jet lag.

“Our ability to physically experience another geographic location, or to provide on-the-ground assistance where needed, is limited by cost and the simple availability of time,” Diamandis said in a statement.

“The ANA Avatar XPRIZE can enable creation of an audacious alternative that could bypass these limitations, allowing us to more rapidly and efficiently distribute skill and hands-on expertise to distant geographic locations where they are needed, bridging the gap between distance, time, and cultures,” he added.

Interestingly, the technology may help bypass an enduring hand break on the widespread use of robotics: autonomy. By having a human in the loop, you don’t need nearly as much artificial intelligence analyzing sensory input and making decisions.

Robotics software is doing a lot more than just high-level planning and strategizing, though. While a human moves their limbs instinctively without consciously thinking about which muscles to activate, controlling and coordinating a robot’s components requires sophisticated algorithms.

The DARPA Robotics Challenge demonstrated just how hard it was to get human-shaped robots to do tasks humans would find simple, such as opening doors, climbing steps, and even just walking. These robots were supposedly semi-autonomous, but on many tasks they were essentially tele-operated, and the results suggested autonomy isn’t the only problem.

There’s also the issue of powering these devices. You may have noticed that in a lot of the slick web videos of humanoid robots doing cool things, the machine is attached to the roof by a large cable. That’s because they suck up huge amounts of power.

Possibly the most advanced humanoid robot—Boston Dynamics’ Atlas—has a battery, but it can only run for about an hour. That might be fine for some applications, but you don’t want it running out of juice halfway through rescuing someone from a mine shaft.

When it comes to the link between the robot and its human user, some of the technology is probably not that much of a stretch. Virtual reality headsets can create immersive audio-visual environments, and a number of companies are working on advanced haptic suits that will let people “feel” virtual environments.

Motion tracking technology may be more complicated. While even consumer-grade devices can track peoples’ movements with high accuracy, you will probably need to don something more like an exoskeleton that can both pick up motion and provide mechanical resistance, so that when the robot bumps into an immovable object, the user stops dead too.

How hard all of this will be is also dependent on how the competition ultimately defines subjective terms like “feel” and “interact.” Will the user need to be able to feel a gentle breeze on the robot’s cheek or be able to paint a watercolor? Or will simply having the ability to distinguish a hard object from a soft one or shake someone’s hand be enough?

Whatever the fidelity they decide on, the approach will require huge amounts of sensory and control data to be transmitted over large distances, most likely wirelessly, in a way that’s fast and reliable enough that there’s no lag or interruptions. Fortunately 5G is launching this year, with a speed of 10 gigabits per second and very low latency, so this problem should be solved by 2021.

And it’s worth remembering there have already been some tentative attempts at building robotic avatars. Telepresence robots have solved the seeing, hearing, and some of the interacting problems, and MIT has already used virtual reality to control robots to carry out complex manipulation tasks.

South Korean company Hankook Mirae Technology has also unveiled a 13-foot-tall robotic suit straight out of a sci-fi movie that appears to have made some headway with the motion tracking problem, albeit with a human inside the robot. Toyota’s T-HR3 does the same, but with the human controlling the robot from a “Master Maneuvering System” that marries motion tracking with VR.

Combining all of these capabilities into a single machine will certainly prove challenging. But if one of the teams pulls it off, you may be able to tick off trips to the Seven Wonders of the World without ever leaving your house.

Image Credit: ANA Avatar XPRIZE Continue reading

Posted in Human Robots

#432051 What Roboticists Are Learning From Early ...

You might not have heard of Hanson Robotics, but if you’re reading this, you’ve probably seen their work. They were the company behind Sophia, the lifelike humanoid avatar that’s made dozens of high-profile media appearances. Before that, they were the company behind that strange-looking robot that seemed a bit like Asimo with Albert Einstein’s head—or maybe you saw BINA48, who was interviewed for the New York Times in 2010 and featured in Jon Ronson’s books. For the sci-fi aficionados amongst you, they even made a replica of legendary author Philip K. Dick, best remembered for having books with titles like Do Androids Dream of Electric Sheep? turned into films with titles like Blade Runner.

Hanson Robotics, in other words, with their proprietary brand of life-like humanoid robots, have been playing the same game for a while. Sometimes it can be a frustrating game to watch. Anyone who gives the robot the slightest bit of thought will realize that this is essentially a chat-bot, with all the limitations this implies. Indeed, even in that New York Times interview with BINA48, author Amy Harmon describes it as a frustrating experience—with “rare (but invariably thrilling) moments of coherence.” This sensation will be familiar to anyone who’s conversed with a chatbot that has a few clever responses.

The glossy surface belies the lack of real intelligence underneath; it seems, at first glance, like a much more advanced machine than it is. Peeling back that surface layer—at least for a Hanson robot—means you’re peeling back Frubber. This proprietary substance—short for “Flesh Rubber,” which is slightly nightmarish—is surprisingly complicated. Up to thirty motors are required just to control the face; they manipulate liquid cells in order to make the skin soft, malleable, and capable of a range of different emotional expressions.

A quick combinatorial glance at the 30+ motors suggests that there are millions of possible combinations; researchers identify 62 that they consider “human-like” in Sophia, although not everyone agrees with this assessment. Arguably, the technical expertise that went into reconstructing the range of human facial expressions far exceeds the more simplistic chat engine the robots use, although it’s the second one that allows it to inflate the punters’ expectations with a few pre-programmed questions in an interview.

Hanson Robotics’ belief is that, ultimately, a lot of how humans will eventually relate to robots is going to depend on their faces and voices, as well as on what they’re saying. “The perception of identity is so intimately bound up with the perception of the human form,” says David Hanson, company founder.

Yet anyone attempting to design a robot that won’t terrify people has to contend with the uncanny valley—that strange blend of concern and revulsion people react with when things appear to be creepily human. Between cartoonish humanoids and genuine humans lies what has often been a no-go zone in robotic aesthetics.

The uncanny valley concept originated with roboticist Masahiro Mori, who argued that roboticists should avoid trying to replicate humans exactly. Since anything that wasn’t perfect, but merely very good, would elicit an eerie feeling in humans, shirking the challenge entirely was the only way to avoid the uncanny valley. It’s probably a task made more difficult by endless streams of articles about AI taking over the world that inexplicably conflate AI with killer humanoid Terminators—which aren’t particularly likely to exist (although maybe it’s best not to push robots around too much).

The idea behind this realm of psychological horror is fairly simple, cognitively speaking.

We know how to categorize things that are unambiguously human or non-human. This is true even if they’re designed to interact with us. Consider the popularity of Aibo, Jibo, or even some robots that don’t try to resemble humans. Something that resembles a human, but isn’t quite right, is bound to evoke a fear response in the same way slightly distorted music or slightly rearranged furniture in your home will. The creature simply doesn’t fit.

You may well reject the idea of the uncanny valley entirely. David Hanson, naturally, is not a fan. In the paper Upending the Uncanny Valley, he argues that great art forms have often resembled humans, but the ultimate goal for humanoid roboticists is probably to create robots we can relate to as something closer to humans than works of art.

Meanwhile, Hanson and other scientists produce competing experiments to either demonstrate that the uncanny valley is overhyped, or to confirm it exists and probe its edges.

The classic experiment involves gradually morphing a cartoon face into a human face, via some robotic-seeming intermediaries—yet it’s in movement that the real horror of the almost-human often lies. Hanson has argued that incorporating cartoonish features may help—and, sometimes, that the uncanny valley is a generational thing which will melt away when new generations grow used to the quirks of robots. Although Hanson might dispute the severity of this effect, it’s clearly what he’s trying to avoid with each new iteration.

Hiroshi Ishiguro is the latest of the roboticists to have dived headlong into the valley.

Building on the work of pioneers like Hanson, those who study human-robot interaction are pushing at the boundaries of robotics—but also of social science. It’s usually difficult to simulate what you don’t understand, and there’s still an awful lot we don’t understand about how we interpret the constant streams of non-verbal information that flow when you interact with people in the flesh.

Ishiguro took this imitation of human forms to extreme levels. Not only did he monitor and log the physical movements people made on videotapes, but some of his robots are based on replicas of people; the Repliee series began with a ‘replicant’ of his daughter. This involved making a rubber replica—a silicone cast—of her entire body. Future experiments were focused on creating Geminoid, a replica of Ishiguro himself.

As Ishiguro aged, he realized that it would be more effective to resemble his replica through cosmetic surgery rather than by continually creating new casts of his face, each with more lines than the last. “I decided not to get old anymore,” Ishiguro said.

We love to throw around abstract concepts and ideas: humans being replaced by machines, cared for by machines, getting intimate with machines, or even merging themselves with machines. You can take an idea like that, hold it in your hand, and examine it—dispassionately, if not without interest. But there’s a gulf between thinking about it and living in a world where human-robot interaction is not a field of academic research, but a day-to-day reality.

As the scientists studying human-robot interaction develop their robots, their replicas, and their experiments, they are making some of the first forays into that world. We might all be living there someday. Understanding ourselves—decrypting the origins of empathy and love—may be the greatest challenge to face. That is, if you want to avoid the valley.

Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading

Posted in Human Robots

#431899 Darker Still: Black Mirror’s New ...

The key difference between science fiction and fantasy is that science fiction is entirely possible because of its grounding in scientific facts, while fantasy is not. This is where Black Mirror is both an entertaining and terrifying work of science fiction. Created by Charlie Brooker, the anthological series tells cautionary tales of emerging technology that could one day be an integral part of our everyday lives.
While watching the often alarming episodes, one can’t help but recognize the eerie similarities to some of the tech tools that are already abundant in our lives today. In fact, many previous Black Mirror predictions are already becoming reality.
The latest season of Black Mirror was arguably darker than ever. This time, Brooker seemed to focus on the ethical implications of one particular area: neurotechnology.
Emerging Neurotechnology
Warning: The remainder of this article may contain spoilers from Season 4 of Black Mirror.
Most of the storylines from season four revolve around neurotechnology and brain-machine interfaces. They are based in a world where people have the power to upload their consciousness onto machines, have fully immersive experiences in virtual reality, merge their minds with other minds, record others’ memories, and even track what others are thinking, feeling, and doing.
How can all this ever be possible? Well, these capabilities are already being developed by pioneers and researchers globally. Early last year, Elon Musk unveiled Neuralink, a company whose goal is to merge the human mind with AI through a neural lace. We’ve already connected two brains via the internet, allowing one brain to communicate with another. Various research teams have been able to develop mechanisms for “reading minds” or reconstructing memories of individuals via devices. The list goes on.
With many of the technologies we see in Black Mirror it’s not a question of if, but when. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to upload our consciousness onto the cloud via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” While other experts continue to challenge Kurzweil on the exact year we’ll accomplish this feat, with the current exponential growth of our technological capabilities, we’re on track to get there eventually.
Ethical Questions
As always, technology is only half the conversation. Equally fascinating are the many ethical and moral questions this topic raises.
For instance, with the increasing convergence of artificial intelligence and virtual reality, we have to ask ourselves if our morality from the physical world transfers equally into the virtual world. The first episode of season four, USS Calister, tells the story of a VR pioneer, Robert Daley, who creates breakthrough AI and VR to satisfy his personal frustrations and sexual urges. He uses the DNA of his coworkers (and their children) to re-create them digitally in his virtual world, to which he escapes to torture them, while they continue to be indifferent in the “real” world.
Audiences are left asking themselves: should what happens in the digital world be considered any less “real” than the physical world? How do we know if the individuals in the virtual world (who are ultimately based on algorithms) have true feelings or sentiments? Have they been developed to exhibit characteristics associated with suffering, or can they really feel suffering? Fascinatingly, these questions point to the hard problem of consciousness—the question of if, why, and how a given physical process generates the specific experience it does—which remains a major mystery in neuroscience.
Towards the end of USS Calister, the hostages of Daley’s virtual world attempt to escape through suicide, by committing an act that will delete the code that allows them to exist. This raises yet another mind-boggling ethical question: if we “delete” code that signifies a digital being, should that be considered murder (or suicide, in this case)? Why shouldn’t it? When we murder someone we are, in essence, taking away their capacity to live and to be, without their consent. By unplugging a self-aware AI, wouldn’t we be violating its basic right to live in the same why? Does AI, as code, even have rights?
Brain implants can also have a radical impact on our self-identity and how we define the word “I”. In the episode Black Museum, instead of witnessing just one horror, we get a series of scares in little segments. One of those segments tells the story of a father who attempts to reincarnate the mother of his child by uploading her consciousness into his mind and allowing her to live in his head (essentially giving him multiple personality disorder). In this way, she can experience special moments with their son.
With “no privacy for him, and no agency for her” the good intention slowly goes very wrong. This story raises a critical question: should we be allowed to upload consciousness into limited bodies? Even more, if we are to upload our minds into “the cloud,” at what point do we lose our individuality to become one collective being?
These questions can form the basis of hours of debate, but we’re just getting started. There are no right or wrong answers with many of these moral dilemmas, but we need to start having such discussions.
The Downside of Dystopian Sci-Fi
Like last season’s San Junipero, one episode of the series, Hang the DJ, had an uplifting ending. Yet the overwhelming majority of the stories in Black Mirror continue to focus on the darkest side of human nature, feeding into the pre-existing paranoia of the general public. There is certainly some value in this; it’s important to be aware of the dangers of technology. After all, what better way to explore these dangers before they occur than through speculative fiction?
A big takeaway from every tale told in the series is that the greatest threat to humanity does not come from technology, but from ourselves. Technology itself is not inherently good or evil; it all comes down to how we choose to use it as a society. So for those of you who are techno-paranoid, beware, for it’s not the technology you should fear, but the humans who get their hands on it.
While we can paint negative visions for the future, though, it is also important to paint positive ones. The kind of visions we set for ourselves have the power to inspire and motivate generations. Many people are inherently pessimistic when thinking about the future, and that pessimism in turn can shape their contributions to humanity.
While utopia may not exist, the future of our species could and should be one of solving global challenges, abundance, prosperity, liberation, and cosmic transcendence. Now that would be a thrilling episode to watch.
Image Credit: Billion Photos / Shutterstock.com Continue reading

Posted in Human Robots