Tag Archives: fast

#432691 Is the Secret to Significantly Longer ...

Once upon a time, a powerful Sumerian king named Gilgamesh went on a quest, as such characters often do in these stories of myth and legend. Gilgamesh had witnessed the death of his best friend, Enkidu, and, fearing a similar fate, went in search of immortality. The great king failed to find the secret of eternal life but took solace that his deeds would live well beyond his mortal years.

Fast-forward four thousand years, give or take a century, and Gilgamesh (as famous as any B-list celebrity today, despite the passage of time) would probably be heartened to learn that many others have taken up his search for longevity. Today, though, instead of battling epic monsters and the machinations of fickle gods, those seeking to enhance and extend life are cutting-edge scientists and visionary entrepreneurs who are helping unlock the secrets of human biology.

Chief among them is Aubrey de Grey, a biomedical gerontologist who founded the SENS Research Foundation, a Silicon Valley-based research organization that seeks to advance the application of regenerative medicine to age-related diseases. SENS stands for Strategies for Engineered Negligible Senescence, a term coined by de Grey to describe a broad array (seven, to be precise) of medical interventions that attempt to repair or prevent different types of molecular and cellular damage that eventually lead to age-related diseases like cancer and Alzheimer’s.

Many of the strategies focus on senescent cells, which accumulate in tissues and organs as people age. Not quite dead, senescent cells stop dividing but are still metabolically active, spewing out all sorts of proteins and other molecules that can cause inflammation and other problems. In a young body, that’s usually not a problem (and probably part of general biological maintenance), as a healthy immune system can go to work to put out most fires.

However, as we age, senescent cells continue to accumulate, and at some point the immune system retires from fire watch. Welcome to old age.

Of Mice and Men
Researchers like de Grey believe that treating the cellular underpinnings of aging could not only prevent disease but significantly extend human lifespans. How long? Well, if you’re talking to de Grey, Biblical proportions—on the order of centuries.

De Grey says that science has made great strides toward that end in the last 15 years, such as the ability to copy mitochondrial DNA to the nucleus. Mitochondria serve as the power plant of the cell but are highly susceptible to mutations that lead to cellular degeneration. Copying the mitochondrial DNA into the nucleus would help protect it from damage.

Another achievement occurred about six years ago when scientists first figured out how to kill senescent cells. That discovery led to a spate of new experiments in mice indicating that removing these ticking-time-bomb cells prevented disease and even extended their lifespans. Now the anti-aging therapy is about to be tested in humans.

“As for the next few years, I think the stream of advances is likely to become a flood—once the first steps are made, things get progressively easier and faster,” de Grey tells Singularity Hub. “I think there’s a good chance that we will achieve really dramatic rejuvenation of mice within only six to eight years: maybe taking middle-aged mice and doubling their remaining lifespan, which is an order of magnitude more than can be done today.”

Not Horsing Around
Richard G.A. Faragher, a professor of biogerontology at the University of Brighton in the United Kingdom, recently made discoveries in the lab regarding the rejuvenation of senescent cells with chemical compounds found in foods like chocolate and red wine. He hopes to apply his findings to an animal model in the future—in this case,horses.

“We have been very fortunate in receiving some funding from an animal welfare charity to look at potential treatments for older horses,” he explains to Singularity Hub in an email. “I think this is a great idea. Many aspects of the physiology we are studying are common between horses and humans.”

What Faragher and his colleagues demonstrated in a paper published in BMC Cell Biology last year was that resveralogues, chemicals based on resveratrol, were able to reactivate a protein called a splicing factor that is involved in gene regulation. Within hours, the chemicals caused the cells to rejuvenate and start dividing like younger cells.

“If treatments work in our old pony systems, then I am sure they could be translated into clinical trials in humans,” Faragher says. “How long is purely a matter of money. Given suitable funding, I would hope to see a trial within five years.”

Show Them the Money
Faragher argues that the recent breakthroughs aren’t because a result of emerging technologies like artificial intelligence or the gene-editing tool CRISPR, but a paradigm shift in how scientists understand the underpinnings of cellular aging. Solving the “aging problem” isn’t a question of technology but of money, he says.

“Frankly, when AI and CRISPR have removed cystic fibrosis, Duchenne muscular dystrophy or Gaucher syndrome, I’ll be much more willing to hear tales of amazing progress. Go fix a single, highly penetrant genetic disease in the population using this flashy stuff and then we’ll talk,” he says. “My faith resides in the most potent technological development of all: money.”

De Grey is less flippant about the role that technology will play in the quest to defeat aging. AI, CRISPR, protein engineering, advances in stem cell therapies, and immune system engineering—all will have a part.

“There is not really anything distinctive about the ways in which these technologies will contribute,” he says. “What’s distinctive is that we will need all of these technologies, because there are so many different types of damage to repair and they each require different tricks.”

It’s in the Blood
A startup in the San Francisco Bay Area believes machines can play a big role in discovering the right combination of factors that lead to longer and healthier lives—and then develop drugs that exploit those findings.

BioAge Labs raised nearly $11 million last year for its machine learning platform that crunches big data sets to find blood factors, such as proteins or metabolites, that are tied to a person’s underlying biological age. The startup claims that these factors can predict how long a person will live.

“Our interest in this comes out of research into parabiosis, where joining the circulatory systems of old and young mice—so that they share the same blood—has been demonstrated to make old mice healthier and more robust,” Dr. Eric Morgen, chief medical officer at BioAge, tells Singularity Hub.

Based on that idea, he explains, it should be possible to alter those good or bad factors to produce a rejuvenating effect.

“Our main focus at BioAge is to identify these types of factors in our human cohort data, characterize the important molecular pathways they are involved in, and then drug those pathways,” he says. “This is a really hard problem, and we use machine learning to mine these complex datasets to determine which individual factors and molecular pathways best reflect biological age.”

Saving for the Future
Of course, there’s no telling when any of these anti-aging therapies will come to market. That’s why Forever Labs, a biotechnology startup out of Ann Arbor, Michigan, wants your stem cells now. The company offers a service to cryogenically freeze stem cells taken from bone marrow.

The theory behind the procedure, according to Forever Labs CEO Steven Clausnitzer, is based on research showing that stem cells may be a key component for repairing cellular damage. That’s because stem cells can develop into many different cell types and can divide endlessly to replenish other cells. Clausnitzer notes that there are upwards of a thousand clinical studies looking at using stem cells to treat age-related conditions such as cardiovascular disease.

However, stem cells come with their own expiration date, which usually coincides with the age that most people start experiencing serious health problems. Stem cells harvested from bone marrow at a younger age can potentially provide a therapeutic resource in the future.

“We believe strongly that by having access to your own best possible selves, you’re going to be well positioned to lead healthier, longer lives,” he tells Singularity Hub.

“There’s a compelling argument to be made that if you started to maintain the bone marrow population, the amount of nuclear cells in your bone marrow, and to re-up them so that they aren’t declining with age, it stands to reason that you could absolutely mitigate things like cardiovascular disease and stroke and Alzheimer’s,” he adds.

Clausnitzer notes that the stored stem cells can be used today in developing therapies to treat chronic conditions such as osteoarthritis. However, the more exciting prospect—and the reason he put his own 38-year-old stem cells on ice—is that he believes future stem cell therapies can help stave off the ravages of age-related disease.

“I can start reintroducing them not to treat age-related disease but to treat the decline in the stem-cell niche itself, so that I don’t ever get an age-related disease,” he says. “I don’t think that it equates to immortality, but it certainly is a step in that direction.”

Indecisive on Immortality
The societal implications of a longer-living human species are a guessing game at this point. We do know that by mid-century, the global population of those aged 65 and older will reach 1.6 billion, while those older than 80 will hit nearly 450 million, according to the National Academies of Science. If many of those people could enjoy healthy lives in their twilight years, an enormous medical cost could be avoided.

Faragher is certainly working toward a future where human health is ubiquitous. Human immortality is another question entirely.

“The longer lifespans become, the more heavily we may need to control birth rates and thus we may have fewer new minds. This could have a heavy ‘opportunity cost’ in terms of progress,” he says.

And does anyone truly want to live forever?

“There have been happy moments in my life but I have also suffered some traumatic disappointments. No [drug] will wash those experiences out of me,” Faragher says. “I no longer view my future with unqualified enthusiasm, and I do not think I am the only middle-aged man to feel that way. I don’t think it is an accident that so many ‘immortalists’ are young.

“They should be careful what they wish for.”

Image Credit: Karim Ortiz / Shutterstock.com Continue reading

Posted in Human Robots

#432563 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Pedro Domingos on the Arms Race in Artificial Intelligence
Christoph Scheuermann and Bernhard Zand | Spiegel Online
“AI lowers the cost of knowledge by orders of magnitude. One good, effective machine learning system can do the work of a million people, whether it’s for commercial purposes or for cyberespionage. Imagine a country that produces a thousand times more knowledge than another. This is the challenge we are facing.”

BIOTECHNOLOGY
Gene Therapy Could Free Some People From a Lifetime of Blood Transfusions
Emily Mullin | MIT Technology Review
“A one-time, experimental treatment for an inherited blood disorder has shown dramatic results in a small study. …[Lead author Alexis Thompson] says the effect on patients has been remarkable. ‘They have been tied to this ongoing medical therapy that is burdensome and expensive for their whole lives,’ she says. ‘Gene therapy has allowed people to have aspirations and really pursue them.’ ”

ENVIRONMENT
The Revolutionary Giant Ocean Cleanup Machine Is About to Set Sail
Adele Peters | Fast Company
“By the end of 2018, the nonprofit says it will bring back its first harvest of ocean plastic from the North Pacific Gyre, along with concrete proof that the design works. The organization expects to bring 5,000 kilograms of plastic ashore per month with its first system. With a full fleet of systems deployed, it believes that it can collect half of the plastic trash in the Great Pacific Garbage Patch—around 40,000 metric tons—within five years.”

ROBOTICS
Autonomous Boats Will Be on the Market Sooner Than Self-Driving Cars
Tracey Lindeman | Motherboard
“Some unmanned watercraft…may be at sea commercially before 2020. That’s partly because automating all ships could generate a ridiculous amount of revenue. According to the United Nations, 90 percent of the world’s trade is carried by sea and 10.3 billion tons of products were shipped in 2016.”

DIGITAL CULTURE
Style Is an Algorithm
Kyle Chayka | Racked
“Confronting the Echo Look’s opaque statements on my fashion sense, I realize that all of these algorithmic experiences are matters of taste: the question of what we like and why we like it, and what it means that taste is increasingly dictated by black-box robots like the camera on my shelf.”

COMPUTING
How Apple Will Use AR to Reinvent the Human-Computer Interface
Tim Bajarin | Fast Company
“It’s in Apple’s DNA to continually deliver the ‘next’ major advancement to the personal computing experience. Its innovation in man-machine interfaces started with the Mac and then extended to the iPod, the iPhone, the iPad, and most recently, the Apple Watch. Now, get ready for the next chapter, as Apple tackles augmented reality, in a way that could fundamentally transform the human-computer interface.”

SCIENCE
Advanced Microscope Shows Cells at Work in Incredible Detail
Steve Dent | Engadget
“For the first time, scientists have peered into living cells and created videos showing how they function with unprecedented 3D detail. Using a special microscope and new lighting techniques, a team from Harvard and the Howard Hughes Medical Institute captured zebrafish immune cell interactions with unheard-of 3D detail and resolution.”

Image Credit: dubassy / Shutterstock.com Continue reading

Posted in Human Robots

#432519 Robot Cities: Three Urban Prototypes for ...

Before I started working on real-world robots, I wrote about their fictional and historical ancestors. This isn’t so far removed from what I do now. In factories, labs, and of course science fiction, imaginary robots keep fueling our imagination about artificial humans and autonomous machines.

Real-world robots remain surprisingly dysfunctional, although they are steadily infiltrating urban areas across the globe. This fourth industrial revolution driven by robots is shaping urban spaces and urban life in response to opportunities and challenges in economic, social, political, and healthcare domains. Our cities are becoming too big for humans to manage.

Good city governance enables and maintains smooth flow of things, data, and people. These include public services, traffic, and delivery services. Long queues in hospitals and banks imply poor management. Traffic congestion demonstrates that roads and traffic systems are inadequate. Goods that we increasingly order online don’t arrive fast enough. And the WiFi often fails our 24/7 digital needs. In sum, urban life, characterized by environmental pollution, speedy life, traffic congestion, connectivity and increased consumption, needs robotic solutions—or so we are led to believe.

Is this what the future holds? Image Credit: Photobank gallery / Shutterstock.com
In the past five years, national governments have started to see automation as the key to (better) urban futures. Many cities are becoming test beds for national and local governments for experimenting with robots in social spaces, where robots have both practical purpose (to facilitate everyday life) and a very symbolic role (to demonstrate good city governance). Whether through autonomous cars, automated pharmacists, service robots in local stores, or autonomous drones delivering Amazon parcels, cities are being automated at a steady pace.

Many large cities (Seoul, Tokyo, Shenzhen, Singapore, Dubai, London, San Francisco) serve as test beds for autonomous vehicle trials in a competitive race to develop “self-driving” cars. Automated ports and warehouses are also increasingly automated and robotized. Testing of delivery robots and drones is gathering pace beyond the warehouse gates. Automated control systems are monitoring, regulating and optimizing traffic flows. Automated vertical farms are innovating production of food in “non-agricultural” urban areas around the world. New mobile health technologies carry promise of healthcare “beyond the hospital.” Social robots in many guises—from police officers to restaurant waiters—are appearing in urban public and commercial spaces.

Vertical indoor farm. Image Credit: Aisyaqilumaranas / Shutterstock.com
As these examples show, urban automation is taking place in fits and starts, ignoring some areas and racing ahead in others. But as yet, no one seems to be taking account of all of these various and interconnected developments. So, how are we to forecast our cities of the future? Only a broad view allows us to do this. To give a sense, here are three examples: Tokyo, Dubai, and Singapore.

Tokyo
Currently preparing to host the Olympics 2020, Japan’s government also plans to use the event to showcase many new robotic technologies. Tokyo is therefore becoming an urban living lab. The institution in charge is the Robot Revolution Realization Council, established in 2014 by the government of Japan.

Tokyo: city of the future. Image Credit: ESB Professional / Shutterstock.com
The main objectives of Japan’s robotization are economic reinvigoration, cultural branding, and international demonstration. In line with this, the Olympics will be used to introduce and influence global technology trajectories. In the government’s vision for the Olympics, robot taxis transport tourists across the city, smart wheelchairs greet Paralympians at the airport, ubiquitous service robots greet customers in 20-plus languages, and interactively augmented foreigners speak with the local population in Japanese.

Tokyo shows us what the process of state-controlled creation of a robotic city looks like.

Singapore
Singapore, on the other hand, is a “smart city.” Its government is experimenting with robots with a different objective: as physical extensions of existing systems to improve management and control of the city.

In Singapore, the techno-futuristic national narrative sees robots and automated systems as a “natural” extension of the existing smart urban ecosystem. This vision is unfolding through autonomous delivery robots (the Singapore Post’s delivery drone trials in partnership with AirBus helicopters) and driverless bus shuttles from Easymile, EZ10.

Meanwhile, Singapore hotels are employing state-subsidized service robots to clean rooms and deliver linen and supplies, and robots for early childhood education have been piloted to understand how robots can be used in pre-schools in the future. Health and social care is one of the fastest growing industries for robots and automation in Singapore and globally.

Dubai
Dubai is another emerging prototype of a state-controlled smart city. But rather than seeing robotization simply as a way to improve the running of systems, Dubai is intensively robotizing public services with the aim of creating the “happiest city on Earth.” Urban robot experimentation in Dubai reveals that authoritarian state regimes are finding innovative ways to use robots in public services, transportation, policing, and surveillance.

National governments are in competition to position themselves on the global politico-economic landscape through robotics, and they are also striving to position themselves as regional leaders. This was the thinking behind the city’s September 2017 test flight of a flying taxi developed by the German drone firm Volocopter—staged to “lead the Arab world in innovation.” Dubai’s objective is to automate 25% of its transport system by 2030.

It is currently also experimenting with Barcelona-based PAL Robotics’ humanoid police officer and Singapore-based vehicle OUTSAW. If the experiments are successful, the government has announced it will robotize 25% of the police force by 2030.

While imaginary robots are fueling our imagination more than ever—from Ghost in the Shell to Blade Runner 2049—real-world robots make us rethink our urban lives.

These three urban robotic living labs—Tokyo, Singapore, Dubai—help us gauge what kind of future is being created, and by whom. From hyper-robotized Tokyo to smartest Singapore and happy, crime-free Dubai, these three comparisons show that, no matter what the context, robots are perceived as a means to achieve global futures based on a specific national imagination. Just like the films, they demonstrate the role of the state in envisioning and creating that future.

This article was originally published on The Conversation. Read the original article.

Image Credit: 3000ad / Shutterstock.com Continue reading

Posted in Human Robots

#432512 How Will Merging Minds and Machines ...

One of the most exciting and frightening outcomes of technological advancement is the potential to merge our minds with machines. If achieved, this would profoundly boost our cognitive capabilities. More importantly, however, it could be a revolution in human identity, emotion, spirituality, and self-awareness.

Brain-machine interface technology is already being developed by pioneers and researchers around the globe. It’s still early and today’s tech is fairly rudimentary, but it’s a fast-moving field, and some believe it will advance faster than generally expected. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to connect our brains to the internet via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” Even if the advances are less dramatic, however, they’ll have significant implications.

How might this technology affect human consciousness? What about its implications on our sentience, self-awareness, or subjective experience of our illusion of self?

Consciousness can be hard to define, but a holistic definition often encompasses many of our most fundamental capacities, such as wakefulness, self-awareness, meta-cognition, and sense of agency. Beyond that, consciousness represents a spectrum of awareness, as seen across various species of animals. Even humans experience different levels of existential awareness.

From psychedelics to meditation, there are many tools we already use to alter and heighten our conscious experience, both temporarily and permanently. These tools have been said to contribute to a richer life, with the potential to bring experiences of beauty, love, inner peace, and transcendence. Relatively non-invasive, these tools show us what a seemingly minor imbalance of neurochemistry and conscious internal effort can do to the subjective experience of being human.

Taking this into account, what implications might emerging brain-machine interface technologies have on the “self”?

The Tools for Self-Transcendence
At the basic level, we are currently seeing the rise of “consciousness hackers” using techniques like non-invasive brain stimulation through EEG, nutrition, virtual reality, and ecstatic experiences to create environments for heightened consciousness and self-awareness. In Stealing Fire, Steven Kotler and Jamie Wheal explore this trillion-dollar altered-states economy and how innovators and thought leaders are “harnessing rare and controversial states of consciousness to solve critical challenges and outperform the competition.” Beyond enhanced productivity, these altered states expose our inner potential and give us a glimpse of a greater state of being.

Expanding consciousness through brain augmentation and implants could one day be just as accessible. Researchers are working on an array of neurotechnologies as simple and non-invasive as electrode-based EEGs to invasive implants and techniques like optogenetics, where neurons are genetically reprogrammed to respond to pulses of light. We’ve already connected two brains via the internet, allowing the two to communicate, and future-focused startups are researching the possibilities too. With an eye toward advanced brain-machine interfaces, last year Elon Musk unveiled Neuralink, a company whose ultimate goal is to merge the human mind with AI through a “neural lace.”

Many technologists predict we will one day merge with and, more speculatively, upload our minds onto machines. Neuroscientist Kenneth Hayworth writes in Skeptic magazine, “All of today’s neuroscience models are fundamentally computational by nature, supporting the theoretical possibility of mind-uploading.” This might include connecting with other minds using digital networks or even uploading minds onto quantum computers, which can be in multiple states of computation at a given time.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. With advancements in genetic engineering, we are indeed seeing evolution become an increasingly conscious process with an accelerated pace. This could one day apply to the evolution of our consciousness as well; we would be using our consciousness to expand our consciousness.

What Will It Feel Like?
We may be able to come up with predictions of the impact of these technologies on society, but we can only wonder what they will feel like subjectively.

It’s hard to imagine, for example, what our stream of consciousness will feel like when we can process thoughts and feelings 1,000 times faster, or how artificially intelligent brain implants will impact our capacity to love and hate. What will the illusion of “I” feel like when our consciousness is directly plugged into the internet? Overall, what impact will the process of merging with technology have on the subjective experience of being human?

The Evolution of Consciousness
In The Future Evolution of Consciousness, Thomas Lombardo points out, “We are a journey rather than a destination—a chapter in the evolutionary saga rather than a culmination. Just as probable, there will also be a diversification of species and types of conscious minds. It is also very likely that new psychological capacities, incomprehensible to us, will emerge as well.”

Humans are notorious for fearing the unknown. For any individual who has never experienced an altered state, be it spiritual or psychedelic-induced, it is difficult to comprehend the subjective experience of that state. It is why many refer to their first altered-state experience as “waking up,” wherein they didn’t even realize they were asleep.

Similarly, exponential neurotechnology represents the potential of a higher state of consciousness and a range of experiences that are unimaginable to our current default state.

Our capacity to think and feel is set by the boundaries of our biological brains. To transform and expand these boundaries is to transform and expand the first-hand experience of consciousness. Emerging neurotechnology may end up providing the awakening our species needs.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#432331 $10 million XPRIZE Aims for Robot ...

Ever wished you could be in two places at the same time? The XPRIZE Foundation wants to make that a reality with a $10 million competition to build robot avatars that can be controlled from at least 100 kilometers away.

The competition was announced by XPRIZE founder Peter Diamandis at the SXSW conference in Austin last week, with an ambitious timeline of awarding the grand prize by October 2021. Teams have until October 31st to sign up, and they need to submit detailed plans to a panel of judges by the end of next January.

The prize, sponsored by Japanese airline ANA, has given contestants little guidance on how they expect them to solve the challenge other than saying their solutions need to let users see, hear, feel, and interact with the robot’s environment as well as the people in it.

XPRIZE has also not revealed details of what kind of tasks the robots will be expected to complete, though they’ve said tasks will range from “simple” to “complex,” and it should be possible for an untrained operator to use them.

That’s a hugely ambitious goal that’s likely to require teams to combine multiple emerging technologies, from humanoid robotics to virtual reality high-bandwidth communications and high-resolution haptics.

If any of the teams succeed, the technology could have myriad applications, from letting emergency responders enter areas too hazardous for humans to helping people care for relatives who live far away or even just allowing tourists to visit other parts of the world without the jet lag.

“Our ability to physically experience another geographic location, or to provide on-the-ground assistance where needed, is limited by cost and the simple availability of time,” Diamandis said in a statement.

“The ANA Avatar XPRIZE can enable creation of an audacious alternative that could bypass these limitations, allowing us to more rapidly and efficiently distribute skill and hands-on expertise to distant geographic locations where they are needed, bridging the gap between distance, time, and cultures,” he added.

Interestingly, the technology may help bypass an enduring hand break on the widespread use of robotics: autonomy. By having a human in the loop, you don’t need nearly as much artificial intelligence analyzing sensory input and making decisions.

Robotics software is doing a lot more than just high-level planning and strategizing, though. While a human moves their limbs instinctively without consciously thinking about which muscles to activate, controlling and coordinating a robot’s components requires sophisticated algorithms.

The DARPA Robotics Challenge demonstrated just how hard it was to get human-shaped robots to do tasks humans would find simple, such as opening doors, climbing steps, and even just walking. These robots were supposedly semi-autonomous, but on many tasks they were essentially tele-operated, and the results suggested autonomy isn’t the only problem.

There’s also the issue of powering these devices. You may have noticed that in a lot of the slick web videos of humanoid robots doing cool things, the machine is attached to the roof by a large cable. That’s because they suck up huge amounts of power.

Possibly the most advanced humanoid robot—Boston Dynamics’ Atlas—has a battery, but it can only run for about an hour. That might be fine for some applications, but you don’t want it running out of juice halfway through rescuing someone from a mine shaft.

When it comes to the link between the robot and its human user, some of the technology is probably not that much of a stretch. Virtual reality headsets can create immersive audio-visual environments, and a number of companies are working on advanced haptic suits that will let people “feel” virtual environments.

Motion tracking technology may be more complicated. While even consumer-grade devices can track peoples’ movements with high accuracy, you will probably need to don something more like an exoskeleton that can both pick up motion and provide mechanical resistance, so that when the robot bumps into an immovable object, the user stops dead too.

How hard all of this will be is also dependent on how the competition ultimately defines subjective terms like “feel” and “interact.” Will the user need to be able to feel a gentle breeze on the robot’s cheek or be able to paint a watercolor? Or will simply having the ability to distinguish a hard object from a soft one or shake someone’s hand be enough?

Whatever the fidelity they decide on, the approach will require huge amounts of sensory and control data to be transmitted over large distances, most likely wirelessly, in a way that’s fast and reliable enough that there’s no lag or interruptions. Fortunately 5G is launching this year, with a speed of 10 gigabits per second and very low latency, so this problem should be solved by 2021.

And it’s worth remembering there have already been some tentative attempts at building robotic avatars. Telepresence robots have solved the seeing, hearing, and some of the interacting problems, and MIT has already used virtual reality to control robots to carry out complex manipulation tasks.

South Korean company Hankook Mirae Technology has also unveiled a 13-foot-tall robotic suit straight out of a sci-fi movie that appears to have made some headway with the motion tracking problem, albeit with a human inside the robot. Toyota’s T-HR3 does the same, but with the human controlling the robot from a “Master Maneuvering System” that marries motion tracking with VR.

Combining all of these capabilities into a single machine will certainly prove challenging. But if one of the teams pulls it off, you may be able to tick off trips to the Seven Wonders of the World without ever leaving your house.

Image Credit: ANA Avatar XPRIZE Continue reading

Posted in Human Robots