Tag Archives: feedback

#432671 Stuff 3.0: The Era of Programmable ...

It’s the end of a long day in your apartment in the early 2040s. You decide your work is done for the day, stand up from your desk, and yawn. “Time for a film!” you say. The house responds to your cues. The desk splits into hundreds of tiny pieces, which flow behind you and take on shape again as a couch. The computer screen you were working on flows up the wall and expands into a flat projection screen. You relax into the couch and, after a few seconds, a remote control surfaces from one of its arms.

In a few seconds flat, you’ve gone from a neatly-equipped office to a home cinema…all within the same four walls. Who needs more than one room?

This is the dream of those who work on “programmable matter.”

In his recent book about AI, Max Tegmark makes a distinction between three different levels of computational sophistication for organisms. Life 1.0 is single-celled organisms like bacteria; here, hardware is indistinguishable from software. The behavior of the bacteria is encoded into its DNA; it cannot learn new things.

Life 2.0 is where humans live on the spectrum. We are more or less stuck with our hardware, but we can change our software by choosing to learn different things, say, Spanish instead of Italian. Much like managing space on your smartphone, your brain’s hardware will allow you to download only a certain number of packages, but, at least theoretically, you can learn new behaviors without changing your underlying genetic code.

Life 3.0 marks a step-change from this: creatures that can change both their hardware and software in something like a feedback loop. This is what Tegmark views as a true artificial intelligence—one that can learn to change its own base code, leading to an explosion in intelligence. Perhaps, with CRISPR and other gene-editing techniques, we could be using our “software” to doctor our “hardware” before too long.

Programmable matter extends this analogy to the things in our world: what if your sofa could “learn” how to become a writing desk? What if, instead of a Swiss Army knife with dozens of tool attachments, you just had a single tool that “knew” how to become any other tool you could require, on command? In the crowded cities of the future, could houses be replaced by single, OmniRoom apartments? It would save space, and perhaps resources too.

Such are the dreams, anyway.

But when engineering and manufacturing individual gadgets is such a complex process, you can imagine that making stuff that can turn into many different items can be extremely complicated. Professor Skylar Tibbits at MIT referred to it as 4D printing in a TED Talk, and the website for his research group, the Self-Assembly Lab, excitedly claims, “We have also identified the key ingredients for self-assembly as a simple set of responsive building blocks, energy and interactions that can be designed within nearly every material and machining process available. Self-assembly promises to enable breakthroughs across many disciplines, from biology to material science, software, robotics, manufacturing, transportation, infrastructure, construction, the arts, and even space exploration.”

Naturally, their projects are still in the early stages, but the Self-Assembly Lab and others are genuinely exploring just the kind of science fiction applications we mooted.

For example, there’s the cell-phone self-assembly project, which brings to mind eerie, 24/7 factories where mobile phones assemble themselves from 3D printed kits without human or robotic intervention. Okay, so the phones they’re making are hardly going to fly off the shelves as fashion items, but if all you want is something that works, it could cut manufacturing costs substantially and automate even more of the process.

One of the major hurdles to overcome in making programmable matter a reality is choosing the right fundamental building blocks. There’s a very important balance to strike. To create fine details, you need to have things that aren’t too big, so as to keep your rearranged matter from being too lumpy. This might make the building blocks useless for certain applications—for example, if you wanted to make tools for fine manipulation. With big pieces, it might be difficult to simulate a range of textures. On the other hand, if the pieces are too small, different problems can arise.

Imagine a setup where each piece is a small robot. You have to contain the robot’s power source and its brain, or at least some kind of signal-generator and signal-processor, all in the same compact unit. Perhaps you can imagine that one might be able to simulate a range of textures and strengths by changing the strength of the “bond” between individual units—your desk might need to be a little bit more firm than your bed, which might be nicer with a little more give.

Early steps toward creating this kind of matter have been taken by those who are developing modular robots. There are plenty of different groups working on this, including MIT, Lausanne, and the University of Brussels.

In the latter configuration, one individual robot acts as a centralized decision-maker, referred to as the brain unit, but additional robots can autonomously join the brain unit as and when needed to change the shape and structure of the overall system. Although the system is only ten units at present, it’s a proof-of-concept that control can be orchestrated over a modular system of robots; perhaps in the future, smaller versions of the same thing could be the components of Stuff 3.0.

You can imagine that with machine learning algorithms, such swarms of robots might be able to negotiate obstacles and respond to a changing environment more easily than an individual robot (those of you with techno-fear may read “respond to a changing environment” and imagine a robot seamlessly rearranging itself to allow a bullet to pass straight through without harm).

Speaking of robotics, the form of an ideal robot has been a subject of much debate. In fact, one of the major recent robotics competitions—DARPA’s Robotics Challenge—was won by a robot that could adapt, beating Boston Dynamics’ infamous ATLAS humanoid with the simple addition of a wheel that allowed it to drive as well as walk.

Rather than building robots into a humanoid shape (only sometimes useful), allowing them to evolve and discover the ideal form for performing whatever you’ve tasked them to do could prove far more useful. This is particularly true in disaster response, where expensive robots can still be more valuable than humans, but conditions can be very unpredictable and adaptability is key.

Further afield, many futurists imagine “foglets” as the tiny nanobots that will be capable of constructing anything from raw materials, somewhat like the “Santa Claus machine.” But you don’t necessarily need anything quite so indistinguishable from magic to be useful. Programmable matter that can respond and adapt to its surroundings could be used in all kinds of industrial applications. How about a pipe that can strengthen or weaken at will, or divert its direction on command?

We’re some way off from being able to order our beds to turn into bicycles. As with many tech ideas, it may turn out that the traditional low-tech solution is far more practical and cost-effective, even as we can imagine alternatives. But as the march to put a chip in every conceivable object goes on, it seems certain that inanimate objects are about to get a lot more animated.

Image Credit: PeterVrabel / Shutterstock.com Continue reading

Posted in Human Robots

#432431 Why Slowing Down Can Actually Help Us ...

Leah Weiss believes that when we pay attention to how we do our work—our thoughts and feelings about what we do and why we do it—we can tap into a much deeper reservoir of courage, creativity, meaning, and resilience.

As a researcher, educator, and author, Weiss teaches a course called “Leading with Compassion and Mindfulness” at the Stanford Graduate School of Business, one of the most competitive MBA programs in the world, and runs programs at HopeLab.

Weiss is the author of the new book How We Work: Live Your Purpose, Reclaim your Sanity and Embrace the Daily Grind, endorsed by the Dalai Lama, among others. I caught up with Leah to learn more about how the practice of mindfulness can deepen our individual and collective purpose and passion.

Lisa Kay Solomon: We’re hearing a lot about mindfulness these days. What is mindfulness and why is it so important to bring into our work? Can you share some of the basic tenets of the practice?

Leah Weiss, PhD: Mindfulness is, in its most literal sense, “the attention to inattention.” It’s as simple as noticing when you’re not paying attention and then re-focusing. It is prioritizing what is happening right now over internal and external noise.

The ability to work well with difficult coworkers, handle constructive feedback and criticism, regulate emotions at work—all of these things can come from regular mindfulness practice.

Some additional benefits of mindfulness are a greater sense of compassion (both self-compassion and compassion for others) and a way to seek and find purpose in even mundane things (and especially at work). From the business standpoint, mindfulness at work leads to increased productivity and creativity, mostly because when we are focused on one task at a time (as opposed to multitasking), we produce better results.

We spend more time with our co-workers than we do with our families; if our work relationships are negative, we suffer both mentally and physically. Even worse, we take all of those negative feelings home with us at the end of the work day. The antidote to this prescription for unhappiness is to have clear, strong purpose (one third of people do not have purpose at work and this is a major problem in the modern workplace!). We can use mental training to grow as people and as employees.

LKS: What are some recommendations you would make to busy leaders who are working around the clock to change the world?

LW: I think the most important thing is to remember to tend to our relationship with ourselves while trying to change the world. If we’re beating up on ourselves all the time we’ll be depleted.

People passionate about improving the world can get into habits of believing self-care isn’t important. We demand a lot of ourselves. It’s okay to fail, to mess up, to make mistakes—what’s important is how we learn from those mistakes and what we tell ourselves about those instances. What is the “internal script” playing in your own head? Is it positive, supporting, and understanding? It should be. If it isn’t, you can work on it. And the changes you make won’t just improve your quality of life, they’ll make you more resilient to weather life’s inevitable setbacks.

A close second recommendation is to always consider where everyone in an organization fits and help everyone (including yourself) find purpose. When you know what your own purpose is and show others their purpose, you can motivate a team and help everyone on a team gain pride in and at work. To get at this, make sure to ask people on your team what really lights them up. What sucks their energy and depletes them? If we know our own answers to these questions and relate them to the people we work with, we can create more engaged organizations.

LKS: Can you envision a future where technology and mindfulness can work together?

LW: Technology and mindfulness are already starting to work together. Some artificial intelligence companies are considering things like mindfulness and compassion when building robots, and there are numerous apps that target spreading mindfulness meditations in a widely-accessible way.

LKS: Looking ahead at our future generations who seem more attached to their devices than ever, what advice do you have for them?

LW: It’s unrealistic to say “stop using your device so much,” so instead, my suggestion is to make time for doing things like scrolling social media and make the same amount of time for putting your phone down and watching a movie or talking to a friend. No matter what it is that you are doing, make sure you have meta-awareness or clarity about what you’re paying attention to. Be clear about where your attention is and recognize that you can be a steward of attention. Technology can support us in this or pull us away from this; it depends on how we use it.

Image Credit: frankie’s / Shutterstock.com Continue reading

Posted in Human Robots

#432271 Your Shopping Experience Is on the Verge ...

Exponential technologies (AI, VR, 3D printing, and networks) are radically reshaping traditional retail.

E-commerce giants (Amazon, Walmart, Alibaba) are digitizing the retail industry, riding the exponential growth of computation.

Many brick-and-mortar stores have already gone bankrupt, or migrated their operations online.

Massive change is occurring in this arena.

For those “real-life stores” that survive, an evolution is taking place from a product-centric mentality to an experience-based business model by leveraging AI, VR/AR, and 3D printing.

Let’s dive in.

E-Commerce Trends
Last year, 3.8 billion people were connected online. By 2024, thanks to 5G, stratospheric and space-based satellites, we will grow to 8 billion people online, each with megabit to gigabit connection speeds.

These 4.2 billion new digital consumers will begin buying things online, a potential bonanza for the e-commerce world.

At the same time, entrepreneurs seeking to service these four-billion-plus new consumers can now skip the costly steps of procuring retail space and hiring sales clerks.

Today, thanks to global connectivity, contract production, and turnkey pack-and-ship logistics, an entrepreneur can go from an idea to building and scaling a multimillion-dollar business from anywhere in the world in record time.

And while e-commerce sales have been exploding (growing from $34 billion in Q1 2009 to $115 billion in Q3 2017), e-commerce only accounted for about 10 percent of total retail sales in 2017.

In 2016, global online sales totaled $1.8 trillion. Remarkably, this $1.8 trillion was spent by only 1.5 billion people — a mere 20 percent of Earth’s global population that year.

There’s plenty more room for digital disruption.

AI and the Retail Experience
For the business owner, AI will demonetize e-commerce operations with automated customer service, ultra-accurate supply chain modeling, marketing content generation, and advertising.

In the case of customer service, imagine an AI that is trained by every customer interaction, learns how to answer any consumer question perfectly, and offers feedback to product designers and company owners as a result.

Facebook’s handover protocol allows live customer service representatives and language-learning bots to work within the same Facebook Messenger conversation.

Taking it one step further, imagine an AI that is empathic to a consumer’s frustration, that can take any amount of abuse and come back with a smile every time. As one example, meet Ava. “Ava is a virtual customer service agent, to bring a whole new level of personalization and brand experience to that customer experience on a day-to-day basis,” says Greg Cross, CEO of Ava’s creator, an Austrian company called Soul Machines.

Predictive modeling and machine learning are also optimizing product ordering and the supply chain process. For example, Skubana, a platform for online sellers, leverages data analytics to provide entrepreneurs constant product performance feedback and maintain optimal warehouse stock levels.

Blockchain is set to follow suit in the retail space. ShipChain and Ambrosus plan to introduce transparency and trust into shipping and production, further reducing costs for entrepreneurs and consumers.

Meanwhile, for consumers, personal shopping assistants are shifting the psychology of the standard shopping experience.

Amazon’s Alexa marks an important user interface moment in this regard.

Alexa is in her infancy with voice search and vocal controls for smart homes. Already, Amazon’s Alexa users, on average, spent more on Amazon.com when purchasing than standard Amazon Prime customers — $1,700 versus $1,400.

As I’ve discussed in previous posts, the future combination of virtual reality shopping, coupled with a personalized, AI-enabled fashion advisor will make finding, selecting, and ordering products fast and painless for consumers.

But let’s take it one step further.

Imagine a future in which your personal AI shopper knows your desires better than you do. Possible? I think so. After all, our future AIs will follow us, watch us, and observe our interactions — including how long we glance at objects, our facial expressions, and much more.

In this future, shopping might be as easy as saying, “Buy me a new outfit for Saturday night’s dinner party,” followed by a surprise-and-delight moment in which the outfit that arrives is perfect.

In this future world of AI-enabled shopping, one of the most disruptive implications is that advertising is now dead.

In a world where an AI is buying my stuff, and I’m no longer in the decision loop, why would a big brand ever waste money on a Super Bowl advertisement?

The dematerialization, demonetization, and democratization of personalized shopping has only just begun.

The In-Store Experience: Experiential Retailing
In 2017, over 6,700 brick-and-mortar retail stores closed their doors, surpassing the former record year for store closures set in 2008 during the financial crisis. Regardless, business is still booming.

As shoppers seek the convenience of online shopping, brick-and-mortar stores are tapping into the power of the experience economy.

Rather than focusing on the practicality of the products they buy, consumers are instead seeking out the experience of going shopping.

The Internet of Things, artificial intelligence, and computation are exponentially improving the in-person consumer experience.

As AI dominates curated online shopping, AI and data analytics tools are also empowering real-life store owners to optimize staffing, marketing strategies, customer relationship management, and inventory logistics.

In the short term,retail store locations will serve as the next big user interface for production 3D printing (custom 3D printed clothes at the Ministry of Supply), virtual and augmented reality (DIY skills clinics), and the Internet of Things (checkout-less shopping).

In the long term,we’ll see how our desire for enhanced productivity and seamless consumption balances with our preference for enjoyable real-life consumer experiences — all of which will be driven by exponential technologies.

One thing is certain: the nominal shopping experience is on the verge of a major transformation.

Implications
The convergence of exponential technologies has already revamped how and where we shop, how we use our time, and how much we pay.

Twenty years ago, Amazon showed us how the web could offer each of us the long tail of available reading material, and since then, the world of e-commerce has exploded.

And yet we still haven’t experienced the cost savings coming our way from drone delivery, the Internet of Things, tokenized ecosystems, the impact of truly powerful AI, or even the other major applications for 3D printing and AR/VR.

Perhaps nothing will be more transformed than today’s $20 trillion retail sector.

Hold on, stay tuned, and get your AI-enabled cryptocurrency ready.

Join Me
Abundance Digital Online Community: I’ve created a digital/online community of bold, abundance-minded entrepreneurs called Abundance Digital.

Abundance Digital is my ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...

Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.

Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading

Posted in Human Robots

#431872 AI Uses Titan Supercomputer to Create ...

You don’t have to dig too deeply into the archive of dystopian science fiction to uncover the horror that intelligent machines might unleash. The Matrix and The Terminator are probably the most well-known examples of self-replicating, intelligent machines attempting to enslave or destroy humanity in the process of building a brave new digital world.
The prospect of artificially intelligent machines creating other artificially intelligent machines took a big step forward in 2017. However, we’re far from the runaway technological singularity futurists are predicting by mid-century or earlier, let alone murderous cyborgs or AI avatar assassins.
The first big boost this year came from Google. The tech giant announced it was developing automated machine learning (AutoML), writing algorithms that can do some of the heavy lifting by identifying the right neural networks for a specific job. Now researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL), using the most powerful supercomputer in the US, have developed an AI system that can generate neural networks as good if not better than any developed by a human in less than a day.
It can take months for the brainiest, best-paid data scientists to develop deep learning software, which sends data through a complex web of mathematical algorithms. The system is modeled after the human brain and known as an artificial neural network. Even Google’s AutoML took weeks to design a superior image recognition system, one of the more standard operations for AI systems today.
Computing Power
Of course, Google Brain project engineers only had access to 800 graphic processing units (GPUs), a type of computer hardware that works especially well for deep learning. Nvidia, which pioneered the development of GPUs, is considered the gold standard in today’s AI hardware architecture. Titan, the supercomputer at ORNL, boasts more than 18,000 GPUs.
The ORNL research team’s algorithm, called MENNDL for Multinode Evolutionary Neural Networks for Deep Learning, isn’t designed to create AI systems that cull cute cat photos from the internet. Instead, MENNDL is a tool for testing and training thousands of potential neural networks to work on unique science problems.
That requires a different approach from the Google and Facebook AI platforms of the world, notes Steven Young, a postdoctoral research associate at ORNL who is on the team that designed MENNDL.
“We’ve discovered that those [neural networks] are very often not the optimal network for a lot of our problems, because our data, while it can be thought of as images, is different,” he explains to Singularity Hub. “These images, and the problems, have very different characteristics from object detection.”
AI for Science
One application of the technology involved a particle physics experiment at the Fermi National Accelerator Laboratory. Fermilab researchers are interested in understanding neutrinos, high-energy subatomic particles that rarely interact with normal matter but could be a key to understanding the early formation of the universe. One Fermilab experiment involves taking a sort of “snapshot” of neutrino interactions.
The team wanted the help of an AI system that could analyze and classify Fermilab’s detector data. MENNDL evaluated 500,000 neural networks in 24 hours. Its final solution proved superior to custom models developed by human scientists.
In another case involving a collaboration with St. Jude Children’s Research Hospital in Memphis, MENNDL improved the error rate of a human-designed algorithm for identifying mitochondria inside 3D electron microscopy images of brain tissue by 30 percent.
“We are able to do better than humans in a fraction of the time at designing networks for these sort of very different datasets that we’re interested in,” Young says.
What makes MENNDL particularly adept is its ability to define the best or most optimal hyperparameters—the key variables—to tackle a particular dataset.
“You don’t always need a big, huge deep network. Sometimes you just need a small network with the right hyperparameters,” Young says.
A Virtual Data Scientist
That’s not dissimilar to the approach of a company called H20.ai, a startup out of Silicon Valley that uses open source machine learning platforms to “democratize” AI. It applies machine learning to create business solutions for Fortune 500 companies, including some of the world’s biggest banks and healthcare companies.
“Our software is more [about] pattern detection, let’s say anti-money laundering or fraud detection or which customer is most likely to churn,” Dr. Arno Candel, chief technology officer at H2O.ai, tells Singularity Hub. “And that kind of insight-generating software is what we call AI here.”
The company’s latest product, Driverless AI, promises to deliver the data scientist equivalent of a chessmaster to its customers (the company claims several such grandmasters in its employ and advisory board). In other words, the system can analyze a raw dataset and, like MENNDL, automatically identify what features should be included in the computer model to make the most of the data based on the best “chess moves” of its grandmasters.
“So we’re using those algorithms, but we’re giving them the human insights from those data scientists, and we automate their thinking,” he explains. “So we created a virtual data scientist that is relentless at trying these ideas.”
Inside the Black Box
Not unlike how the human brain reaches a conclusion, it’s not always possible to understand how a machine, despite being designed by humans, reaches its own solutions. The lack of transparency is often referred to as the AI “black box.” Experts like Young say we can learn something about the evolutionary process of machine learning by generating millions of neural networks and seeing what works well and what doesn’t.
“You’re never going to be able to completely explain what happened, but maybe we can better explain it than we currently can today,” Young says.
Transparency is built into the “thought process” of each particular model generated by Driverless AI, according to Candel.
The computer even explains itself to the user in plain English at each decision point. There is also real-time feedback that allows users to prioritize features, or parameters, to see how the changes improve the accuracy of the model. For example, the system may include data from people in the same zip code as it creates a model to describe customer turnover.
“That’s one of the advantages of our automatic feature engineering: it’s basically mimicking human thinking,” Candel says. “It’s not just neural nets that magically come up with some kind of number, but we’re trying to make it statistically significant.”
Moving Forward
Much digital ink has been spilled over the dearth of skilled data scientists, so automating certain design aspects for developing artificial neural networks makes sense. Experts agree that automation alone won’t solve that particular problem. However, it will free computer scientists to tackle more difficult issues, such as parsing the inherent biases that exist within the data used by machine learning today.
“I think the world has an opportunity to focus more on the meaning of things and not on the laborious tasks of just fitting a model and finding the best features to make that model,” Candel notes. “By automating, we are pushing the burden back for the data scientists to actually do something more meaningful, which is think about the problem and see how you can address it differently to make an even bigger impact.”
The team at ORNL expects it can also make bigger impacts beginning next year when the lab’s next supercomputer, Summit, comes online. While Summit will boast only 4,600 nodes, it will sport the latest and greatest GPU technology from Nvidia and CPUs from IBM. That means it will deliver more than five times the computational performance of Titan, the world’s fifth-most powerful supercomputer today.
“We’ll be able to look at much larger problems on Summit than we were able to with Titan and hopefully get to a solution much faster,” Young says.
It’s all in a day’s work.
Image Credit: Gennady Danilkin / Shutterstock.com Continue reading

Posted in Human Robots